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ABSTRACT	

The	genome-wide	association	study	(GWAS)	has	been	widely	used	as	an	experimental	design	to	

detect	associations	between	genetic	variants	and	a	phenotype.	Two	major	confounding	factors,	

population	stratification	and	relatedness,	could	potentially	lead	to	inflated	GWAS	test-statistics	

and	thereby	spurious	associations.	Mixed	linear	model	(MLM)-based	approaches	can	be	used	to	

account	 for	 sample	 structure.	However,	 genome-wide	 association	 (GWA)	 analyses	 in	 biobank	

samples	such	as	the	UK	Biobank	(UKB)	often	exceed	the	capability	of	most	existing	MLM-based	

tools	especially	if	the	number	of	traits	is	large.	Here,	we	developed	an	MLM-based	tool	(called	

fastGWA)	that	controls	for	population	stratification	by	principal	components	and	relatedness	by	

a	sparse	genetic	relationship	matrix	for	GWA	analyses	of	biobank-scale	data.	We	demonstrated	

by	extensive	simulations	that	fastGWA	is	reliable,	robust	and	highly	resource-efficient.	We	then	

applied	fastGWA	to	2,173	traits	on	456,422	array-genotyped	and	imputed	individuals	and	2,048	

traits	on	46,191	whole-exome-sequenced	individuals	in	the	UKB.		 	
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INTRODUCTION	

The	genome-wide	association	study	(GWAS)	is	a	powerful	experimental	design	to	detect	genetic	

variants	associated	with	a	phenotype	of	 interest.	Over	the	past	decade,	a	number	of	statistical	

methods	have	been	developed	for	GWAS,	facilitating	the	discovery	of	thousands	of	genetic	loci	

associated	with	complex	traits	and	diseases1,2.	In	the	early	GWAS	era,	the	most	commonly	used	

approach	was	 linear	or	 logistic	 regression3-11,	which	 is	 also	 the	basis	of	most	GWAS	software	

tools12-14.	The	 statistical	power	of	 a	GWAS	depends	on	 the	proportion	of	phenotypic	 variance	

explained	by	a	variant	and	the	sample	size15.	In	other	words,	for	the	detection	of	variants	with	

small	effects,	a	large	sample	size	is	required.	This	can	be	achieved	by	a	meta-analysis	of	a	large	

number	of	cohorts	even	if	the	sample	size	of	each	individual	cohort	is	limited	(e.g.	GIANT16	and	

PGC17).	Due	to	the	substantial	decrease	in	genotyping	costs	in	recent	years,	sample	sizes	of	GWAS	

have	dramatically	increased	to	100,000s	in	single	cohorts,	such	as	the	UK	Biobank	(UKB)18	and	

the	Biobank	 Japan	Project19.	These	 large	cohorts	not	only	provide	new	opportunities	 to	make	

novel	 discoveries	 but	 also	 bring	 challenges	 in	 computing	 especially	 for	 methods	 based	 on	

multivariate	 models.	 New	 software	 tools	 based	 on	 linear	 regression	 (LR)	 have	 also	 been	

developed	 to	 accommodate	 the	 increasing	 scale	 of	 data,	 including	 PLINK220	 and	 BGENIE18.	

Population	stratification21,22	and	relatedness23,24	are	the	two	major	confounders	in	GWAS,	which	

could	potentially	lead	to	spurious	associations	if	not	well-controlled	for.	In	an	LR	analysis,	the	

effect	of	population	stratification	is	usually	accounted	for	by	fitting	the	first	few	eigenvectors	(also	

called	PCs)	from	a	principal	component	analysis	(PCA)	of	the	SNP	genotypes25;	the	confounding	

due	to	relatedness	can	be	avoided	by	excluding	one	member	of	each	pair	of	related	individuals	

based	on	pedigree	or	SNP-derived	relatedness14,26,	which,	however,	results	 in	a	 loss	of	power,	

especially	because	the	proportion	of	individuals	with	close	relatives	in	the	sample	is	expected	to	

increase	as	biobanks	get	larger18.	

	

The	mixed	linear	model	(MLM)	approach	has	been	widely	used	in	GWAS	to	control	for	population	

stratification	 and	 relatedness27-40.	 The	 basic	 principle	 is	 to	 test	 for	 association	 between	 each	

genetic	variant	and	the	phenotype,	conditioning	on	the	sample	structure	 inferred	 from	all	 the	

genome-wide	SNPs39.	However,	the	runtime	of	most	existing	MLM-based	methods	ranges	from	

O(MN2)	to	O(M2N)29,32,34,37-39,	where	M	is	the	number	of	variants	and	N	is	the	sample	size.	Several	

recent	studies	have	focused	on	the	application	of	MLM-based	methods	in	biobank-scale	data41-43.	

Yet	 it	 is	 still	 resource	 demanding	 to	 run	MLM-based	GWAS	 analyses	with	millions	 of	 genetic	

variants	especially	when	the	number	of	phenotypes	to	be	analysed	is	large.		

	

In	this	study,	we	propose	an	extremely	resource-efficient	approach	to	perform	an	MLM-based	

genome-wide	association	(GWA)	analysis	(called	fastGWA),	implemented	in	the	software	GCTA	
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package26.	We	 show	 by	 extensive	 simulations	 that	 fastGWA	 is	 robust	 in	 controlling	 for	 false	

positive	 associations	 in	 the	 presence	 of	 population	 stratification	 and	 relatedness,	 and	 that	

fastGWA	 is	 ~89	 times	 faster	 and	 only	 requires	~5%	 of	 RAM	 compared	 to	 the	most	 efficient	

existing	 MLM-based	 GWAS	 tool	 in	 a	 very	 large	 sample	 (400,000	 individuals	 and	 8,531,416	

variants).	We	then	demonstrate	the	utility	of	fastGWA	by	analysing	GWAS	data	of	456,422	array-

genotyped	and	 imputed	 individuals	 (including	close	relatives)	of	European	ancestry	 for	2,173	

traits	and	a	subset	of	49,960	whole-exome	sequence-based	individuals	for	2,048	traits	in	the	UKB.	

All	the	summary	statistics	are	publicly	available	at	our	data	portal,	with	an	online	tool	to	query	

the	association	results	by	genetic	variant	or	phenotype	(URLs).	

	

RESULTS	

Overview	of	the	methods	

The	fastGWA	model	can	be	written	as	

𝒚 = 𝒙$%&𝛽$%& + 𝑿*𝜷* + 𝒈 + 𝒆	 	 [1]	

where	𝒚	is	an	𝑛 × 1	vector	of	mean	centred	phenotypes	with	𝑛	being	 the	sample	size;	𝒙$%&	is	a	

vector	of	mean-centred	genotype	variables	of	a	variant	of	interest	with	its	effect	𝛽$%&;	𝑿* 	is	the	

incidence	matrix	of	fixed	covariates	(e.g.,	sex,	age	and	the	first	few	PCs)	with	their	corresponding	

coefficients	𝜷*;	𝒈	is	a	vector	of	 the	 total	genetic	effects	captured	by	pedigree	relatedness	with	

𝒈	~	𝑁	(0, 𝝅𝜎9:);	𝝅	is	the	family	relatedness	matrix	(FAM)	based	on	pedigree	structure44,	e.g.,	0.5	

for	a	full-sib	or	parent-offspring	pair;	𝒆	is	a	vector	of	residuals	with	𝒆~𝑁(0, 𝐈𝜎=:).	The	variance-

covariance	matrix	of	𝒚	is	𝑽 = 𝝅𝜎9: + 𝑰𝜎=:.	In	practice,	if	pedigree	information	is	missing	or	largely	

incomplete,	𝝅	can	be	replaced	by	an	SNP-derived	genetic	relationship	matrix	(GRM)	with	all	the	

small	off-diagonal	elements	(e.g.,	those	<	0.05)	set	to	zero.	This	is	because	it	has	been	shown	in	a	

previous	 study45	 that	 the	 sparse	 GRM	 thresholded	 at	 0.05	 captures	 approximately	 the	 same	

proportion	of	phenotypic	variance	as	the	FAM	does	(confirmed	by	our	simulation	below).	Here	

we	 present	 two	 closely	 related	 versions	 of	 our	 method,	 the	 fastGWA,	 based	 on	 sparse	 GRM	

computed	from	genotype	data,	and	the	fastGWA-Ped,	based	on	FAM	constructed	from	pedigree	

information.		

	

The	fastGWA	model	imposes	control	over	relatedness	by	pedigree	information	or	realised	sparse	

GRM	with	the	effect	of	population	stratification	captured	by	the	SNP-derived	PCs.	The	variance	

components	𝜎9:	and	𝜎=:	are	unknown	but	can	be	estimated	by	the	restricted	maximum	likelihood	

(REML)	 algorithm46.	 We	 have	 implemented	 in	 fastGWA	 an	 efficient	 grid-search-based	 REML	

algorithm	(termed	as	 fastGWA-REML)	to	estimate	𝜎9:	and	𝜎=:	without	the	need	to	compute	𝑽@A	

(Supplementary	Note	1).	In	the	presence	of	moderate	to	strong	common	environmental	effects	
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shared	 among	 relatives,	 the	 genetic	 variance	 estimated	 from	 closely	 related	 individuals	 (e.g.,	

pairs	of	individuals	with	relatedness	coefficients	>	0.05,	see	Methods)	may	be	a	better	quantity	

than	that	estimated	based	on	genetic	relatedness	between	all	pairwise	individuals	in	the	sample	

as	 in	most	existing	MLM-based	methods27-40.	This	 is	because	𝜎B9:	estimated	from	close	relatives	

captures	the	variation	due	to	the	overall	additive	genetic	effect	as	well	as	that	due	to	common	

environmental	effects	(see	Discussion	for	details).	

	

Once	the	estimates	of	variance	components	are	obtained,	the	variance-covariance	matrix	𝑽	and	

its	inverse	can	be	computed	efficiently	using	the	sparse	matrix	algorithms	implemented	in	Eigen	

C++	 library	 (URLs).	 Therefore,	 𝛽$%& 	can	 be	 estimated	 using	 the	 generalised	 least	 squares	

approach:	

𝛽C$%& =
DEFGH 𝑽IJ𝒚

DEFGH 𝑽IJDEFG
	with	varN𝛽C$%&O =

A
𝒙EFGH 𝑽IJ𝒙EFG

	 [2]	

where	the	parameters	used	to	compute	𝑽	are	unknown	but	can	be	replicated	by	the	estimates	

from	 sparse	 REML	 under	 the	 null	 that	𝛽$%& = 0 	as	 in	most	 existing	methods27,29-31,37,39,40.	 The	

computational	efficiency	of	the	association	test	can	be	improved	by	orders	of	magnitude	using	

the	 GRAMMAR-GAMMA	 approximation36	 (Supplementary	 Note	 2).	 We	 have	 implemented	

fastGWA	in	the	GCTA	software26	with	a	user-friendly	command-line	interface	(URLs).	We	limited	

all	the	analyses	in	this	study	to	common	variants	because	of	the	known	limitations	of	MLMs	in	

rare-variant	association42,47.	

	

Runtime	and	resource	requirements	

Given	 that	 fastGWA	 is	 specifically	 designed	 for	 large-scale	 data,	 we	 chose	 to	 evaluate	 its	

computational	 performance	 (i.e.,	 runtime	 and	 resource	 requirements)	 using	 the	 UKB18	 data	

(456,422	individuals	of	European	ancestry	and	8,531,416	variants	with	MAF	≥ 0.01)	(Methods).	

We	 confirmed	by	 simulations	 that	 the	 estimate	 of	𝜎9: 	from	 the	 fastGWA-REML	 algorithm	was	

nearly	identical	to	that	from	the	average	information48	REML	algorithm	implemented	in	GCTA26	

(Supplementary	Figure	1)	and	that	the	fastGWA	test-statistic	computed	using	the	GRAMMAR-

GAMMA	approximation	was	almost	the	same	as	that	using	the	exact	approach	(Supplementary	

Figure	2).	We	randomly	sampled	subsets	of	individuals	from	the	UKB	(n	=	50,000	to	400,000)	

and	 compared	 fastGWA	 in	 GCTA	 v1.92.3	 with	 the	 infinitesimal	 mixed	 model	 in	 BOLT-LMM	

v2.3.240,42	and	the	linear	regression	(LR)	model	in	PLINK2	v2.00a2	on	a	computing	platform	with	

96	GB	memory	and	16	CPU	cores	with	the	runtime	capped	at	7	days	(168	hours).	The	tests	were	

performed	using	a	real	trait,	body	mass	index	(BMI),	with	an	estimated	SNP-based	heritability	of	

~0.2749,50.	The	genotype	data	were	stored	in	PLINK	binary	PED	format14,20.	Each	test	was	repeated	

10	times	to	obtain	an	average.	The	results	showed	that	GCTA-fastGWA	completed	the	analysis	in	
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~20	minutes	 for	 the	 400K	 sample	 –	 approximately	 1.1%	 of	 that	 of	 BOLT-LMM	 (~22	 hours)	

(Table	1).	While	BOLT-LMM	requires	a	running	time	of	O(MN1.5),	the	time	complexity	of	fastGWA	

is	approximately	O(MN),	almost	the	same	as	that	of	LR.	GCTA-fastGWA	was	even	~4	times	faster	

than	PLINK2,	likely	because	of	coding	efficiency	and	the	difference	in	strategy	used	to	deal	with	

missing	genotypes	(note	that	the	LR	version	of	fastGWA	was	also	4	to	5	times	faster	than	PLINK2).	

A	detailed	speed	comparison	of	the	three	methods	can	be	found	in	Table	1	(tested	on	solid-state	

drives)	and	Supplementary	Table	1	(tested	on	hard	disk	drives).	BOLT-LMM	is	optimized	for	

genotype	data	in	BGEN	v1.2	format51	(Po-Ru	Loh,	personal	communication)	and	our	benchmark	

testing	 confirmed	 that	 BOLT-LMM	 with	 data	 in	 BGEN	 format	 reduced	 the	 runtime	 of	 the	

“association”	procedure	(Table	1)	by	approximately	½	but	did	not	have	significant	improvement	

on	the	other	procedures.	While	all	the	tests	of	the	three	methods	were	conducted	on	the	same	

computing	platform	(i.e.,	96	GB	memory	and	16	CPU	cores),	the	actual	memory	usage	differed	

substantially.	GCTA-fastGWA	used	much	less	resource	than	BOLT-LMM	(Table	2).	For	a	data	set	

with	sample	size	of	400K,	GCTA-fastGWA	required	 less	 than	5	GB	of	memory	to	complete	 the	

whole	 computation,	 only	 ~5%	 of	 the	 usage	 of	 BOLT-LMM.	 Note	 that	 we	 did	 not	 report	 the	

memory	usage	of	PLINK2	as	it	preserved	as	much	memory	as	possible	according	to	the	overall	

physical	memory.	If	the	pedigree	information	is	not	available,	we	may	need	to	take	the	computing	

cost	of	the	GRM	into	consideration	for	GCTA-fastGWA	(Supplementary	Note	3)	and	PLINK2-LR	

(because	of	the	use	of	GRM	to	exclude	related	individuals	in	practice	although	the	LR	analyses	

above	 were	 performed	 using	 all	 individuals	 for	 a	 fair	 comparison).	 Nevertheless,	 the	 GRM	

computation	is	often	part	of	the	quality	control	(QC)	process	and	only	needs	to	be	done	once	for	

the	analyses	of	all	traits,	meaning	that	the	additional	computational	cost	per	trait	on	average	for	

GCTA-fastGWA	or	PLINK2-LR	due	 to	GRM	computation	 is	not	very	expensive.	 In	addition,	we	

showed	 that	 the	 runtime	 of	 fastGWA-REML	was	 approximately	 linear	 to	 sparse	 GRM	density	

(Supplementary	Table	2).	Since	the	variance	estimation	step	only	needs	to	be	done	once	under	

the	null	model	and	the	time	complexity	of	the	association	test	step	is	nearly	independent	of	sparse	

GRM	density	(Supplementary	Note	2),	the	effect	of	sparse	GRM	density	on	the	overall	runtime	

of	fastGWA	is	limited	in	a	certain	range.	

	

False	positive	rate	and	statistical	power	

We	used	extensive	simulations	 to	quantify	 the	genomic	 inflation	 factor,	 the	 false	positive	rate	

(FPR,	number	of	false	positive	associations	divided	by	the	total	number	of	tests)	and	the	statistical	

power	 of	 fastGWA	 in	 comparison	with	 LR	 in	 PLINK2	 and	MLMs	 in	 BOLT-LMM	 (Methods).	 A	

sample	 of	 100,000	 individuals	was	 generated	 by	 random	 sampling	 of	 chromosome	 segments	

from	a	subset	of	the	UKB	data	to	mimic	a	cohort	with	substantial	population	stratification	and	

relatedness	(Supplementary	Notes	4	and	5;	Supplementary	Figures	3-6).	One	of	the	main	aims	
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of	 this	 simulation	 study	 is	 to	 investigate	 the	 influences	 of	 common	 environmental	 effects	 on	

different	association	test	methods.	We	generated	phenotypes	from	a	number	of	causal	variants	

randomly	 sampled	 from	 all	 variants	 on	 the	 odd	 chromosomes,	 leaving	 those	 on	 the	 even	

chromosomes	as	the	null	variants	to	quantify	the	genomic	inflation/deflation	in	test-statistics	and	

the	 FPR.	We	mimicked	 the	 effect	 of	 population	 stratification	 by	 generating	mean	 phenotype	

difference	between	two	populations	and	the	effect	of	relatedness	by	specifying	different	degrees	

of	common	environmental	effects	among	close	relatives	(Methods).	The	genomic	inflation	factor,	

or	λGC,	 is	defined	as	 the	median	chi-squared	 statistic	divided	by	 its	 expected	value	at	 the	null	

variants21,52.		

	

Our	simulation	results	showed	that	there	was	inflation	in	the	test-statistics	of	null	variants	from	

LR-All	 (i.e.,	 LR	 analysis	 of	 all	 the	 individuals	 including	 close	 relatives)	 even	 in	 the	 absence	of	

common	 environmental	 effects	 (Figure	 1a).	 This	 is	 because	 of	 the	 inter-chromosome	

correlations	between	the	causal	and	null	variants	induced	by	the	relatedness	in	the	sample.	The	

test-statistics	of	null	variants	from	BOLT-LMM-Mix	(a	Bayesian	mixture	model)	were	inflated,	and	

the	 inflation	was	higher	 than	 that	 of	 LR-All.	 BOLT-LMM-Inf	 (BOLT-LMM	 infinitesimal	model),	

which	is	a	special	case	of	BOLT-LMM-Mix,	assumes	only	a	single	distribution	of	the	variant	effects.	

Note	that	BOLT-LMM-Inf	is	similar	but	computationally	more	efficient	than	the	MLM	leave-one-

chromosome-out	 (LOCO)39	 approach	 implemented	 in	GCTA.	We	also	observed	 inflation	 in	 the	

test-statistics	of	null	 variants	 from	BOLT-LMM-Inf	 and	 the	 inflation	 increased	as	 the	variance	

explained	by	common	environmental	effects	increased	(Figure	1a),	likely	because	BOLT-LMM-

Inf	 failed	 to	capture	 the	variance	due	 to	common	environmental	effects	by	 fitting	all	common	

variants	on	the	other	chromosomes	as	random	effects	(Supplementary	Figure	7;	see	below	for	

more	discussion).	

	

In	 contrast,	 there	 was	 almost	 no	 inflation	 for	 both	 LR-unRel	 (i.e.,	 LR	 analysis	 restricted	 to	

unrelated	individuals)	and	fastGWA.	As	the	level	of	common	environmental	effects	increased,	the	

genomic	inflation	factors	of	LR-All,	BOLT-LMM-Mix,	and	BOLT-LMM-Inf	all	increased	slightly,	but	

not	 for	 LR-unRel	 and	 fastGWA,	 demonstrating	 the	 robustness	 of	 fastGWA	 in	 accounting	 for	

common	 environmental	 effects	 shared	 among	 relatives.	We	 also	 found	 that	 the	 results	 from	

fastGWA-Ped	were	very	similar	to	those	from	fastGWA	(Supplementary	Figure	8,	recognising	

that	pedigree	relationships	were	known	without	error	in	simulation).	Additionally,	we	quantified	

the	FPR	using	the	null	variants	(i.e.,	all	 the	variants	on	the	even	chromosomes),	where	FPR	is	

defined	as	the	proportion	of	null	variants	with	p-values	<	0.05	in	each	simulation	replicate.	The	

FPRs	of	the	methods	were	in	line	with	their	observed	genomic	inflation	factors	(Supplementary	

Figure	9).	
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Next,	 we	 extended	 the	 simulation	 with	 larger	 numbers	 of	 causal	 variants.	 We	 kept	 the	

proportions	 of	 variance	 explained	 by	 common	 environmental	 effects	 and	 population	

stratification	the	same	as	that	in	one	of	the	scenarios	above	(i.e.,	common	environmental	effects	

explained	 10%	 of	 phenotypic	 variance	 (𝑉& )	 among	 all	 relatives	 and	 population	 stratification	

explained	5%	of	𝑉&).	The	results	were	similar	 to	 those	presented	above,	 i.e.,	 the	 test-statistics	

were	 inflated	 for	BOLT-LMM	and	LR-All	 but	 not	 for	 fastGWA	and	LR-unRel	 (Figure	1b).	 The	

inflation	 in	 test-statistics	 from	 BOLT-LMM-Mix	 decreased	 as	 the	 number	 of	 causal	 variants	

increased	(Figure	1b).	It	is	of	note	that,	in	all	the	simulation	scenarios	where	there	were	shared	

environmental	effects,	the	test-statistics	at	the	null	variants	from	BOLT-LMM-Mix	appeared	to	be	

even	 more	 inflated	 than	 those	 from	 LR-All	 (i.e.,	 linear	 regression	 without	 correcting	 for	

relatedness).	

	

To	quantify	 the	 statistical	 power	of	 each	method,	we	used	 the	mean	𝜒: 	statistic	 at	 the	 causal	

variants.	Because	the	test-statistics	from	some	of	the	methods	were	inflated	at	the	null	variants,	

we	divided	the	mean	𝜒: 	statistic	at	the	causal	variants	by	the	genomic	inflation	factor	at	the	null	

variants	 to	 compare	 the	 power	 of	 different	methods	 given	 the	 same	 level	 of	 FPR	 (Methods),	

similar	to	the	idea	of	computing	the	area	under	the	power-FPR	ROC	curve.	We	found	that	BOLT-

LMM-Mix	showed	the	highest	power	among	all	the	methods	(Figure	2a).	When	the	number	of	

causal	variants	was	relatively	small,	 there	was	a	relatively	 large	gap	in	power	between	BOLT-

LMM-Mix	 and	 all	 other	methods	 including	 BOLT-LMM-Inf	 (Figure	 2a).	 BOLT-LMM-Inf	model	

showed	 the	 second	 highest	 power,	 in	 line	 with	 the	 theory	 that	 MLM	 leaving	 out	 the	 target	

chromosome	from	the	polygenic	component	gains	power39.	 fastGWA	showed	a	similar	level	of	

power	 to	LR-All,	 and	LR-unRel	 showed	 the	 lowest	power	among	all	 the	methods	owing	 to	 its	

smaller	sample	size.	We	also	observed	that	the	power	of	all	the	methods	were	almost	independent	

of	 the	variance	explained	by	 common	environmental	 effects.	 Increasing	 the	number	of	 causal	

variants	led	to	smaller	differences	in	power	between	methods	(Figure	2b),	suggesting	that	the	

difference	in	power	increased	as	the	per-variant	variance	explained	increased	(Methods).	

	

We	further	assessed	the	robustness	of	fastGWA	by	simulation	in	a	few	additional	scenarios.	The	

results	show	that	the	test-statistics	of	fastGWA	remained	to	be	well	calibrated	for	case-control	

phenotypes	regardless	whether	cases	were	oversampled	(Supplementary	Figures	10	and	11),	

for	 non-normally	 distributed	 phenotypes	 (Supplementary	 Figure	 12),	 or	 in	 a	 sample	 with	

substantially	higher	sparse	GRM	density	than	that	in	the	UKB	(Supplementary	Figures	13	and	

14).	
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Application	of	fastGWA	to	2,173	traits	in	the	UKB	

We	used	fastGWA	to	conduct	a	genome-wide	association	analysis	of	8,531,416	variants	with	MAF	

³	0.01	in	all	the	UKB	individuals	of	European	ancestry	(n	=	456,422)	for	2,173	real	phenotypes	

and	compared	the	results	to	those	produced	by	the	Neale	Lab	using	LR-unRel	(361,194	unrelated	

individuals,	see	URLs).	As	noted	above,	fastGWA	is	expected	to	be	more	powerful	than	LR-unRel	

because	of	the	larger	sample	size.	We	followed	the	QC	and	analysis	pipelines	as	used	in	the	Neale	

Lab’s	analysis	with	some	modifications	(e.g.,	we	kept	all	the	related	individuals)	(Methods).	We	

confirmed	that	the	test	statistics	were	highly	correlated	between	the	two	sets	of	results	(mean	

correlation	of	z-statistics	of	0.89	for	1,163	overlapping	phenotypes).	We	chose	24	representative	

traits	(Supplementary	Table	3)	to	compare	our	results	with	the	Neale	Lab’s	results.		

	

We	first	attempted	to	quantify	the	genomic	inflation	in	the	two	sets	of	results.	LD	score	regression	

(LDSR)	 is	 an	 approach	 developed	 to	 partition	 the	 inflation	 in	 GWAS	 test-statistics	 into	

components	due	 to	polygenic	variation	and	population	structure53,	but	 recent	 studies	suggest	

that	LDSR	intercept	is	a	function	of	heritability,	sample	size	and	population	genetic	differentiation	

in	 the	 sample,	 and	 is	 expected	 to	deviate	 from	1	 in	a	genetically	 stratified	 sample	even	 if	 the	

phenotype	 is	not	 stratified42,53,54.	We	 therefore	 sought	 to	quantify	 the	 inflation	due	 to	 sample	

structure	by	the	attenuation	ratio,	i.e.,	(LDSC	intercept	–	1)	/	(mean	𝜒: − 1),	which	is	independent	

of	sample	size,	as	suggested	in	a	recent	study42.	The	attenuation	ratio	of	fastGWA	was	very	close	

to	that	of	LR-unRel	on	average	across	the	24	traits	(0.0792	vs.	0.0783;	Supplementary	Table	4),	

consistent	with	what	we	observed	in	simulations	(Figure	1)	that	the	inflation	due	to	relatedness	

can	be	reasonably	well	corrected	for	by	fastGWA.		

	

We	 then	 compared	 the	 discovery	 power	 between	 the	 two	 sets	 by	 the	 clumping	 analysis	 in	

PLINK220	(P-value	threshold	=	5´10-9,	window	size	=	5	Mb,	and	LD	r2	threshold	=	0.01).	Of	all	the	

24	 traits,	 the	 number	 of	 clumped	 genome-wide	 significant	 variants	was	 7,839	 in	 our	 results,	

substantially	higher	than	that	(5,676)	in	the	Neale	Lab’s	results	(see	Supplementary	Table	5	for	

the	comparison	of	each	trait),	suggesting	a	nearly	40%	of	improvement	in	the	number	of	GWAS	

discoveries	for	fastGWA	over	LR-unRel.	In	addition,	Canela-Xandri	et	al.55	have	also	applied	an	

MLM-LOCO39	association	analysis	to	778	UKB	traits	by	DISSECT41	using	parallel	computing	in	a	

supercomputer	 and	 released	 all	 the	 GWAS	 summary	 data	 in	 a	 public	 database,	 GeneATLAS	

(URLs).	We	compared	the	results	from	GeneATLAS	to	those	from	the	Neale	Lab	and	our	fastGWA	

analysis	for	10	traits	available	in	all	the	three	sets	(Supplementary	Table	4	and	5).	There	was	

no	significant	difference	in	attenuation	ratio	between	the	three	sets	but	GeneATLAS	had	more	

clumped	 variants	 than	 the	 other	 two	 sets,	 likely	 because	 of	 the	 MLM-LOCO	 scheme	 used	 in	

GeneATLAS55,	 consistent	with	 the	 simulation	 results	 from	 this	 study	 (Figure	2)	 and	previous	
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studies39,40	 that	MLM-LOCO	gains	power.	We	also	analysed	 the	24	 traits	using	BOLT-LMM-Inf	

which	showed	a	larger	number	of	clumped	variants	(Supplementary	Table	4)	but	with	a	slightly	

higher	attenuation	ratio	compared	to	any	of	the	other	three	methods	(Supplementary	Table	3).	

	

During	the	revision	of	this	manuscript,	whole-exome	sequence	(WES)	data	of	49,960	participants	

became	available	in	the	UKB.	We	therefore	applied	fastGWA	to	the	WES	data	(152,327	variants	

with	MAF ≥ 0.01	and	missingness	rate	≤	0.1,	and	46,191	 individuals	of	European	descent)	 for	

2,048	traits,	following	the	same	analysis	pipeline	described	above	(Methods).	We	identified	148	

near-independent	associations	at	an	exome-wide	significance	 level	 (P-value	<	0.05/	m	with	m	

being	the	number	of	variants	tested	for	a	trait)	for	the	24	traits	described	above	(Supplementary	

Table	6).	For	each	of	the	exome-wide	significant	associations,	we	repeated	the	fastGWA	analysis	

conditioning	on	the	GWAS	signals	(within	10Mb	of	the	WES	variant	in	either	direction)	identified	

from	the	imputed	data	of	the	whole	UKB	sample	described	above.	Conditioning	on	the	imputed	

GWAS	signals,	only	4	associations	remained	exome-wide	significant	(Supplementary	Table	7),	

suggesting	that	most	common	variants	in	the	WES	data	have	been	well	tagged	by	SNP	array-based	

genotyping	and	 imputation.	Full	 summary	statistics	of	8,531,416	array-genotyped	or	 imputed	

variants	for	2,173	traits	and	152,369	WES	variants	for	2,048	traits	are	publicly	available	at	our	

data	portal	without	restricted	access	(URLs).	Additionally,	we	developed	an	online	tool	for	users	

to	query	and	visualize	the	UKB	summary	statistics	(URLs).		

	

DISCUSSION	

In	 this	 study,	we	developed	 a	 reliable,	 robust	 and	 resource-efficient	 association	 analysis	 tool,	

fastGWA,	which	requires	much	smaller	system	resources	(i.e.,	runtime	and	memory	usage)	than	

existing	tools,	making	it	feasible	to	conduct	GWA	analyses	of	thousands	of	traits	in	large	cohorts	

like	the	UKB	without	the	need	to	remove	related	individuals.	The	tool	is	also	applicable	to	family-

structured	data	with	a	very	large	number	of	molecular	phenotypes.	

	

Apart	from	computational	efficiency,	fastGWA	also	shows	greater	robustness	than	existing	MLM-

based	methods	in	the	presence	of	confounding	factors.	It	has	long	been	known	that	the	existence	

of	relatedness	in	the	data	would	lead	to	inflated	association	test	statistics23,24,56,	confirmed	by	our	

simulation	(Figure	1a).	MLMs	can	be	used	to	account	for	relatedness	because	the	fixed	effect	is	

tested	conditional	on	the	phenotypic	covariance	structure	among	all	individuals	(Equation	1)44.	

It	should	be	noted	that	the	estimate	of	the	“genetic	variance”	component	based	on	close	relatives	

as	in	fastGWA	is	a	compound	of	𝑉9	(the	true	genetic	variance)	and	𝑉Y 	(the	amount	of	phenotypic	

variance	attributable	to	shared	environmental	effect).	More	specifically,	 in	our	simulated	data,	

the	phenotypic	covariance	between	two	close	relatives	is	𝑐𝑜𝑣N𝑦^, 𝑦_O = 𝜋^_𝑉9 + 𝑉Y 	with	𝜋^_ 	being	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 21, 2019. ; https://doi.org/10.1101/598110doi: bioRxiv preprint 

https://doi.org/10.1101/598110
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

the	family	relatedness.	In	the	fastGWA	analysis,	however,	we	do	not	seek	to	explicitly	partition	𝑉9	

and	𝑉Y 	but	to	use	a	single	variance	component	to	model	the	phenotypic	covariance	among	close	

relatives.	In	the	fastGWA	model,	the	deviation	of	𝜎9:	(being	estimated	based	on	the	sparse	GRM)	

from	𝑉9 	is	 a	 function	 of	
ab
cde
	and	 the	 proportion	 of	 related	 pairs	 in	 the	 sample.	 In	 contrast,	 the	

estimate	of	the	“genetic	variance”	component	from	an	MLM	analysis	based	on	a	dense	GRM	(SNP-

derived	GRM	between	all	pairwise	 individuals,	as	 in	BOLT-LMM)	 is	a	weighted	average	of	 the	

SNP-based	genetic	variance	(often	smaller	than	𝑉9	in	reality	because	of	imperfect	tagging)	and	the	

pedigree-based	 genetic	 variance	 (similar	 to	𝜎9: 	in	 the	 fastGWA	model),	 leading	 to	 an	 under-

estimation	of	the	covariance	between	closely	related	individuals,	especially	when	the	proportion	

of	relative	pairs	is	very	small	compared	to	the	unrelated	pairs.	It	was	shown	in	our	simulations	

that	when	𝑉Y = 0 ,	 the	 estimate	 of	 the	 “genetic	 variance”	 component	 from	 either	 fastGWA	 or	

BOLT-LMM	 was	 unbiased	 (Supplementary	 Figure	 7).	 As	𝑉Y 	increased,	 the	 estimate	 of	 the	

“genetic	variance”	component	from	fastGWA	increased	but	the	estimate	from	BOLT-LMM-Inf	was	

almost	unchanged	(Supplementary	Figure	7).	This	may	explain	the	inflation	of	test-statistics	in	

BOLT-LMM-Inf	 at	 the	 null	 variants	 observed	 in	 our	 simulations	with	 non-zero	𝑉Y 	(Figure	 1).	

These	 observations	 are	 in	 line	 with	 the	 simulation	 results	 from	 a	 recent	 study57.	 To	 further	

demonstrate	 the	 issue	 above,	 we	 selected	 24	 real	 phenotypes	 from	 the	 UKB	 to	 estimate	 the	

genetic	variance	using	different	methods	(the	same	24	traits	as	used	in	the	UKB	real	data	analyses	

except	for	education	attainment	which	was	reconstructed	following	the	method	in	Ref.58).	Our	

result	 shows	 that	 the	BOLT-REML59	 (the	method	used	 in	BOLT-LMM	to	estimate	 the	variance	

components)	 estimate	 of	 “genetic	 variance”	 is	 equivalent	 to	 the	 estimate	 of	 genetic	 variance	

corresponding	to	the	full	dense	GRM	(Figure	3),	leaving	the	covariance	between	close	relatives	

due	 to	 common	 environmental	 effect	 (and/or	 rare	 variants)	 uncaptured	 (Figure	 3).	 Two	

particular	examples	were	educational	attainment	(EA)	and	birth	weight	(BW),	which	have	been	

shown	 in	 previous	 studies	with	 strong	 common	 environmental	 effects	 (e.g.,	 shared	maternal	

effect	among	sibs)60-62.	The	estimate	of	the	“genetic	variance”	component	for	EA	and	BW	from	

fastGWA	were	much	higher	than	those	from	BOLT-REML	(Figure	3),	consistent	with	a	substantial	

estimate	of	𝜎Y:	in	a	two-component	model	(Figure	3).	All	these	results	caution	the	use	of	BOLT-

LMM	for	traits	with	large	𝑉Y .	

	

The	increased	power	of	fastGWA	compared	to	LR-unRel	is	mainly	because	more	individuals	are	

included	 in	 the	 association	 test.	 Large	 population-based	 cohorts	 such	 as	 the	 UKB	 tend	 to	

oversample	relatives	as	participants	when	an	assessment-centre	based	recruitment	strategy	is	

implemented18.	Taking	the	UKB	cohort	as	an	example,	to	generate	a	set	of	unrelated	individuals,	

107,864	out	of	456,422	European	participants	need	to	be	excluded	given	a	relatedness	threshold	
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of	 0.05	 in	 GCTA.	 Excluding	 these	 participants	 would	 significantly	 compromise	 the	 statistical	

power,	which	can	be	avoided	by	implementing	MLM-based	methods	such	as	fastGWA.	In	addition,	

the	higher	power	of	BOLT-LMM	compared	to	fastGWA	or	LR	is	mainly	driven	by	its	LOCO	scheme.	

Previous	 studies	 have	 showed	 that	 leaving	 the	 target	 chromosome	 out	 of	 the	 polygenic	

component	 gains	 power	 because	 the	 effects	 of	 variants	 on	 the	 other	 chromosomes	 are	

conditioned	out	from	the	model	and	proximal	contamination	(i.e.,	the	target	variant	being	fitted	

twice	in	the	model,	once	as	a	fixed	effect	and	again	as	a	random	effect)	is	avoided32,39,40.	We	did	

not	observe	any	increase	in	power	when	applying	the	LOCO	scheme	to	fastGWA	(Supplementary	

Figure	 15)	 because	 fastGWA	 estimates	 pedigree	 relatedness	 by	 a	 sparse	 GRM	 to	 model	

phenotypic	 covariance	between	close	 relatives	due	 to	genetic	 and/or	 common	environmental	

effects	and	the	pedigree	relatedness	estimated	using	all	autosomes	are	similar	to	those	using	21	

chromosomes	under	the	LOCO	scheme.	It	is	of	note	that	to	save	computational	time,	BOLT-LMM-

Inf	 estimates	 the	 genetic	 variance	 only	 once	 using	 all	 “model	 SNPs”	 and	 applies	 it	 to	 the	

association	tests	of	all	variants	without	re-estimating	the	genetic	variance	when	a	chromosome	

is	left	out,	assuming	that	genetic	variance	attributable	to	a	single	chromosome	is	relatively	small.	

This	approximation	could	give	rise	to	inflated	test-statistics	of	BOLT-LMM-Inf	under	the	null	even	

in	the	absence	of	shared	environmental	effects40	(see	the	“(0,0)”	scenario	in	Figure	1).	This	issue	

could	be	fixed	by	re-estimating	the	variance	components	when	a	chromosome	was	left	out	from	

the	polygenic	component	(Supplementary	Figure	16).	In	addition,	BOLT-LMM-Mix	requires	LD	

scores	to	calibrate	the	test	statistics40.	We	observed	from	simulations	that	there	was	an	effect	on	

the	choice	of	LD	reference	on	 the	BOTL-LMM-Mix	 test-statistics	 (Supplementary	Figure	17),	

which	may	explain	part	of	the	inflation	in	BOLT-LMM-Mix	test-statistics	under	the	null	(Figure	

1).	

	

There	are	several	caveats	of	applying	fastGWA	in	practice.	First,	 if	 the	pedigree	information	is	

unavailable	 or	 incomplete	 (as	 is	 the	 case	 for	 UKB;	 shown	 in	Supplementary	 Figure	 18	 and	

further	discussed	in	Supplementary	Note	3),	it	is	necessary	to	compute	the	GRM	from	SNP	data.	

We	have	implemented	in	GCTA	a	very	efficient	tool	to	compute	the	SNP-based	GRM	along	with	a	

function	 that	 can	 subdivide	 the	 GRM	 computation	 into	 a	 large	 number	 of	 components	 for	

parallelized	 computing	 (Supplementary	 Note	 3).	 These	 GRM	 components	 can	 be	 finally	

assembled	to	a	full	GRM	using	a	simple	but	efficient	Linux/Unix	command.	Second,	fastGWA	uses	

SNP-derived	PCs	to	correct	for	the	effect	due	to	population	stratification.	PCs	are	often	provided	

as	part	of	the	QC	package	in	the	downloaded	data18.	If	PCs	are	not	available,	we	would	recommend	

efficient	 PCA	 tools	 such	 as	 fastPCA	 or	 FlashPCA63,64.	 Another	 more	 efficient	 approach	 is	 to	

compute	PCs	in	a	subset	of	the	sample,	and	project	the	PCs	to	the	rest	of	the	sample.	This	approach	

has	been	implemented	in	GCTA	(URLs).	It	is	likely	that	PCs	are	also	required	for	other	MLM-based	
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methods	 including	 BOLT-LMM	 because	 although	 in	 theory	MLM-based	methods	 accounts	 for	

population	stratification	by	fitting	all	(or	a	subset	of	selected)	variants	as	random	effects29,30,39,	

MLM-based	association	analyses	in	large	samples	suggest	that	fitting	PCs	as	covariates	improves	

robustness42,43.	 It	 is	 also	 noteworthy	 that	 computing	 PCs	 from	 all	 the	 variants	 might	 be	

suboptimal,	as	the	test-statistics	would	tend	to	be	deflated	under	the	null	(Supplementary	Note	

6	and	Supplementary	Figure	19).	It	is	therefore	recommended	to	compute	PCs	from	a	set	of	LD-

pruned	variants.	Third,	as	discussed	above,	 in	the	presence	of	common	environmental	effects,	

“genetic	variance”	component	in	the	fastGWA	model	is	a	function	of	𝑉9	and	𝑉Y .	We	did	not	attempt	

to	differentiate	common	environmental	components	among	different	degrees	of	relatedness	(e.g.,	

siblings	might	 share	stronger	common	environmental	effects	 than	cousins).	Nevertheless,	our	

simulation	showed	that	this	simple	modelling	did	not	lead	to	inflated	test-statistics	at	the	null	

variants	 in	 the	 scenario	 where	 common	 environmental	 effects	 decreased	 as	 relatedness	

decreased	(Figure	1).	Fourth,	the	fastGWA	program	will	switch	to	use	LR	for	analysis	(allowing	

for	covariates)	if	the	estimate	of	the	genetic	variance	component	is	not	significant	at	a	nominal	

significance	level,	cautioning	the	use	of	fastGWA	in	a	sample	with	a	small	number	of	related	pairs.	

Last	but	not	least,	this	study	is	focused	on	common	variants,	and	fastGWA	likely	suffers	from	the	

same	weakness	as	the	other	MLM-based	methods	in	rare	variant	association	test47	especially	for	

skewedly	distributed	phenotypes	or	binary	traits	with	very	low	prevalence	rate42.	

	

Despite	these	caveats,	fastGWA	is	an	MLM-based	association	analysis	method	that	is	orders	of	

magnitude	more	resource-efficient	and	has	more	robust	control	over	relatedness	than	existing	

methods.	 The	 computational	 efficiency	 of	 fastGWA	 has	 been	 manifested	 by	 its	 successful	

application	to	the	genome-wide	association	analyses	of	2,173	traits	on	456,422	array-genotyped	

in	the	UKB.	The	summary	statistics	released	from	this	study	are	useful	resources	for	post-GWAS	

analyses	 (e.g.,	 functional	 enrichment,	 genetic	 correlation,	 polygenic	 risk	 score,	 and	 causal	

inference)	 and	 phenome-wide	 association	 studies	 (PhWAS).	 Additionally,	 fastGWA	 can	 be	

modified	for	omic-data-based	QTL	(xQTL)	analyses	in	biobank	samples	in	the	future.		

	

METHODS	

UK	Biobank	data	

The	UK	Biobank	(UKB)	is	a	large	cohort	study	consists	of	approximately	half	a	million	participants	

aged	between	40	and	69	at	recruitment,	with	extensive	phenotypic	records18.		In	this	study,	we	

selected	456,422	individuals	of	European	ancestry	from	the	UKB	cohort	for	simulation	and	real	

data	analyses.	Genetic	data	were	genotyped	by	two	different	arrays,	the	Applied	BiosystemsTM	UK	

Biobank	AxiomTM	Array	 and	 the	 Applied	 BiosystemsTM	UK	BiLEVE	AxiomTM	Array18,	 of	which	

556,269	 genotyped	 variants	 were	 for	 simulation	 and	 8,531,416	 variants	 imputed	 by	 UKB	
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consortium	(imputed	Version	3)	were	used	 for	 real	data	analyses18.	Genotyped/imputed	data	

were	 filtered	 with	 standard	 QC	 criteria	 in	 PLINK220,	 e.g.,	 MAF	 ≥	 0.01,	 Hardy-Weinberg	

Equilibrium	test	P	≥	10-6,	genotyping	rate	≥	0.95,	and	 imputation	 info	score	≥	0.8	 in	real	data	

analyses.	In	addition,	the	UKB	released	its	first	tranche	of	whole-exome	sequence	(WES)	data	of	

49,960	 participants	 in	March	 201965.	 The	WES	 variants	 had	 been	 called	 and	 cleaned	 by	 two	

different	pipelines,	Regeneron’s	Seal	Point	Balinese	(SPB)65	and	Functionally	Equivalent	(FE)66.	

We	used	the	FE	data	for	analysis	and	excluded	from	the	analysis	variants	with	MAF	<	0.01	and	

missingness	rate	>	0.1	(152,327	variants	remained)	and	individuals	with	non-European	ancestry	

(46,191	individuals	remained).	

	

Simulating	genotypes	

In	 order	 to	 test	 the	 performance	 of	 fastGWA	 in	 the	 presence	 of	 relatedness	 and	 substantial	

population	stratification,	we	simulated	a	total	of	100,000	artificial	individuals	from	two	different	

ancestry	 backgrounds,	with	 a	moderate	 proportion	 of	 relatives	 (10%	 of	 all	 samples)	 using	 a	

“mosaic-chromosome”	 scheme	 modified	 from40.	 We	 first	 selected	 all	 individuals	 with	 self-

reported	“British”	and	“Irish”	ancestry	from	the	UKB	as	the	founders.	We	then	filtered	the	samples	

based	 on	 their	 genetic	 ancestry	 inferred	 from	 SNP	 data	 to	 assure	 that	 the	 two	 groups	were	

genetically	distinct	(Supplementary	Note	4	and	Supplementary	Figure	3-4).	Next,	we	divided	

the	genome	into	consecutive	segments	of	2,000	variants	and	generated	unrelated	individuals	by	

selecting	 each	 segment	 from	 two	 of	 the	 founders	 chosen	 at	 random,	 and	 simulated	 related	

individuals	 by	 selecting	 the	 segments	 from	 a	 limited	 number	 of	 founders	 according	 to	 the	

relatedness	 (Supplementary	 Note	 4).	 Finally,	 we	 obtained	 45,000	 independent	 and	 5,000	

related	 “British	 individuals”,	 and	 45,000	 independent	 and	 5,000	 related	 “Irish	 individuals”.	

Detailed	 description	 of	 the	 parameters	 and	 procedures	 have	 been	 described	 in	 the	

Supplementary	Note	4.	We	used	GCTA	to	compute	LD	scores	from	the	simulated	genotype	data	

(Supplementary	Note	7).		

	

Simulating	phenotypes	

The	phenotypes	were	simulated	based	on	the	following	model	

𝒚 = 𝒈 + 𝒛𝑏& + 𝒆𝑪 + 𝒆							[3]	

where	𝒈 = ∑ 𝒙^𝑏^j
^kA ,	 is	 the	 sum	 of	 the	 genetic	 effect	 of	m	 causal	 variants	with	𝒙^ 	a	 vector	 of	

variant	genotypes	and	𝑏^~𝑁(0,1);	z	is	a	vector	consisting	of	0	(British)	and	1	(Irish)	to	indicate	

ancestry	with	𝑏&	being	the	mean	difference	in	phenotype	between	the	two	groups;	𝒆𝑪	is	a	vector	

of	shared	environmental	effects	with	the	individual(s)	in	each	family	assigned	by	the	same	value	

generated	from	𝑁(0,1);	and	𝒆	is	a	vector	of	individual	environmental	effects	(i.e.,	the	residuals)	
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with	𝑒_~𝑁(0, 1).	We	considered	different	levels	of	relatedness	in	different	simulation	scenarios	

including:		

a) no	common	environmental	effects,	denoted	by	(0,0);		

b) common	environmental	effects	explaining	10%	or	20%	of	the	total	phenotypic	variance	

(Vp)	among	the	1st	degree	relatives,	denoted	by	(1st,	0.1𝑉&)	and	(1st,	0.2𝑉&)	),	respectively;			

c) common	 environmental	 effects	 explaining	 10%	 or	 20%	 of	𝑉& )	 among	 the	 1st	 and	 2nd	

degree	relatives,	denoted	by	(³2nd,	0.1𝑉&))	and	(³2nd,	0.2𝑉&)),	respectively;		

d) common	environmental	effects	explaining	20%	of	𝑉&	among	the	1st	degree	relatives	and	

10%	of	𝑉&	among	the	2nd	degree	relatives,	denoted	by	(³2nd,	Gradient).		

Each	 simulation	was	 repeated	 100	 times.	 Detailed	 description	 of	 the	 parameter	 settings	 and	

details	of	extended	simulations	can	be	found	in	the	Supplementary	Note	5.		

	

Assessing	false	positive	rate	and	statistical	power	

Genome-wide	 association	 analyses	 were	 conducted	 on	 the	 simulated	 data	 with	 6	 different	

methods.	The	simulated	phenotypes	were	pre-adjusted	by	the	top	10	PCs	computed	from	a	set	of	

LD-pruned	variants	using	flashPCA267	(Supplementary	Note	6	and	Supplementary	Figure	20).	

Since	the	number	of	variants	was	not	large	(556,269	variants	after	QC),	we	used	all	the	variants	

to	compute	the	sparse	GRM	for	fastGWA	and	included	all	the	variants	as	the	“model	SNPs”	in	the	

polygenic	component	for	BOLT-LMM.	After	performing	GWAS,	we	quantified	the	false	positive	

rate,	genomic	inflation,	and	statistical	power	of	each	association	method	under	each	simulation	

setting.		

	

Real	data	analyses	

We	used	fastGWA	to	perform	a	genome-wide	association	analysis	for	2,173	traits	in	the	UKB.	We	

followed	the	QC	pipeline	as	used	in	the	Neale	Lab’s	UKB	GWAS	(URLs)	with	some	modifications	

(e.g.,	we	kept	all	the	related	individuals).	In	brief,	only	the	participants	with	imputed	genotype	

data	 and	 labelled	 as	 European	 ancestry	 (see	 the	 UKB	 Data-field	 1001)	 were	 included	 in	 the	

association	analyses	(n	=	456,422).	Quantitative	traits	with	>20%	participants	having	the	same	

phenotypic	value	and	categorical	traits	were	transformed	into	binary	(TRUE/FALSE)	or	ordered-

categorical	variables,	and	the	other	quantitative	traits	were	converted	to	z-scores	by	rank-based	

inverse	normal	transformation	(INT).	We	removed	binary	traits	with	case	fraction	<	1%	because	

the	FPRs	of	MLM-based	methods	tend	to	be	inflated	for	binary	phenotypes	with	case	fraction	<	

1%	 even	 for	 common	 variants42.	 For	 association	 analyses,	 we	 fitted	 age,	 age2,	 sex,	 age´sex,	

age2´sex,	 and	 the	 top	20	PCs	provided	by	 the	UKB	as	 covariates.	The	 sex-specific	 traits	were	

adjusted	for	age,	age2,	and	the	top	20	PCs.	We	excluded	variants	with	MAF	<	0.01	or	missingness-
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rate	 >	 0.1	 for	 each	 trait.	 Clumping	 analysis	was	 performed	 in	 a	 subset	 of	 24	 traits	 (listed	 in	

Supplementary	Table	3)	using	PLINK2	with	stringent	criteria	(bi-allelic	variants	only,	P-value	

threshold	=	5´10-9,	window	size	=	5	Mb,	and	LD	r2	 threshold	=	0.01),	and	a	random	subset	of	

10,000	unrelated	individuals	in	the	UKB	was	used	as	a	LD	reference	panel.		

We	applied	the	same	analysis	pipeline	used	above	to	the	WES	data	(152,327	variants	with	MAF	³	

0.01	and	46,191	participants)	for	all	the	available	traits	in	the	UKB	(excluding	traits	with	n	<	5000	

or	binary	traits	with	case	fraction	<	1%,	and	variants	with	MAF	<	0.01	or	missingness-rate	>	0.1	

for	each	trait).	We	performed	clumping	analysis	(bi-allelic	variants	only,	P-value	threshold	=	0.05	

/	m	with	m	being	the	number	of	variants	tested	for	each	trait,	window	size	=	5	Mb,	and	LD	r2	

threshold	=	0.01)	of	the	fastGWA	result	for	each	of	the	24	selected	traits	based	on	LD	estimated	

from	WES	data	of	42,974	unrelated	individuals	(estimated	pairwise	genetic	relatedness	<	0.05).		

	

URLs	

fastGWA:	http://cnsgenomics.com/software/gcta/#fastGWA	

GCTA-GRM	(computing	GRM	in	biobank-scale	data):	

http://cnsgenomics.com/software/gcta/#MakingaGRM		

UKB	GWAS	summary	statistics	from	fastGWA:	

http://cnsgenomics.com/software/gcta/#DataResource	

Online	tool	to	query	the	UKB	summary	statistics	produced	by	fastGWA:	http://fastgwa.info	

PheWeb:	https://github.com/statgen/pheweb/	

R-script	to	generate	FAM:	http://cnsgenomics.com/software/gcta/#fastGWA	

UK	Biobank:	http://www.ukbiobank.ac.uk		

PLINK2:	https://www.cog-genomics.org/plink/2.0/	

BOLT-LMM:	https://data.broadinstitute.org/alkesgroup/BOLT-LMM/	

LD	score	regression:	https://github.com/bulik/ldsc	

FlashPCA2:	https://github.com/gabraham/flashpca	

UKB	Phenotype	Processing	scripts:	https://github.com/Nealelab/UK_Biobank_GWAS	

GeneATLAS:	http://geneatlas.roslin.ed.ac.uk	

UKB	GWAS	summary	statistics	from	the	Neale	Lab:	http://www.nealelab.is/uk-biobank	

Eigen	C++	library:	http://eigen.tuxfamily.org/index.php?title=Main_Page	

	

Data	availability	

The	individual-level	genotype	and	phenotype	data	are	available	through	formal	application	to	the	

UK	Biobank	(URLs).	All	the	summary-level	statistics	are	available	at	our	data	portal	(URLs).	
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Table	1.	Comparison	of	runtime	between	fastGWA,	BOLT-LMM,	and	PLINK2	

Sample	Size	
GCTA-fastGWA	 BOLT-LMM	 PLINK2	

Para.	Est.		
(h)	

Assoc.		
(h)		

Total		
(h)		

Para.	Est.		
(h)	

Assoc.	
(h)		

Total	
(h)	

Total	
(h)	

50,000	 0.00	 0.03	 0.03	 0.88	 1.05	 1.93	 0.07	

100,000	 0.00	 0.04	 0.04	 2.09	 2.07	 4.16	 0.15	
200,000	 0.01	 0.07	 0.08	 5.34	 4.16	 9.50	 0.37	
300,000	 0.01	 0.14	 0.15	 9.51	 6.24	 15.75	 0.81	
400,000	 0.02	 0.23	 0.25	 13.85	 8.44	 22.29	 1.15	

Shown	 are	 the	 runtimes	 of	 GCTA-fastGWA	 v1.92.3	 (mixed	 model)	 and	 BOLT-LMM	 v2.3.2	

(infinitesimal	mixed	model),	and	PLINK2	v2.00a2	(LR	model).	The	data	used	in	this	test	consisted	

of	8,531,416	common	variants,	of	which	565,631	LD-pruned	variants	were	used	as	“model	SNPs”	

in	BOLT-LMM	(Supplementary	Note	3).	The	runtime	of	fastGWA	or	BOLT-LMM	consists	of	two	

steps:	 a)	 the	 estimation	of	mixed	model	parameters	 (“Para.	Est.”),	 and	b)	 the	 association	 test	

(“Assoc.”).	The	LR	was	performed	using	all	the	individuals.	All	tests	were	performed	the	same	

computing	environment:	96	GB	memory	and	16	CPU	cores	with	solid-state	disk	in	one	computer	

node.	 The	 computing	 time	 of	 the	 GRM	 (as	 required	 by	 fastGWA	 and	 LR)	 is	 described	 in	

Supplementary	Note	3.	 	
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Table	2.	Comparison	of	memory	usage	between	fastGWA	and	BOLT-LMM	

Sample	
size	

GCTA-fastGWA	 BOLT-LMM	 𝑀𝑒𝑚pq$rstu

𝑀𝑒𝑚vwxy@xzz
	

𝑉𝑀𝑒𝑚pq$rstu

𝑉𝑀𝑒𝑚vwxy@xzz
	Mem	

(GB)	
VMem	
(GB)	

Mem	
(GB)	

VMem	
(GB)	

50,000	 1.4	 3.3	 8.8	 9.7	 15.9%	 34.0%	
100,000	 1.5	 3.3	 15.3	 16.2	 10.5%	 20.4%	
200,000	 1.8	 3.3	 28.6	 29.6	 6.3%	 11.5%	
300,000	 2.2	 4.3	 42.0	 43.1	 5.2%	 10.0%	
400,000	 2.7	 4.7	 55.5	 56.6	 4.9%	 8.3%	

Shown	are	the	actual	memory	(“Mem”)	and	virtual	memory	(“VMem”)	usages	of	GCTA-fastGWA	

v1.92.3	and	BOLT-LMM	v2.3.2	(infinitesimal	model	only)	in	GB	units.	The	data	used	in	this	test	

consisted	of	 8,531,416	 common	variants,	 of	which	565,631	LD-pruned	variants	were	used	as	

“model	 SNPs”	 in	BOLT-LMM	(Supplementary	Note	4).	All	 tests	were	performed	 in	 the	 same	

computing	environment:	96	GB	memory	and	16	CPU	cores	in	one	computer	node.		
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Figure	1.	Median	l	of	null	variants	under	different	simulation	scenarios.	a)	Median	l	of	null	

variants	with	different	 levels	of	common	environmental	effects	 in	 the	simulations	(Methods).	

The	 y	 axis	 represents	 the	 median	 l	 of	 the	 null	 variants	 (i.e.,	 all	 the	 variants	 on	 the	 even	

chromosomes),	and	the	x	axis	represents	different	levels	of	common	environment	effects	with	(0,	

0)	 representing	 no	 common	 environmental	 effects;	 (1st,	 0.1Vp)	 and	 (1st,	 0.2Vp)	 representing	

common	environmental	effects	explaining	10%	and	20%	of	the	phenotypic	variance	(Vp)	among	

the	 1st	 degree	 relatives,	 respectively;	 (³2nd,	 0.1Vp)	 and	 (³2nd,	 0.2Vp)	 representing	 common	

environmental	effects	explaining	10%	and	20%	of	Vp	among	the	1st	and	2nd	degree	relatives	(note	

that	this	actually	includes	all	the	relatives	simulated),	respectively;	(³2nd,	Gradient)	representing	

20%	of	Vp	among	the	1st	degree	relatives	and	10%	of	Vp	among	the	2nd	degree	relatives.	Each	

boxplot	represents	the	distribution	of	median	l	across	100	simulation	replicates.	b)	Median	l	of	

null	variants	with	different	number	of	causal	variants	(i.e.,	10k,	40k,	and	80k))	in	the	simulations	

(Methods).	The	y-axis	represents	the	median	l	of	the	null	variants	and	the	x-axis	represents	the	

different	number	of	causal	variants	simulated.		 	
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Figure	2.	Mean	c2	of	 causal	variants	under	different	simulation	scenarios.	 a)	Mean	c2	of	

causal	 variants	 with	 different	 levels	 of	 common	 environmental	 effects	 in	 the	 simulations	

(Methods).	The	y-axis	represents	the	mean	c2	values	for	all	the	10,000	causal	variants	on	the	odd	

chromosomes	and	the	x-axis	represents	the	different	levels	of	common	environmental	effects	as	

described	in	Figure	1a.	The	mean	c2	has	been	adjusted	by	the	median	l	of	null	variants	on	the	

even	chromosomes.	Each	boxplot	represents	the	distribution	of	mean	c2	across	100	simulation	

replicates.	 b)	 Mean	 c2	 at	 causal	 variants	 with	 different	 number	 of	 causal	 variants	 in	 the	

simulations	(Methods).	The	y-axis	represents	the	average	of	mean	c2	of	the	causal	variants	and	

the	x-axis	represents	the	different	number	of	causal	variants	(i.e.,	10k,	20k,	40k,	80k).	The	mean	

c2	has	been	adjusted	by	the	median	l	of	null	variants	on	the	even	chromosomes.	Each	boxplot	

represents	the	distribution	of	mean	c2	across	100	simulation	replicates.		
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Figure	3.	Estimates	of	genetic	variance	by	fastGWA	and	BOLT-LMM	for	24	traits	in	the	UKB.	A	full	

list	of	phenotype	abbreviations	can	be	found	in	Supplementary	Table	3.	Shown	in	panel	a)	are	

the	 estimates	 of	 genetic	 variance	 (i.e.,	𝜎B9: )	 by	 fastGWA-REML	 using	 all	 individuals,	 by	 BOLT-

REML40,42	 (used	 in	 BOLT-LMM)	 using	 all	 individuals,	 and	 by	 BOLT-REML59	 using	 unrelated	

individuals.	 In	panel	b),	we	analysed	a	 subset	of	 the	UKB	data	 (21,815	 inferred	 full-sib	pairs,	

comprising	39,934	individuals	from	19,386	families;	Supplementary	Note	3)	based	on	a	two-

component	 model:	 𝒚 = 𝒈 + 𝒆𝑪 + 𝒆 	with	 𝑽 = 𝝅𝜎9: + 𝑪𝜎*: + 𝑰𝜎=: 	where	 𝒈 	is	 a	 vector	 of	 total	

genetic	effects,	𝒆𝑪	is	a	vector	of	shared	environmental	effects,	𝝅	is	the	full	dense	GRM	estimated	

from	a	 set	 of	 slightly-pruned	HapMap3	SNPs	 as	used	 in	 real	 data	 analyses	 (m	 =	565,631,	 see	

Supplementary	Note	3	for	details),	and	𝑪	is	a	design	matrix	with	1	or	0	to	indicate	whether	a	

pair	of	individuals	belong	to	the	same	family.	Standard	errors	of	the	estimates	are	represented	by	

the	error	bars.	
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