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The objective of many high-throughput "omics" studies is to obtain a relatively low-dimensional
set of observables - signature - for sample classi�cation purposes (diagnosis, prognosis, strati�-
cation). We propose DNetPRO, Discriminant Analysis with Network PROcessing, a supervised
signature identi�cation method based on a bottom-up combinatorial approach that exploits the
discriminant power of all variable pairs. The algorithm is easily scalable allowing e�cient comput-
ing even for high number of observables (104−105). We show applications on real high-throughput
genomic datasets in which our method outperforms existing results, or compares to them but
with a smaller number of selected variables. Moreover the linearity of DNetPRO allows a clearer
interpretation of the obtained signatures in comparison to non linear classi�cation models

The huge amount of high-dimensional omics data (e.g. transcriptomics through microarray or NGS, epige-
nomics, SNP pro�ling, proteomics and metabolomics, but also metagenomics of gut microbiota) poses enor-
mous challenges as how to extract useful information from them. One of the prominent problems is to extract
low-dimensional sets of variables � signatures � for classi�cation and diagnostic purposes, for example to better
stratify patients for personalized intervention strategies based on their molecular pro�le [9, 2, 6, 1].

Many approaches are used for these classi�cation purposes [3], such as Elastic Net [5], Support Vector
Machine, K-nearest Neighbor, Neural networks and Random Forest [8]. Some methods select signature variables
by means of single-variable scoring methods [7, 4] (e.g. inferential testing for two-class comparison), while
others search for projections in variable space, and then perform a dimensionality reduction by thresholding the
projection weights, but these approaches could fail even in simple two-dimensional situations (Supplementary
Fig. 1a).

Our method - DNetPRO, Discriminant Analysis with Network PROcessing - generates multivariate signa-
tures starting from all variable pairs tested with Discriminant Analysis (scheme of the algorithm pipeline in
Fig. 1). The computing time for variable space exploration is proportional to the square of the number of
variables (ranging from 103 to 105 in a typical high-throughput omics study), but the method provides an al-
ternative approach to single-feature selection methods, and provides a hard-thresholding approach at di�erence
with projection-based variable selection methods. Moreover, the geometrical simplicity of the resulting class-
separation surfaces allows an easier interpretation of the results, as compared with very powerful but black-box
methods like nonlinear-kernel SVM or Neural Networks. This linear separation might not be common in some
classi�cation problems (e.g. image classi�cation) but it is very plausible in biological systems, in which many
responses to perturbation consist in increase or decrease of variable values (e.g. expression of genes or proteins,
see Supplementary Fig. 1b).

We then applied our method to real biological data, core sets extracted from the The Cancer Genome Atlas
(accession number syn300013, doi:10.7303/syn300013), used in a previous study [10] which aimed at quantifying
the role of di�erent omics data types (e.g. mRNA and miRNA microarray data, protein levels measured with
Reverse Phase Protein Array - RPPA) via di�erent state-of-the-art classi�cation methods. This allowed us
to compare our results to a large set of commonly used classi�cation methods, by using their performance
validation pipeline (accession number syn1710282, doi:10.7303/syn1710282). For each cancer type (kidney renal
clear cell carcinoma KIRC, glioblastoma multiforme GBM, ovarian serous cystadenocarcinoma OV and lung
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Figure 1: Scheme of DNetPRO algorithm. On the �training set�, all possible pairs of variables are used for
Discriminant Analysis, generating the fully connected network with links weighted by pair classi�cation per-
formance. By thresholding the weighted links, several signatures come out as connected components, and then
their performance is evaluated on the �whole test set� (procedure A). A unique best signature can be identi�ed
on a �validation set� and tested in a �scoring set�, obtained by further splitting the �whole test set� (procedure
B).

squamous cell carcinoma LUSC) we show results on mRNA data (see Supplementary Material for the results
on miRNA and RPPA datasets).

We remark that DNetPRO can provide more than one signature as a �nal outcome, given by all the connected
components found in the variable network, or a unique top-performing signature can be obtained by a further
cross-validation step (procedure A and procedure B in Fig. 1, respectively).

The results are shown, as distribution of AUC (Area under the curve) score, in Fig. 2 (a) for the best
signatures obtained with procedure A (corresponding to the validation approach used in [10]), while results
with the full cross-validation procedure B are shown in Fig. 2 (b). As expected, performances decrease with
the introduction of the second cross validation step, but the values remain quite stable showing the robustness
of the extracted signatures, and we remark that the validation procedure used in the reference paper by Yuan
et al. resembles our approach without the second validation step.

Figure 2: Results obtained by the DNetPRO algorithm pipeline on four mRNA tumor datasets, as from the
Synapse database[10]. (a) Distributions of AUC values for the tumor datasets. Green boxplots: results using
procedure A as described in Fig. 1; yellow boxplots: results obtained using procedure B. (b) Comparison of
DNetPRO results with the methods used in the paper of Yuan et al.: max AUC values obtained over the 10-Fold
cross-validation procedure.

All results are comparable (LUSC) or better (KIRC, GBM) than the results reported in [10], except for the
OV dataset, also with the more conservative approach involving a further cross-validation step. The size of the
extracted signatures is quite constant, and smaller than 500 genes in each pipeline execution. Analogous results
are obtained also for the miRNA dataset, in which our method outperforms in three over four cases, while the
RPPA dataset shows less signi�cant results (Supplementary material).
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To test the robustness of our method, since each cross-validation procedure may generate di�erent signatures,
we measured the overlap of the genes belonging to each mRNA signature over 100 simulations with di�erent
training-test data splitting.

The method we presented has several advantages: easy scalability on parallel architectures, simple signature
interpretation allowing a valuable application in a biomedical context and a signi�cant robustness in a highly
noisy environment such as genomics measurements.

METHODS

Any information about the datasets used and the implementation of the algorithm is available in the on-line
version of the paper.
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