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Heart rate variability, or the variation in the time interval between consecu-

tive beats, is a non-invasive dynamic metric of the autonomic nervous system

and an independent risk factor for cardiovascular death. Prior limitations of

use include requirements for continuous electrocardiography and lack of ref-

erence standards. Consumer wrist-worn tracking devices using photoplethys-

mography now provide the unique potential of continuously measuring surro-

gates of sympathetic and parasympathetic activity through the analysis of in-

terbeat intervals. Here we leverage wrist-worn trackers to present the largest,

to our knowledge, analysis of heart rate variability in humans across the time,

frequency, and graphical domains. We derive diurnal parasympathetic and
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sympathetic measures and provide scaling parameters by age, sex, and time of

day. Poincare plots graphically summarize heart rate variability metrics and

may detect common arrhythmias. Lastly, we observe a strong dose-dependent

correlation between daily steps and optimal heart rate variability metrics. Our

results provide the ability to interpret continuous heart rate variability for tens

of millions of wrist-worn trackers already in use.

Introduction

Heart rate variability (HRV) refers to the variation in time between successive heart beats, and

represents a non-invasive index of the autonomic nervous system. Since the autonomic nervous

system regulates heart rate during sinus rhythm, HRV summarizes complex non-linear cardio-

vascular accommodative responses, dictated by the parasympathetic and sympathetic nervous

systems, to dynamic physiologic variations.

While HRV is significantly influenced by sex and aging (1), reduced compensatory response

(i.e., low HRV) is independently predictive of first fatal and non-fatal cardiovascular disease

events in the general population (2–6). Robust data also links low HRV with adverse outcomes

and mortality after sustaining a cardiovascular event, such as myocardial infarction (7,8). Beta-

blockers and exercise therapy reduce risks of cardiovascular events among individuals with

coronary artery disease and congestive heart failure, and enhancement of HRV is believed to be

mechanisms for improved prognosis (9–11). Thus, a less adaptive autonomic nervous system is

predictive of first and recurrent cardiovascular events, and restoration of homeostatic capacity

may reduce risk.

A recent position statement from professional societies lament a general disconnect be-

tween HRV as a research tool and practical clinical use (12). Among the barriers for clinical

use, include assessments in relatively small selected cohorts, requirement for continuous ECG
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monitoring, and substantial variation by age, sex, and time of day.

In recent years, the widespread availability of heart rate enabled tracking devices has caused

considerable interest in HRV given potential ease of availability. Commercial wrist-worn track-

ing devices measure heart rate intervals through photoplethysmography (PPG) at a single point

of contact. PPG devices uses multiple wavelengths of light to illuminate the skin and photo-

diodes to measure the reflected light, thereby inferring changes in blood volume by measuring

changes in light absorption (see for e.g. (13–15)). While ECG-derived HRV metrics are ob-

tained by analyzing the RR intervals between successive beats, PPG devices resolve HRV met-

rics through analysis of interbeat intervals (IBI) as a proxy for the RR intervals (16–19). PPG

devices are more susceptible to motion artifacts.

Standards for HRV were set by the European Society of Cardiology, and the North American

Society of Pacing and Electrophysiology (20, 21). HRV can be measured in many ways: in

the time domain, the frequency domain, or using graphical and non-linear techniques (for an

overview of HRV and metrics, see (22)). In this article, we present time domain, frequency

domain, and graphical domain results from the largest HRV study to-date by several orders of

magnitude - from ∼ 8 Million users of Fitbit devices. We demonstrate feasibility of obtaining

HRV metrics from PPG at high fidelity, define diurnal distributions of common HRV metrics by

age and sex, characterize the influence of aging on HRV metrics, and the relationship between

physical activity on HRV metrics.

Data and HRV metrics

Time domain metrics are computationally straightforward and do not require contiguous data.

Frequency domain calculations can be computationally expensive and require the data to be

contiguous and evenly sampled, but have the benefit of separating the sympathetic nervous sys-

tem (fluctuations that occur on longer time scales and hence low frequencies) and the parasym-
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pathetic nervous system (fluctuations mostly occur on shorter time scales and hence higher

frequencies) (22). Time windows of 5 minutes (short term) and 24 hours (long term) are com-

monly considered in the literature (20, 21). In this work, we only consider 5 minute windows,

i.e. a 24 hour time series would have 288 time windows. Note that 24 hour measurements of

time domain metrics will be larger than the 5 minute measurements which we discuss in this

work. We consider the following well known HRV metrics:

1. SDRR: The SDRR is the standard deviation of the IBI measured over a time window of

5 minutes. Let the peaks of the blood volume occur at times T0, T1, T2, · · ·. The IBI are

the differences between successive beats, defined as:

In = Tn − Tn−1, (1)

i.e. the IBI field is the first difference of the PPG waveform. The standard deviation of

each 5 minute sequence of In is computed. The SDRR measures medium to long term

variations in the heart rate. SDRR correlates with the total power since the variance in

the time domain equals the total power in the frequency domain. In the literature, this

quantity is often termed SDNN which implies that ectopic beats are filtered out (22).

Since we do not do this, we prefer the term SDRR.

2. RMSSD: The RMSSD is the root mean squared (RMS) value of the successive differences

of the In. The successive differences ∆In are defined as:

∆In = In − In−1. (2)

Since the ∆In is the second difference of the PPG waveform (or the first difference of the

IBI), it preferentially contains high frequency variations. The RMSSD is the RMS value

of the ∆In (i.e. the square root of the mean of the square of the samples), measured over
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a time window of 5 minutes. The RMSSD measures short to medium term variations in

the heart rate, and correlates with HF power.

3. LF Power: The LF band measures power in the frequency range 0.04 Hz - 0.15 Hz (cor-

responding to physiological processes that act on timescales 6.7s - 25s), and captures

both sympathetic and parasympathetic activity. Mayer waves, i.e. arterial blood pressure

waves are seen in the LF band (typically around 0.1 Hz). Some vagally mediated power

may also be present in the LF band, particularly during slow, paced breathing (see for

example (22) and references therein).

4. HF Power: The HF band measures power in the frequency range 0.15 Hz - 0.4 Hz (corre-

sponding to physiological processes that act on timescales 2.5s - 6.7s), and is a probe of

the parasympathetic nervous system. The respiration induced sinus arrhythmia is usually

contained in the HF band.

5. Poincare S1: The standard deviation measured along the minor axis of the Poincare ellipse

is called S1, and is a measure of short term variability.

6. Poincare S2: The standard deviation measured along the major axis of the Poincare ellipse

is called S2, and is a measure of long term variability.

It is well known that respiration modulates the heart rate due to the activity of the vagus

nerve, at frequencies ≈ the respiration rate ∼ 10 − 20 times a minute during sleep, a phe-

nomenon known as sinus arrhythmia (SA) (see for example (22) and references therein). The

magnitude of the SA provides a measure of parasympathetic cardiovascular response to res-

piration. HRV is also a probe of sympathetic activity at lower frequencies: Mayer waves are

oscillations of arterial pressure occurring spontaneously, and are enhanced during states of sym-

pathetic activation (23). Fig. 1 shows the Power Spectral Density (PSD), i.e. power per unit
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frequency, for a single individual, measured over one night. The PSD shows two features:

1. Peak at ≈ 0.1 Hz corresponding to the arterial blood pressure induced Mayer wave.

2. Peak at ≈ 0.3 Hz corresponding to the respiration induced sinus arrhythmia.

We fit the data to the following form:

log10

(
PSD

s2/Hz

)
=

[
K + ν log10

(
f

0.15 Hz

)]

×

1 + AM exp−1

2

(
f − µM

σM

)2

+ AR exp−1

2

(
f − µR

σR

)2
 (3)

The first term represents a power law decline with frequency. The second term accounts

for the two features. In this example, the best fit value for the Mayer wave is µM = 0.0975

Hz representing arterial pressure oscillations on a mean time scale ≈ 10.3 s. The best fit value

for the SA feature for this subject was found to be µR = 0.2879 Hz, corresponding to a mean

respiration rate ≈ 17.3 breaths per minute.

Among graphical domain techniques, we consider only first order lag-1 Poincare plots.

Poincare ellipses can be categorized by their shape into a number of classes (24–26). Esperer

et al. (25) investigated Poincare plots from healthy and symptomatic individuals and identified

10 distinct classes, each with diagnostic value. Some classes of Poincare ellipses obtained from

our data, are shown in Fig. 2. The top row shows heart beats in sinus rhythm. (a) is the “comet

class” and represents a healthy heart. (b) is termed the “torpedo” class since it lacks the taper

seen in the comet plots. Tulppo et al. (26) distinguish the comet and torpedo classes based on

the ratio of short and long axes. Esperer et al. (25) instead, distinguish these classes based on the

HRV. The torpedo shaped Poincare plots show cardiovascular dysfunction since the short term

variability is weaker than what is seen in the comet plots. (c) is an example of tachycardia, and

shows very low variability with substantially reduced S1 and S2. The bottom row shows exam-

ples of arrhythmias. (d) shows the “fan” pattern suggestive of atrial fibrillation (24, 25), while
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(e) and (f) show bi-lobed and tri-lobed anomalies which could potentially indicate premature

atrial or ventricular beats.

Changes in HRV with age

It is well known that HRV declines with age, although the decline may be ameliorated by healthy

habits, e.g. staying active, mindfulness practices, etc. Umetani et al. (1) studied the decline in

time domain HRV metrics with age, from a dataset of 240 healthy subjects. They found that

the RMSSD declines more rapidly than the SDRR (called SDNN Index in their paper). They

also found that for age < 30 yr, HRV in female subjects was lower on average than in male

subjects for all time domain metrics, with no gender differences for age > 50 yr. Other works

that discuss HRV and aging include (27–29).

Fig. 3 shows the decline in HRV with aging (from age 20 yr to 60 yr), from our data. Our

results are consistent with the findings of Umetani et al. (1) especially for measurements taken

during the daytime (our SDRR corresponds to their SDNN Index). Interestingly, the decline in

HRV with age depends not only on gender, but also the time of day when the measurements are

made. Plots (a) and (b) show the decrease in RMSSD and SDRR respectively. The SDRR is

higher on average, in men compared to women, a trend that is less noticeable with the RMSSD.

Plots (c) and (d) show equivalent results for the HF power and LF power, while plots (e) and (f)

show the variation in Poincare S1 and S2. Note that the HF power, Poincare S1, and RMSSD

behave similarly. Similarly LF power, Poincare S2, and SDRR show a high degree of correla-

tion. The RMSSD tends to decline faster than the SDRR, the HF power declines faster than the

LF power, and the Poincare S1 declines faster than S2. This suggests that with increasing age,

parasympathetic ability is lost sooner than sympathetic ability.
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Changes in HRV with time of day

Vandewalle et al. (30) studied the diurnal variation of Heart Rate Variability metrics over a 24

hour period involving eight healthy male subjects, and found that HRV metrics vary through-

out the day, reaching peak values in the early morning hours. Our data also shows that HRV

metrics vary significantly throughout the day, and hence HRV measurements should be taken

consistently at the same time of day. Fig. 4 shows the diurnal variation of HRV metrics. Plots

(a) and (b) show the fractional variation of the RMSSD and the SDRR as a function of the time

of day, for male (green) and female (red) subjects. Young users (age = 20-21 yr) are represented

by solid lines, while older users (age = 60-61 yr) are represented by dashed lines. Plots (c) and

(d) show the variation for HF power and LF power. Similarly, plots (e) and (f) show the daily

modulation in S1 and S2. The SDRR, LF power, and Poincare S2 show a change in phase with

increase in age: Older users tend to have an earlier peak in the daily cycle, for the sympathetic

measures. All HRV metrics peak early in the day (∼ between 5 am and 8 am) and reach a

minimum in the late evening (∼ 7 pm - 8 pm).

Scaling relations

In this section, we take a closer look at the scaling of HRV with age, gender, and time of day.

We parametrize the HRV by the following power law form:

HRV (age, g, t) = HRV30(g, t)

(
age

30 yr

)α(g,t)
, (4)

where t is the time of day in hours from midnight, ‘age’ is the age in years, and g is the gender.

HRV is the HRV metric being studied, which could be HF power, LF power, RMSSD, SDRR,

S1, or S2. Note that the dependence on the time of day and the age are not separable, i.e. the

power law exponent α is a function of the time of day.

The time dependance of α means that the decline in HRV with age is different at different
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times of the day. Let us expand the time dependent terms in Eq. 4, i.e. HRV30 and α as follows:

HRV30(g, t) = HRV0(g) [1 + δH(g, t)]

α(g, t) = α0(g) [1 + δα(g, t)] (5)

HRV0(g) and α0(g) are mean values (over 24 hours) and are gender dependent. Table 1 gives

the values of α0(g) and HRV0(g) for the different HRV metrics. Together with the time depen-

dent terms, one can compute the HRV given the gender, age, and time of day. Fig. 5 shows

the diurnal modulation of δH(g, t) and δα(g, t). The plots for δH(g, t) are sufficiently close to

sinusoidal, that we can approximate δH(g, t) using the first 3 Fourier components:

δH(g, t) =
3∑

n=1

[
an(g) cos

(
n t

24 hr

)
+ bn(g) sin

(
n t

24 hr

)]
. (6)

The values of an(g) and bn(g) for n = 1,2,3 are tabulated in Table 2, for male and female sub-

jects. In all cases, b1 is the dominant term, describing a sinusoid with a period of 24 hours. The

other terms are corrections to the sinusoidal variation. Tables 1 and 2 give the value of typical

HRV metrics for a 30 yr old person. More accurate estimates can be obtained by accounting for

the time dependent term δα(t) as shown in Fig. 5. Typically HRV numbers for other ages can

be obtained from Eq. 4, and from Tables 1 and 2.

Focusing on Fig. 5, plot (a) show the daily modulation of δRMSSD (solid lines) and δα,RMSSD

(dashed lines) for male (green) and female (red) subjects. Plot (b) shows the equivalent curves

for the SDRR, while plots (c), (d), (e), and (f) show δH and δα for the HF power, LF power, S1

and S2. The variation of δH is significant in all cases. The variation of δα is small for HF power,

significant for the RMSSD and Poincare S1, and large for SDRR, LF power, and Poincare S2.

In light of this figure, we can better understand the phase variation seen in Fig. 4 which showed

that the phase of the SDRR, LF, and S2 modulation peaks earlier in older individuals. From Fig.

5, we note that δα changes rapidly when δH is close to a maximum. This means that as people
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get older, the SDRR/LF/S2 at ∼ 7 am declines faster than the same metrics, at e.g. ∼ 6 am,

explaining the movement of the phase with increase in age. Such as effect is not apparent in the

RMSSD, HF power, or Poincare S1 because δα varies slowly when δH is a maximum.

Finally, we investigate the possibility of increasing HRV through behavior modification.

Several authors (31–34) have discussed the effect of physical activity on HRV and studies have

shown beneficial results. We analyzed the HRV of all participants (measured from 6 am - 7

am) grouped by the average number of steps taken per day (steps per day is averaged over a

90 day period preceding the HRV measurement). Fig. 6 shows a strong correlation between

physical activity and HF and LF power (similar conclusions hold true for other metrics). Plots

(a) and (b) show the change in HF and LF power respectively for younger users (ages 20-24

yr). Corresponding results for older users (ages 50-54 yr) are shown in plots (c) and (d). To

estimate the impact of exercise, we modeled the HRV power variation by a linear fit: HRV

power = C + steps/σ, where σ is the number of steps necessary to increase the power by 1 ms2

on average. The values of Pearson correlation coefficient (r), C, and σ are listed in Table 3.

An alternative approach to increasing HRV involves the practice of mindfulness or meditation

techniques (35–37).

Discussion

In this article, we presented heart rate variability measurements from 8 Million individuals using

Fitbit devices, taken over a period of 24 hours. We reported results on HRV metrics in the time

domain, frequency domain, and the graphical domain. To compute frequency domain metrics,

we first interpolated the IBI field to obtain samples that are evenly separated. The PSD was

computed from the interpolated field, through a fast fourier transform. The spectral shape of the

PSD of a healthy subject contains two features in addition to a power law: Respiration induced

sinus arrhythmia at ∼ 0.2− 0.3 Hz, and the arterial blood pressure induced Mayer wave around
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∼ 0.1 Hz. We showed examples of Poincare plots for subjects with heart beats in sinus rhythm,

as well as for subjects with arrhythmias.

We have provided benchmark tables for HRV features in the Supplementary text giving the

mean, median and the 25th − 75th percentile ranges, for different ages, and for both male and

female participants. We anticipate that a user’s HRV in relation to the HRV of others of similar

age and gender may be a useful feature in assessing cardiovascular risk. Popular risk assessment

algorithms such as the Framingham risk score, do not take HRV into account and sometimes

underestimate the risk of adverse cardiovascular events (38) and sometimes overestimate it (39).

Authors (40) found that the Framingham risk score for men was inversely correlated with several

HRV features. We are therefore optimistic that a person’s HRV relative to others in their gender

and age group would help improve cardiovascular risk predictions.

Our results may have important implications for the remote monitoring of human health

given the widespread availability of wrist-worn trackers. First, our method allows for the con-

tinuous monitoring of autonomic and cardiovascular responses throughout life’s experiences.

Consistent with prior small studies, all HRV metrics decrease with age (1,41,42). The RMSSD,

HF power, and Poincare S1 decrease with age faster than the SDRR, LF power, and Poincare S2.

This suggests a more rapid decline of parasympathetic function with increasing age, compared

to sympathetic activity. The LF/HF ratio shows an increase with age up to ≈ 50 − 60 yr, also

implying a faster decline in parasympathetic function. Prior work in older adults implies the the

slope of decline in parasympathetic HRV metrics is inversely related to longevity (42). We also

presented results showing the diurnal variation of HRV metrics. The variation is substantial,

and hence it is advisable for people to interpret HRV measurements at the same time of day.

With the help of this massive dataset, we have been able to show a difference between sympa-

thetic and parasympathetic measures with respect to the phase variation of the daily modulation

with age. The sympathetic measures show a phase shift towards earlier times of the day with
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increase in age. Such an effect is far less noticeable with the parasympathetic measures.

Second, we presented simple formulae and tables that show how to compute typical HRV

metrics from photoplethysmography for interpretation. We fitted the variation of HRV metrics

with age, using a simple power law. The scaling parameters depend on gender, and time of day.

The HRV metrics can be estimated given age, gender, and time of day using 2 gender depen-

dent scaling parameters HRV0(g), α0(g), and 2 gender and time dependent scaling parameters

δH(g, t), and δα(g, t). The parameter δH(g, t) can be well approximated using the first 3 Fourier

components. The time variation of δα(g, t) is more complicated, and we present figures that

allow for quick estimations.

Third, since we observe a strong correlation between physical steps and HRV, increasing

physical activity may optimize HRV metrics. While there have been other studies of exercise

and HRV, they have been typically limited to small populations (31, 32) or to participants in

a narrow age range (33). Due to the size of our dataset, we have been able to examine the

correlation between exercise and HRV in more detail, for both young and older participants.

To estimate the increase in HRV due to physical activity, we modeled the variation of HRV

power with activity, by a linear approximation. The inverse slope of this curve gives us the

number of additional steps per day necessary to yield a 1 ms2 increase in power. Users of

all ages may optimize their HRV through physical exercise, although the effect is larger for

younger subjects, especially for HF power. The linear fit models suggest that people in the

age range 20-24 yr may increase their HF power by 1 ms2 with every ∼ 30 additional steps.

By contrast, subjects in the age range 50-54 yr need ∼ 200 (female) - 300 (male) additional

steps for each 1 ms2 increase in HF power. As a result, older individuals improve their LF

power more than HF power, with physical activity. Such a large difference in HF recovery with

age suggests that parasympathetic function is harder to restore with physical activity, and is

an important finding of the present work. While HRV metrics have been previously correlated
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with cardiovascular health and mortality, our technical advance and descriptions now permit its

potential use for health promotion through tens of millions of currently available wrist-worn

commercial trackers. Randomized controlled trials are now necessary to demonstrate effective

ways to use HRV metrics to improve health.
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Supplementary materials

Data and Methods:

The output of a PPG device is the Interbeat Interval (IBI) tachogram, i.e. the time between peaks

of blood volume. The IBI are susceptible to noise due to motion artifacts, electronic noise,

missed heart beats, etc. It is essential to clean the IBI field if it is to be a faithful representation

of the RR interval tachogram measured by an electrocardiogram (ECG). Cleaning the noisy

PPG data is accomplished by a proprietary technique consisting of a median filtering stage,

and an anomaly detection stage. Fig. S1 shows the comparison between PPG and ECG, for

60 minutes of data. PPG (with fitbit devices) and ECG (single lead, chest strap) data were

simultaneously obtained from ∼ 30 subjects (normal sinus rhythm, users were at rest, data was

collected with IRB approval). The data was then interpolated so that PPG and ECG readings

could be compared at the same instant of time. Fig. S1(a) shows the correlation between the

interpolated RR intervals collected by the ECG device, and the interpolated IBI (henceforth

IIBI) obtained from PPG. The red points represent raw IIBI, whereas the green dots represent

the cleaned IIBI. Fig. S1(b) shows the total power (i.e. power spectrum of the IBI time series

data integrated over all frequencies) contained in the data (the power is computed over 5 minute

windows). The red points are total power calculations from the raw IIBI, whereas the green

points represent total power computed from the cleaned IIBI. For the comparison of total power

(plot (b)), the Pearson correlation coefficient between the ECG derived data and the cleaned

PPG data is r = 0.96, implying a high degree of correlation between PPG derived HRV metrics

and ECG derived HRV metrics. In contrast, the correlation is only r = 0.39 for the raw data.

It is clear from Fig. S1(b) that cleaning the PPG data is necessary before computing HRV

features. Our cleaning algorithm does not make an assumption about noise levels. We define
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noise by the prominence, i.e. the value in relation to its neighboring points. Since very noisy

samples can affect the prominence, we choose to discard these samples. We discard the data

in a time window if the fraction of noise spikes exceeds ∼ 10% of the window size. For the

remainder of the paper, we will describe HRV metrics derived from the cleaned PPG data.

We collected data from ∼ 8 Million individuals using Fitbit devices over the course of

24 hours. The data was anonymized, and the analysis was consistent with Fitbit’s terms and

conditions. Table S1 describes the number of individuals in our study, by age and gender. The

columns labeled “Fem. (any)” and “Male (any)” are the number of female and male participants

with HRV data at some time of the day. The columns labeled (6 am) and (6 pm) show the

number of participants with data at 6 am - 7 am and at 6 pm - 7 pm respectively. These times

of day are close to the maxima and minima of the HRV circadian rhythm, although these vary

by age and gender. We were able to obtain significantly more usable data when the subjects

were asleep due to the absence of motion artifacts. Data coverage at 6 am - 7 am for female

(male) participants decreases from 70% (65%) for younger users, to 61% (56%) for older users.

The coverage at 6 pm - 7 pm for female (male) participants increases from 7.4% (6.6%) to 14%

(14%) for older users.

The distribution of HRV metrics is shown in Fig. S2, for subjects of age 30 - 31 yr, for male

(green bars) and for female (red bars) participants. The HF power and LF power are strongly

skewed, with the mean larger than the median. The RMSSD and Poincare S1 are also skewed,

while the SDRR and Poincare S2 show a smaller skew. Men have a larger SDRR, LF power,

and Poincare S2 on average compared to women. The difference in gender is less apparent in

the RMSSD, HF power, and the Poincare S1. To estimate the difference in parasympathetic

and sympathetic HRV measures between male and female participants, we performed a t-test

to quantify the difference as a function of age and time of day. When measured at 6 am - 7

am, the HF power is higher in female subjects for ages > 33 yr, while male subjects have a
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higher HF power for smaller ages. When measured at 6 pm - 7 pm, the HF power is higher

in female participants for ages > 24 yr. We find that male participants always have higher LF

power compared to female participants, but the difference is larger in the morning compared to

the evening.

We compute the standard deviation (SDRR) of the IBI, and the root mean squared value of

the successive differences (RMSSD), over time windows of size 5 minutes. Time domain HRV

metrics are sensitive to the size of the input window since Fourier modes longer than W are not

contained in a time window of size W .

Frequency domain calculations require further pre-processing: we resample the IBI field

to obtain 512 equally spaced samples in each 5 minute time window. We can thus resolve all

frequency components up to 0.5 × (512/300) ≈ 0.85 Hz. We do not expect significant power

at frequencies above 0.5 Hz. The resolution in frequency space is 1/300 Hz which gives us an

adequate number of samples in the LF and HF bands. The mean of the data in the time window

is subtracted, and the IIBI field is smoothed with a Hann window. A Fast Fourier Transform is

then applied to the smoothed IIBI field, and properly normalized to give us the Power Spectral

Density (PSD), which is the power contained in the IIBI field per unit frequency. Finally, the

PSD is integrated over the relevant frequencies to give us the band power. Frequency domain

analysis requires the data in a window to be contiguous and evenly sampled. Therefore, missing

data will need to be imputed through interpolation. As a result, we do not consider data windows

with a coverage lower than 70%.

Poincare plots are scatter plots obtained by plotting the IBI at time index i against the suc-

ceeding IBI, i.e. at time index i+ 1 (more accurately, these are called first order lag-1 Poincare

plots). The Poincare plots will contain a high density of points scattered close to the 45◦ line.

This scatter is a measure of variability. Fig. S3 shows the Poincare plot for a healthy subject.

The plot resembles a tapered ellipse since larger IBI allow for more variability. The standard
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deviation of points along the major axis (S2) is a measure of long term variability, while the

standard deviation along the minor axis (S1) is a measure of short term variability.

Table S2, Table S3, and Table S4 show benchmark values for time domain, frequency do-

main, and graphical domain HRV metrics respectively. The HRV metrics are shown for various

ages, for female and male users, and at two times of the day (from 6 am - 7 am, and from 6

pm - 7 pm). We provide the mean, the median, as well as the range from the 25th percentile

to the 75th percentile. This range is computed over our entire population for a specific age,

gender, and time of day. The measurement from 6 am - 7 am indicates a median over all avail-

able 5 minute windows. For a window to be acceptable, the coverage should be adequate, and

the noise fraction should be sufficiently small. There are a maximum of 12 such windows in

an hour, and we discard the entire hour if there are less than 3 acceptable windows. Table S5

shows the LF/HF ratio which is a measure of sympathovagal balance.
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HRV Features - Variation of scaling parameters with age
Metric Gender α0 HRV0

RMSSD Female -0.666 43.7 ms
RMSSD Male -0.804 44.8 ms
SDRR Female -0.524 54.7 ms
SDRR Male -0.566 61.5 ms

HF Female -1.480 537.1 ms2

HF Male -1.653 515.6 ms2

LF Female -1.045 917.0 ms2

LF Male -1.006 1195.8 ms2

S1 Female -0.664 32.2 ms
S1 Male -0.810 32.6 ms
S2 Female -0.337 88.4 ms
S2 Male -0.416 98.6 ms

Table 1: The scaling parameters α0(g) and HRV0(g)
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HRV Features - Variation with time of day
Metric Gender a1 a2 a3 b1 b2 b3

RMSSD Female -0.009 -0.029 -0.003 0.137 0.022 0.001
RMSSD Male 0.012 -0.02 0.011 0.196 0.035 0.011
SDRR Female -0.047 -0.051 0.01 0.173 -0.012 -0.007
SDRR Male -0.052 -0.044 0.019 0.2 -0.01 -0.001

HF Female -0.02 -0.06 0.025 0.323 0.015 -0.02
HF Male 0.021 -0.046 0.033 0.382 0.044 0.005
LF Female -0.06 -0.098 0.022 0.317 -0.014 -0.016
LF Male -0.067 -0.073 0.043 0.335 -0.015 -0.004
S1 Female -0.035 -0.05 0.003 0.137 -0.010 -0.015
S1 Male 0.007 -0.03 0.009 0.181 0.0130 0.0
S2 Female -0.063 -0.061 0.010 0.170 -0.002 -0.002
S2 Male -0.059 -0.056 0.009 0.193 0.014 0.007

Table 2: Variation of time dependent scaling parameters: The first 3 Fourier components.
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Variation of HRV metrics with activity
Gender Metric Age (yr) r C (ms2) σ (steps)
Male HF 20-24 0.961 865 32

Female HF 20-24 0.985 873 30
Male LF 20-24 0.946 1758 25

Female LF 20-24 0.973 1314 20
Male HF 50-54 0.859 234 295

Female HF 50-54 0.954 254 195
Male LF 50-54 0.969 683 42

Female LF 50-54 0.979 510 48

Table 3: Effect of activity on HRV power. People of all ages can improve their HRV through
physical activity, but the effect is larger for younger users, especially for HF power.
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User distribution by age and gender
Age Fem. Fem. Fem. Male Male Male
(yr) (any) (6 am) (6 pm) (any) (6 am) (6 pm)
< 20 168k 118k 12k 69k 45k 5k
20-30 895k 598k 84k 340k 217k 32k
30-40 1.23M 811k 114k 582k 360k 54k
40-50 1.16M 748k 131k 593k 359k 65k
50-60 1.06M 651k 134k 570k 333k 72k
60-70 688k 417k 96k 406k 231k 56k
> 70 248k 150k 36k 188k 105k 27k

Table S1: Number of participants in the present study, by age and gender. The amount of data
depends on the time of day since we lose data during the daytime due to motion artifacts.

23

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 18, 2019. ; https://doi.org/10.1101/772285doi: bioRxiv preprint 

https://doi.org/10.1101/772285
http://creativecommons.org/licenses/by-nc-nd/4.0/


HRV Features - Time Domain

Time of day Age RMSSD (female) RMSSD (male) SDRR (female) SDRR (male)
(yr) (mean) (med) (25p-75p) (mean) (med) (25p-75p) (mean) (med) (25p-75p) (mean) (med) (25p-75p)

6am - 7am 20 66 56 37 - 85 74 66 45 - 96 81 76 56 - 101 91 88 66 - 114
6am - 7am 25 57 48 32 - 73 61 54 35 - 79 73 68 50 - 91 82 79 57 - 103
6am - 7am 30 53 45 31 - 67 56 49 34 - 71 69 65 49 - 86 79 75 57 - 98
6am - 7am 35 47 41 29 - 60 49 43 31 - 62 64 61 46 - 79 73 70 54 - 91
6am - 7am 40 42 37 26 - 52 43 38 27 - 54 59 56 43 - 73 68 65 50 - 85
6am - 7am 45 37 33 24 - 46 38 34 25 - 48 54 51 40 - 66 64 61 47 - 78
6am - 7am 50 34 31 22 - 42 34 31 23 - 42 51 49 38 - 63 59 56 42 - 72
6am - 7am 55 33 29 22 - 40 32 29 21 - 39 49 47 36 - 61 55 52 40 - 68
6am - 7am 60 31 28 21 - 38 31 27 20 - 37 46 44 34 - 57 52 49 37 - 64

6pm - 7pm 20 49 41 28 - 62 53 45 30 - 66 58 54 40 - 73 66 63 46 - 82
6pm - 7pm 25 41 34 24 - 51 41 34 23 - 53 51 46 35 - 63 55 52 37 - 70
6pm - 7pm 30 40 34 24 - 50 38 33 23 - 47 49 46 35 - 60 54 51 39 - 67
6pm - 7pm 35 36 31 22 - 44 34 29 21 - 42 45 42 32 - 55 49 46 35 - 60
6pm - 7pm 40 33 29 21 - 40 30 26 19 - 37 41 39 30 - 50 45 42 32 - 55
6pm - 7pm 45 31 27 20 - 38 27 24 18 - 34 38 36 28 - 46 41 39 30 - 51
6pm - 7pm 50 29 26 19 - 35 25 22 16 - 31 36 35 27 - 44 38 36 27 - 46
6pm - 7pm 55 27 25 18 - 33 24 21 16 - 29 34 33 26 - 42 35 33 25 - 43
6pm - 7pm 60 26 24 18 - 32 24 21 15 - 28 32 30 24 - 39 34 31 24 - 41

Table S2: Typical values for time domain HRV features: The RMSSD distribution is more
skewed than the SDRR distribution (see Fig. S2) and this is reflected in the difference between
the mean and the median. Bin size for the age is 1 year, i.e. age = 20 includes users between 20
and 21 years of age.
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HRV Features - Frequency Domain

Time of day Age HF (female) HF (male) LF (female) LF (male)
(yr) (mean) (med) (25p-75p) (mean) (med) (25p-75p) (mean) (med) (25p-75p) (mean) (med) (25p-75p)

6am - 7am 20 1311 759 359 - 1566 1352 868 448 - 1665 1875 1372 737 - 2395 2265 1749 991 - 2925
6am - 7am 25 971 543 250 - 1147 970 582 269 - 1169 1568 1120 570 - 2014 1954 1486 779 - 2551
6am - 7am 30 822 474 232 - 962 779 488 251 - 922 1418 1018 547 - 1798 1816 1406 793 - 2341
6am - 7am 35 657 375 189 - 749 599 375 195 - 710 1209 859 471 - 1530 1600 1227 694 - 2055
6am - 7am 40 497 290 150 - 567 464 286 151 - 543 1015 721 397 - 1282 1389 1048 588 - 1788
6am - 7am 45 379 225 118 - 432 366 221 118 - 411 842 593 331 - 1048 1176 876 490 - 1502
6am - 7am 50 313 190 101 - 356 283 171 92 - 317 728 508 288 - 893 990 709 392 - 1242
6am - 7am 55 280 170 91 - 314 245 138 75 - 255 659 450 254 - 794 853 586 321 - 1033
6am - 7am 60 251 146 79 - 270 243 116 64 - 214 576 374 210 - 670 759 469 259 - 858

6pm - 7pm 20 698 359 167 - 781 710 397 188 - 803 1071 733 394 - 1343 1339 999 538 - 1681
6pm - 7pm 25 478 235 108 - 515 436 214 90 - 482 820 524 273 - 1015 1035 690 331 - 1312
6pm - 7pm 30 419 214 106 - 445 381 192 97 - 400 761 504 279 - 924 971 698 390 - 1232
6pm - 7pm 35 327 173 87 - 348 285 145 73 - 292 628 418 231 - 749 809 558 310 - 1012
6pm - 7pm 40 254 142 75 - 270 216 112 58 - 225 524 351 199 - 612 675 457 246 - 831
6pm - 7pm 45 213 119 63 - 223 172 93 48 - 175 440 293 167 - 508 557 375 202 - 673
6pm - 7pm 50 184 104 55 - 192 136 74 39 - 139 383 254 145 - 446 455 302 164 - 540
6pm - 7pm 55 160 90 49 - 165 129 63 34 - 116 334 221 125 - 380 386 244 131 - 437
6pm - 7pm 60 143 79 44 - 145 135 57 32 - 106 292 186 107 - 325 358 204 110 - 373

Table S3: Typical values for frequency domain HRV features. Presented are mean, median, and
the range from the 25th to the 75th percentile, across gender and age ranges. Similar to Table
S2, the HRV values vary significantly with time of day.
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HRV Features - Graphical Domain

Time of day Age Poincare S1 (female) Poincare S1 (male) Poincare S2 (female) Poincare S2 (male)
(yr) (mean) (med) (25p-75p) (mean) (med) (25p-75p) (mean) (med) (25p-75p) (mean) (med) (25p-75p)

6am - 7am 20 50 43 27 - 66 56 51 34 - 72 120 115 84 - 148 141 134 103 - 171
6am - 7am 25 43 37 23 - 57 45 40 25 - 59 113 107 77 - 141 128 121 86 - 160
6am - 7am 30 40 35 22 - 52 40 36 23 - 53 112 106 77 - 137 125 116 83 - 154
6am - 7am 35 37 31 21 - 46 35 31 20 - 45 109 101 73 - 134 120 109 77 - 149
6am - 7am 40 33 28 19 - 41 31 27 18 - 40 104 96 70 - 127 115 104 72 - 143
6am - 7am 45 29 25 17 - 36 28 24 16 - 35 99 91 66 - 122 112 99 69 - 140
6am - 7am 50 27 23 16 - 33 25 21 15 - 30 98 89 64 - 122 105 92 64 - 131
6am - 7am 55 25 22 15 - 30 24 20 14 - 28 98 87 63 - 121 104 90 63 - 129
6am - 7am 60 24 21 15 - 29 25 19 14 - 27 95 84 60 - 118 103 89 62 - 131

6pm - 7pm 20 37 31 20 - 46 39 32 20 - 49 90 83 61 - 109 102 93 70 - 127
6pm - 7pm 25 31 25 17 - 37 30 23 15 - 37 82 74 54 - 100 90 81 59 - 113
6pm - 7pm 30 30 24 17 - 36 29 24 16 - 34 81 74 54 - 100 91 84 62 - 110
6pm - 7pm 35 27 23 16 - 32 26 21 14 - 30 77 70 52 - 93 83 76 55 - 103
6pm - 7pm 40 24 21 15 - 28 22 18 13 - 26 71 64 48 - 87 76 69 50 - 94
6pm - 7pm 45 23 20 14 - 27 20 17 12 - 23 68 62 46 - 83 72 65 47 - 88
6pm - 7pm 50 21 18 13 - 25 18 15 11 - 21 64 58 44 - 77 67 60 45 - 83
6pm - 7pm 55 20 17 13 - 23 18 14 11 - 20 63 57 42 - 76 64 57 43 - 79
6pm - 7pm 60 19 16 12 - 22 18 14 10 - 19 61 54 41 - 74 61 55 40 - 75

Table S4: Typical HRV values for graphical domain Poincare S1 and S2 features. Similar
to Tables S2 and S3, presented are mean, median, and the range from the 25th to the 75th

percentile, across gender and age ranges.
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HRV Features - Sympathovagal balance

Time of day Age LF / HF (female) LF / HF (male)
(yr) (mean) (med) (25p-75p) (mean) (med) (25p-75p)

6am - 7am 20 2.175 1.765 1.124 - 2.748 2.505 2.007 1.239 - 3.170
6am - 7am 25 2.486 2.004 1.258 - 3.149 3.207 2.500 1.504 - 4.097
6am - 7am 30 2.608 2.091 1.313 - 3.316 3.547 2.827 1.744 - 4.560
6am - 7am 35 2.798 2.230 1.391 - 3.558 3.991 3.198 1.951 - 5.116
6am - 7am 40 3.045 2.431 1.513 - 3.870 4.432 3.583 2.164 - 5.744
6am - 7am 45 3.257 2.593 1.602 - 4.135 4.819 3.877 2.359 - 6.230
6am - 7am 50 3.378 2.674 1.650 - 4.281 5.125 4.103 2.508 - 6.608
6am - 7am 55 3.351 2.641 1.625 - 4.257 5.202 4.148 2.509 - 6.708
6am - 7am 60 3.282 2.581 1.572 - 4.164 5.071 4.021 2.404 - 6.534

6pm - 7pm 20 2.441 2.021 1.260 - 3.117 3.000 2.480 1.579 - 3.801
6pm - 7pm 25 2.653 2.208 1.401 - 3.371 3.840 3.141 1.953 - 4.952
6pm - 7pm 30 2.794 2.334 1.487 - 3.544 4.228 3.545 2.218 - 5.511
6pm - 7pm 35 2.887 2.385 1.544 - 3.705 4.547 3.845 2.467 - 5.817
6pm - 7pm 40 2.971 2.471 1.595 - 3.770 4.794 4.003 2.550 - 6.118
6pm - 7pm 45 2.970 2.471 1.592 - 3.716 4.785 4.000 2.504 - 6.078
6pm - 7pm 50 2.970 2.500 1.607 - 3.729 4.871 4.028 2.524 - 6.203
6pm - 7pm 55 2.913 2.409 1.571 - 3.677 4.623 3.803 2.360 - 5.917
6pm - 7pm 60 2.815 2.313 1.512 - 3.521 4.287 3.482 2.165 - 5.504

Table S5: Sympathovagal balance: The LF/HF ratio is the estimate of the relative strengths
of the sympathetic and parasympathetic branches. Presented are mean, median, and the range
from the 25th to the 75th percentile, across gender and age ranges.
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Figure 1: Power Spectral Density measured for a single individual over one night, showing
2 features: The Mayer wave centered at 0.0975 Hz corresponding to arterial blood pressure
oscillations with a timescale of 10.3 s, and sinus arrhythmia due to respiration centered at 0.288
Hz implying a respiration rate of 17.3 breaths per minute.
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Figure 2: Poincare plots are very useful in diagnosing heart arrhythmias. (a) shows the “comet”
pattern of a healthy heart. (b) shows the “torpedo” pattern indicating low short term variability.
(c) is an example of a heart in tachycardia. (d) shows the fan pattern suggestive of atrial fibrilla-
tion. (e) and (f) show bi-lobed and tri-lobed patterns which could indicate premature atrial and
ventricular contractions.
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Figure 3: Decline in HRV with age. All metrics decrease with age, for both men and women.
However, the parasympathetic measures (RMSSD, HF power, and Poincare S1) decline faster
than the sympathetic measures (SDRR, LF power, and Poincare S2).
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Figure 4: Daily variation of HRV features. The modulation is substantial for all ages. The
phase of the sympathetic measures (i.e. SDRR, LF power, and Poincare S2) shifts to earlier
times for older individuals. The change in phase with age is less prominent in the modulation
of the parasympathetic measures (RMSSD, LF power, and Poincare S1).
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Figure 5: Daily variation of the time dependent scaling parameters: δH and δα. The variation
of δα is larger for the sympathetic measures (SDRR, LF power, Poincare S2) compared to the
parasympathetic measures (RMSSD, HF power, Poincare S1). This helps explain the change in
phase seen in Fig. 4
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Figure 6: HRV can be increased with physical exercise for all ages, but especially for younger
individuals. Shown are HF and LF variations (measured from 6 am - 7am) with the number of
steps per day, for young (ages 20-24 yr) and older (ages 50-54 yr) participants.
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Figure S1: Comparison of PPG and ECG: Data is simultaneously obtained from subjects using
PPG and ECG. The data is then interpolated so as to obtain data points at exactly the same
time. (a) show the correlation between the ECG derived interpolated RR intervals and the PPG
derived interbeat intervals (IBI). (b) shows the correlation between the total power obtained
from the interpolated RR tachogram and the total power obtained from the interpolated IBI.
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Figure S2: The distribution of HRV metrics for individuals in the age range 30 - 31 yr. The
indicators of parasympathetic function namely, the RMSSD, HF power, and Poincare S1 distri-
butions are similar, and show little variation with gender. On the other hand, men have higher
SDRR, LF power, and Poincare S2 on average, compared to women, which indicates higher
sympathetic activity.
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Figure S3: Poincare scatter plot: IBI at time index i plotted against the IBI at time index (i+1).
The Poincare plot resembles a tapered ellipse since the variability is larger for large values of
IBI.
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