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Abstract  
We   present   the   Spreading   Activation   and   Memory   PLasticity   Model   (SAMPL),   a   computational  
model   of   how   memory   retrieval   changes   memories.   SAMPL   restructures   memory   networks   as   a  
function   of   spreading   activation   and   plasticity.   Memory   networks   are   represented   as   graphs   of  
items   in   which   edge   weights   capture   the   strength   of   association   between   items.   When   an   item   is  
retrieved,   activation   spreads   across   nodes   depending   on   edge   weights   and   the   strength   of   initial  
activation.   A   non-monotonic   plasticity   rule,   in   turn,   updates   edge   weights   following   activation.  
SAMPL   simulates   human   memory   phenomena   across   a   number   of   experiments   including  
retrieval   induced   forgetting,   context-based   memory   enhancement,   and   memory   synchronization  
in   conversational   networks.   Our   results   have   implications   for   theorizing   memory   disorders   such  
as   PTSD   and   designing   computationally   assisted   conversational   therapy.   
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Introduction  
 
Memory   is   malleable.   Remembering   something   directly,   like   an   item,   a   person,   or   an   event,  
enhances   our   memory   of   it.   Memory   is   organized   in   relational   structures 5 .   When   we   remember  
something   (a   friend’s   name),   we   automatically   retrieve   related   memories.   Some   of   these  
memories   are   closely   related   (what   the   friend   looks   like)   and   some   are   further   away   (a   mutual  
friend).   This   “spread   of   activation” 1    across   a   network   of   memories   can   change   memory   for  
related   items 1–4 .   However,   while   some   memory   studies   have   shown   that   memory   for   related  
items   is   enhanced 1 ,   other   studies   have   shown   that   remembering   something   can   weaken  
memory   for   items   that   are   related   to   it 1–4 .   This   apparent   contradiction   poses   challenges   to  
models   of   memory   retrieval.   One   challenge   is   to   offer   unifying   memory   principles   that   explain  
how   and   when   related   items   are   enhanced   or   weakened.   Another   is   to   predict   how   these  
principles   lead   to   larger   scale   memory   phenomena.   Here   we   discuss   the   limitations   of   existing  
models   and   propose   SAMPL:   the   Spreading   Activation   and   Memory   PLasticity   model,   a   unified  
account   of   the   malleability   of   memory.  
 
Retrieval   enhances   memory   for   practiced   items,   while   unpracticed   but   related   items   can  
undergo   either   forgetting   (e.g.,   retrieval-induced   forgetting,   RIF) 1–4    or   enhancement   (e.g.,   the  
context   repetition   effect,   statistical   learning   of   predictive   associations 2 ).   Typically,   memory  
models   either   focus   on   studies   of   forgetting   of   related   items   or   enhancement,   but   not   both.   
 
In   the   first   group,   one   biologically   plausible   proposal   for   explaining   forgetting   phenomena,   such  
as   RIF,   is   a   neural   network   model   using   oscillating   inhibition 3 .   However,   this   model   has   not   been  
shown   to   explain   the   enhancement   of   related   but   unpracticed   items,   is   computationally  
expensive,   and   has   so   far   only   been   tested   on   small   memory   networks.   Another   proposed  
explanation   of   RIF   is   the   non-monotonic   plasticity   hypothesis   (NMPH) 10 .   This   approach   applies  
a   “rich   get   richer,   poor   get   poorer”   update   rule   that   shapes   activation   dynamics,   enhancing  
associations   between   strongly   activated   items   and   weakening   associations   between   moderately  
activated   items,   whether   or   not   they   were   practiced.   However,   the   NMPH   has   not   been   applied  
to   explain   empirical   findings   on   the   enhancement   of   related   items,   nor   has   a   computational  
model   been   proposed   with   the   potential   to   explain   NPMH   effects   at   larger   memory   network  
levels,   e.g.,   the   network   of   memory   relationships   outside   the   items   presented   in   a   given  
experiment.   It   has   been   suggested   that   non-monotonic   plasticity   is   the   brain’s   unsupervised  
learning   rule   for   “housekeeping”   of   competition   between   memories   at   the   larger   network   level. 4    If  
this   is   the   case,   then   a   non-monotonic   updating   rule   should   in   principle   lead   to   a   wide   range   of  
human   memory   behavior   including   both   enhancement   and   forgetting   effects.   However,   no  
model   so   far   has   incorporated   both   non-monotonic   plasticity   and   the   spread   of   activation   across  
memory   networks   to   test   whether   these   two   principles   alone   are   sufficient   to   account   for  
complex   memory   phenomena.  
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In   the   second   group,   models   for   learning   predictive   representation 5–7    have   been   proposed   to  
explain   phenomena   involving   enhancement   of   related   items,   e.g.,   in   context   repetition   and  
statistical   learning   studies.   Whether   as   neural   network   models 3 ,   reinforcement   learning   and  
representation   learning   models 8 ,   or   graph   network   models,   these   approaches   take   into   account  
the   larger   network   structure   of   associations.   However,   they   have   not   been   shown   to   explain  
forgetting   of   related   but   unpracticed   items.   
 
We   propose   SAMPL:   the   Spreading   Activation   and   Memory   PLasticity   model,   a   unified   account  
of   how   memory   retrieval   leads   to   both   memory   enhancement   and   forgetting.   SAMPL   bridges  
principles   from   the   above   two   groups   of   models,   applying   a   non-monotonic   plasticity   updating  
rule   across   a   relational   memory   network   structure.   SAMPL   represents   items   stored   in   memory  
as   nodes   in   a   graph,   and   associations   between   items   as   weighted   edges   connecting   those  
nodes.  
 
SAMPL   captures   the   plasticity   of   memory   using   two   simple   rules:   (1)   Spreading   activation.  
Retrieving   an   item   initiates   a   cascade   of   activation   that   spreads   across   the   graph   to   connected  
nodes,   activating   related   items   that   were   not   directly   remembered 1 .   This   gradually   decaying  
cascade   of   activation   can   reach   memories   that   are   multiple   associations   away   in   the   larger  
network.   (2)   Non-monotonic   plasticity 3,4 .   Edge   weights   are   updated,   strengthening   edges  
between   strongly   activated   nodes   and   weakening   edges   between   moderately   activated   nodes.   
 
We   validate   SAMPL   by   comparing   its   output   to   human   behavior   in   simulations   of   human  
memory   experiments 2,9,10 .   We   simulate   three   representative   memory   phenomena:  
retrieval-induced   forgetting,   the   context   repetition   effect,   and   memory   alignment   in   multi-person  
conversational   networks.   These   simulations   test   two   hypotheses.   First,   we   test   the   hypothesis  
that   spreading   activation   and   non-monotonic   plasticity   are   sufficient   for   human-like   memory  
enhancement   and   forgetting.   Second,   we   test   the   hypothesis   that   non-monotonic   plasticity   (“rich  
get   richer,   poor   get   poorer”)   is   a   better   fit   to   human   behavior   than   monotonic   plasticity,   where  
associations   are   adjusted   proportionally   to   the   activity   level   at   each   node.  
 
The   following   simulation   results   show   that   the   combination   of   spreading   activation   and  
non-monotonic   plasticity   implemented   in   SAMPL   is   sufficient   to   simulate   both   forgetting   and  
enhancement   of   related   items.   In   all   simulations,   non-monotonic   plasticity   produced   human-like  
behavior   while   monotonic   plasticity   did   not,   showing   that   non-monotonic   plasticity   is   important  
for   explaining   human   memory   phenomena.   
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Figure   1.   SAMPL:   Spreading   Activation   and   Memory   PLasticity   model   schematic.    (T1)  
Memory   retrieval   activates   a   node   in   the   memory   network   (red   node;   colors   denote   the   level   of  
activation).   (T2)     This   activation   is   spread   across   the   graph,   decaying   according   to   the   edge  
weights   and   the   discount   parameter   (orange   and   yellow   nodes).   (T3)   Edges   are   reweighted  
non-monotonically   corresponding   to   the   level   of   activation   of   their   nodes:   High   activation  
strengthens   connections   (dashed   red   edges),   moderate   activation   weakens   connections  
(dashed   blue   edges),   and   low   activation   leaves   connections   unchanged   (light   grey   edges).   (T4)  
The   final   state   of   the   memory   network   reflects   changes   in   edge   weights   (compare   to   T1).   

 

Methods  

The   model  
SAMPL   consists   of   a   memory   network,   a   spreading   activation   rule,   and   an   edge   weight   updating  
(plasticity)   rule.   The   memory   network   is   a   graph   where   nodes   represent   memory   items,   edges  
represent   connections   between   items,   and   edge   weights   represent   the   strength   of   those  
connections.   When   a   set   of   nodes   is   activated,   those   nodes   are   assigned   an   activation   value,  
and   the   spreading   activation   rule   propagates   that   activation   through   the   network,   setting  
activation   values   for   all   connected   nodes.   Then   the   weight   updating   rule   alters   all   edge   weights  
based   on   the   final   activation   values   at   each   node.   Detailed   explanations   of   the   spreading  
activation   and   weight   updating   rules   follow,   and   a   worked   example   is   presented   in   Figure   3.   
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Figure   2.   Non-monotonic   weight   updating   function.    The   SAMPL   edge   weight   updating  
function   implements   a   non-monotonic   plasticity   (NMP)   rule.   Edge   weights   between   two   nodes  
increase   when   they   are   strongly   activated,   decrease   when   they   are   moderately   activated,   and  
do   not   change   when   they   are   weakly   activated.   The   shape   of   the   weight   updating   function   is  
determined   by   four   parameters:   suppression   (y-min),   enhancement   (y-max),   the   width   of   the  
suppressive   dip,   and   the   center   of   the   suppressive   dip   (which   determines   the   range   of   moderate  
activation,   in   which   case   edge   weights   are   decreased).   As   such,   the   suppressive   dip   enables  
non-monotonic   plasticity.   Note   that   if   the   suppression   (y-min)   parameter   is   zero,   then   the  
function   becomes   monotonic.  
 
 
Spreading   activation   rule.    Activation   is   propagated   through   the   network   using   a   recursively  
defined   updating   rule,   such   that   the   current   activation   state   depends   on   the   previous   activations  
and   edge   weights.   A   simplified   version   of   this   updating   rule   is   presented   in   equation   (1).   Let   a  
be   a   column   vector   of   activations,   let     be   the   weight   matrix   of   the   memory   network,   and   let   W γ  
be   a   discounting   constant.   Given   an   initial   activation   state   ,   the   final   activation   state   ainit af inal  
after     propagation   steps   can   be   expressed   as   follows: t  
 

(1  W )af inal = ainit∏
 

t
+ γ t (1)  

 
The   complete   form   of   the   updating   rule   differs   from   the   simplified   version   in   equation   (1)   in   three  
ways:   Nodes   only   "fire"   (i.e.,   spread   activation   to   downstream   nodes)   when   their   activation   is  
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above   the   minimum   threshold   of   the   weight   updating   function,   nodes   that   have   fired   are   not  
allowed   to   fire   again,   and   activations   are   restricted   to   the   range   [0,   1].  
 
Here   we   provide   a   complete   statement   of   the   recursive   updating   rule   for   propagating   activation  
through   the   network.  
 
To   only   allow   nodes   to   fire   when   their   activation   is   above   the   minimum   threshold   of   the   NMP  
function,   we   define     as   the   function   that   sets   activations   below   that   threshold   to   zero.   Let   (a)f a  
be   a   vector   of   activations   with   length   equal   to   the   number   of   nodes   in   the   network   ,   indexed   by n  

,   and   let     be   the   smallest   value   in   the   domain   of   the   NMP   function   that   produces 1... n}  i ∈ { xmin  
a   non-zero   output.   

 
To   prevent   nodes   that   have   fired   from   firing   again,   eliminating   feedback   loops   in   the   network,   we  
define      as   the   function   that   sets   a   node's   inbound   edge   weights   to   zero   if   it   will   fire.   Let (W , a)L    

be   the     weight   matrix   of   the   memory   network,   indexed   by   . W  n × n , 1... n}  i j ∈ {  

 
 
To   restrict   activation   values   to   the   range   [0,   1],   we   define   a   clip   function   (a)κ  
 

 
The   complete   statement   of   the   spreading   activation   update   rule   has   the   same   form   as   its  
simplified   presentation   in   equation   (1),   but   ,   ,   and      are   applied   at   each   recursion   step. f L κ  
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Recursion   terminates   when   all   activations   in      are   0. a

 
 
 
Weight   updating   rule.    For   each   edge,   the   smaller   of   the   two   activation   values   at   its  
corresponding   nodes   is   used   as   input   to   a   piecewise   weight   updating   function,   yielding   an  
adjustment   value   which   is   added   to   the   edge   weight.   The   weight   updating   function   has   four  
parameters:   suppression   (y-min),   enhancement   (y-max),   the   width   of   the   suppressive   dip,   and  
the   center   of   the   suppressive   dip,   visualized   in   Figure   2.  
 
SAMPL   can   accommodate   a   wide   range   of   experimental   paradigms.   For   example,   activation  
values   can   be   interpreted   as   the   probability   that   an   item   will   be   remembered,   or   a   threshold   can  
be   applied   such   that   only   nodes   with   higher   activation   will   be   remembered.   Similarly,  
connections   and   edge   weights   can   be   set   based   on   experiment-specific   details.   For   example,  
an   edge   weight   could   indicate   how   often   two   items   co-occur   in   a   text   corpus,   or   could   be   set   to  
reflect   behavioral   relatedness   norms.   In   Studies   1,   2,   and   4,   SAMPL   was   adapted   to   existing  
paradigms   from   the   memory   literature.   In   Studies   3   and   4,   SAMPL   was   used   in   agent-based  
modeling   simulations,   where   each   agent   uses   an   independent   instance   of   the   model   as   its  
internal   memory.   In   Study   4,   the   model   was   extended   to   include   separate   episodic   and  
long-term   memory   stores.  
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Figure   3.   A   worked   example   of   the   SAMPL   model.    In   SAMPL,   we   model   items   in   memory   as  
nodes   in   a   graph.   When   one   or   more   items   are   retrieved,   activation   spreads   across   the  
graph—according   to   the   strength   of   associations   between   items   with   cascading   decay—and  
edge   weights   are   updated.   This   example   uses   the   non-monotonic   weight   updating   function   in  
the   upper   right   corner   of   the   figure,   with   discount   factor   ,   in   three   rounds   of   retrieval. 3γ = .  
(Round   1)   Initially,   there   are   three   items   in   memory   (apple,   bus,   and   cat).   Let   us   assume   the  
edge   weights   between   them   are   all   zero.   The   apple   and   bus   nodes   are   activated  
simultaneously.   Because   all   edge   weights   are   zero,   no   activation   is   propagated   to   the   cat   node.  
The    smaller    activation   value   of   both   nodes   on   the   apple-to-bus   edge   is   1.0,   so   the   edge   weight  
is   adjusted   by   the   non-monotonic   plasticity   rule   to   .5.   (Round   2)     The   bus   and   cat   nodes   are  
activated   simultaneously.   The   activation   that   spreads   to   the   apple   node   is   equal   to   the   activation  
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at   the   bus   node   (1.0)   scaled   by   the   edge   weight   between   the   two   items   (.5),   as   well   as   the  
discount   factor   ( ),   or   .   Since   the   activation   at   both   the   bus   and   cat   nodes 3γ = .   5  3  15  1 * . * . = .  
is   1.0,   the   edge   between   them   is   incremented   by   the   update   rule   to   .5.   By   contrast,   the   minimum  
activation   of   the   bus   and   apple   nodes   is   0.15   (at   the   apple   node).   This   moderate   activation   level  
is   in   the   suppressive   dip   of   the   weight   updating   function   (top   right).   Therefore,   the   update   rule  
adjusts   the   edge   weight   by   -.1,   leading   to   retrieval-induced   forgetting.   (Round   3)     Simultaneously  
activating   the   bus   and   cat   nodes   a   second   time   results   in   further   reinforcement   or   enhancement  
of   the   connection   between   them.   However,   note   that   the   weight   updating   rule   leads   to   the  
further   weakening   of   the   edge   weight   from   bus   to   apple.    Here   we   use   an   NMP   function  
compared   to   Figure   1   where   only   0   activation   leads   to   no   weight   update.   

Simulations  

Study   1:   Retrieval-induced   forgetting  

Methods  
To   assess   whether   SAMPL   produces   retrieval-induced   forgetting   (RIF),   we   simulated  
experiment   1   from   Anderson,   Bjork,   &   Bjork   (1994) 9 ,   henceforth   ABB   (1994).   See  
Supplementary   Figure   1   for   a   schematic   of   RIF   experiments   and   Supplementary   Table   1   for   the  
items   used   in   the   ABB   (1994)   study.   In   this   experiment,   participants   first   studied   associations  
between   category   labels   and   category   exemplars.   Participants   then   engaged   in   retrieval  
practice   of   half   of   the   exemplars   from   a   subset   of   the   categories.   During   a   final   memory   test,  
participants   were   asked   to   engage   in   free   recall   of   exemplars   from   a   single   category   for   30s.  
The   study   found   that   exemplars   that   were   not   practiced   but   belonged   to   a   practiced   category  
(RP-   items,   see   below)   were   remembered   less   frequently   than   exemplars   that   were   not  
practiced   and   belonged   to   an   unpracticed   category   (NRP   items).   The   authors   called   this   effect  
retrieval-induced   forgetting.   Following   the   convention   established   by   ABB   (1994),   here   we   use  
the   shorthand    RP+    to   indicate   practiced   items,    RP-    to   indicate   unpracticed   items   from   a  
practiced   category,   and    NRP    to   indicate   unpracticed   items   from   an   unpracticed   category.   
 
We   created   a   memory   network   with   nodes   corresponding   to   the   words   used   in   ABB   (1994).   To  
ensure   realistic   word-to-word   associations,   edge   weights   were   determined   using   a   separate  
semantic   embedding   model 11    trained   on   the   Google   News   corpus,   a   large   collection   of   English  
language   news   reports.   Specifically,   the   edge   weights   between   nodes   in   the   memory   network  
were   set   to   the   cosine   distances   between   the   corresponding   word   vectors   in   the   semantic  
embedding   model.   (N.B.:   The   “strong”   high   taxonomic   frequency   vs.   ”weak”   low   taxonomic  
frequency   category   distinction   made   in   ABB   is   not   well-captured   by   distances   between   word  
vectors   in   the   semantic   embedding   model,   so   we   did   not   attempt   to   replicate   this   aspect   of   their  
analysis.)   
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To   simulate   the   study   phase   of   experiment   1   from   ABB   (1994),   edge   weights   from   category  
labels   to   exemplars   were   set   equal   to   the   first   value   of   the   weight   updating   function   above   the  
suppressive   dip.   This   ensured   that   simultaneous   activation   and   weight   updating   would  
strengthen   connections   between   category   labels   and   exemplars.   Categories   were   selected   for  
retrieval   practice   in   a   counterbalanced   order,   as   in   ABB   (1994).   To   simulate   retrieval   practice,  
each   RP+   item   (i.e.,   practiced   exemplar)   was   activated   at   the   same   time   as   its   corresponding  
label,   activation   was   spread   across   the   network,   and   edge   weights   were   adjusted   according   to  
the   weight   updating   function.   To   simulate   final   testing,   the   final   item-label-to-category   edge  
weight   was   used   as   a   proxy   for   the   proportion   of   successful   recalls.   Model   parameters   were   set  
based   on   the   results   of   a   grid   search   (see   Supplementary   Materials   for   details),   where   the  
search   cost   of   each   parameter   set   corresponded   to   the   sum   of   the   differences   between   the  
model   results   and   the   results   from   ABB   (1994).  

Study   1   Simulation   Results  
SAMPL   produced   a   retrieval-induced   forgetting   effect   (Figure   4).   Both   RP-   and   NRP   items   were  
remembered   less   frequently   than   RP+   items,   and   RP-   items   were   remembered   less   frequently  
than   NRP   items   [ABB   (1994)   difference:   -.11,   simulation   difference:   -.05,   Welch’s   t(142)=-15.39,  
p<.001]   (Figure   4,   top   left).   The   best   parameter   set   found   in   the   grid   search   included   moderate  
enhancement   (y-max=.1),   a   small   suppressive   dip   (y-min=-.01,   dip   center=.3,   dip   width=.35),  
and   a   moderate   discount   (γ=.3)   (Figure   4,   top   right).   Inspection   of   the   edge   weight   matrix   after  
simulation   showed   that   the   edge   weights   between   category   labels   and   RP+   items   were  
maintained   while   the   edge   weights   between   category   labels   and   RP-   items   were   weakened,  
without   any   large   changes   involving   NRP   items   or   the   rest   of   the   network   (Supplementary  
Figure   1).   Parameter   settings   with   more   suppression   or   enhancement   produced   results   less  
similar   to   ABB   (1994),   although   a   wide   range   of   discount   ( γ)   values   appeared   viable   (Figure   4,  
middle) .   Notably,   we   also   tested   monotonic   plasticity   update   rules   (plasticity   functions   with   no  
dip),   comparing   simulation   outcomes.   Using   a   monotonic   weight   updating   function   with   no  
suppressive   dip   eliminated   the   retrieval-induced   forgetting   effect   (difference:   0)   (Figure   4,  
bottom).   
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Figure   4.   SAMPL   simulates   retrieval   induced   forgetting.    (Top   left)     SAMPL   simulation   results  
compared   to   human   behavior   reported   in   Anderson,   Bjork   &   Bjork   (1994),   or   ABB   (1994).  
SAMPL   produces   behavior   to   human   results.   (Top   right)     Optimal   plasticity   function   and   discount  
( γ )   parameter   values   determined   by   grid   search.   (Middle)     The   fit   between   SAMPL   and   human  
results   changes   as   a   function   of   the   suppression,   enhancement,   and   discount   ( γ )   parameters,  
as   other   model   parameters   are   held   constant.   Lower   cost   values   (Y   axis)   indicate   a   better   fit   of  
the   behavior   of   SAMPL   to   ABB   (1994)   results.   The   red   dot   indicates   optimal   parameters   found  
by   grid   search.   (Bottom)     When   the   suppressive   dip   is   removed   from   the   plasticity   function  
(right),   retrieval-induced   forgetting   does   not   occur,   i.e.,   the   blue   bars   in   the   RP-   and   RP+  
condition   are   not   different   (left).   

Study   2:   The   context   repetition   effect  

Methods  
To   assess   whether   SAMPL   produces   the   context   repetition   effect,   we   conducted   a   simulation  
study   replicating   experiment   1   from   Smith,   Hasinski,   &   Sederberg   (2013),   henceforth   SHS  
(2013).   Participants   in   SHS   (2013)   viewed   a   series   of   images   organized   in   a   triplet   structure,  
with   the   first   two   items   in   each   triplet   acting   as   the   context   for   the   third   item,   called   the   target.  
This   study   design   supported   measurement   of   both   the    item   repetition   effect    and   the    context  
repetition   effect.    The    item   repetition   effect    refers   to   enhanced   memory   for   targets   that   were  
repeated,   while   the    context   repetition   effect    refers   to   enhanced   memory   for   targets   whose  
context   items   were   repeated,   even   if   the   target   was   not   repeated.   SHS   (2013)   distinguishes  
between   a    predictive   context   effect,    where   the   context   was   repeated   only    after    it   was   paired   with  
the   target   (called   the   Target   1   context   repetition   effect   in   SHS   2013),   and   a    non-predictive  
context   effect,    where   the   context   was   repeated    before    it   was   paired   with   the   target   (called   the  
Target   2   context   repetition   effect   in   SHS   2013).   Importantly,   SHS   (2013)   found   a   moderate  
predictive   context   effect,   but   no   non-predictive   context   effect.   Retrieval   of   context   items  
enhanced   memory   only   for   targets   with   which   they   were    previously    paired.   This   suggests   the  
possibility   that   context   enhancement   is   driven   not   simply   by   better   memory   for   the   context   items,  
but   by   activation   of   the   context   items   spreading   across   and   reinforcing   connections   to   target  
items   they   were   paired   with   in   the   past.  
 
We   simulated   the   context   repetition   paradigm   using   SAMPL.   Because   the   stimuli   used   by   SHS  
(2013)   were   novel   images   assumed   to   have   no   pre-existing   associations   with   one   another,   we  
set   the   initial   edge   weights   of   the   graph   to   zero.   To   simulate   the   learning   phase   of   the  
experiment,   we   generated   a   study   list   following   the   procedure   described   by   SHS   (2013).   Each  
study   list   contained   four   types   of   triplets,   organized   in   a   two-by-two   design:   repeated   context  
with   repeated   target;   repeated   context   with   novel   target;   non-repeated   context   with   repeated  
target;   non-repeated   context   with   novel   target.   Study   lists   were   constructed   by   randomly  
selecting    4   triplets   of   each   type,   for   a   total   of   72   items   and   96   item   presentations   (due   to   item  
repetition).   Items   were   presented   to   the   model   by   iterating   over   each   study   list   using   a   3-item  
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rolling   window.   At   each   step,   the   three   items   in   the   window   were   activated,   that   activation   was  
spread   across   the   memory   network,   and    edge   weights   were   adjusted   according   to   the   weight  
updating   function.   Critically,   the   rolling   window   was   allowed   to   extend   across   inter-triplet  
boundaries,   mimicking   the   serial   presentation   approach   of   SHS   (2013).   To   simulate   the  
item-recognition   test,   the   in-degree   of   each   node   was   interpreted   as   a   measure   of   relative  
memorability.   
 
Model   parameters   were   set   based   on   the   results   of   a   grid   search   (see   Supplementary   Materials  
for   details).   The   search   cost   function   was   designed   to   capture   the   important   features   of   the  
result   from   SHS   (2013):   high   item   repetition   effects,   moderate   context   repetition   effect   for  
predictive   context,   and   near   zero   context   repetition   effects   for   non-predictive   contexts   on   a  
target   item.   Accordingly,   the   search   cost   of   each   parameter   set   was   defined   as   the   difference  
between   the   ratio   of   the   item   repetition   effect   to   the   predictive   context   repetition   effect   in   the  
simulation   and   the   same   ratio   in   SHS   (2013),   plus   one   if   a   predictive   context   effect   was    not  
detected,   and   plus   one   if   a   non-predictive   context   effect    was    detected.   The   ratio   was   used  
because   the   simulation   results   used   different   units   from   SHS   (2013).  

Study   2   Simulation   Results  
The   model   produced   item   repetition   effects   and   context   repetition   effects   similar   to   SHS   (2013)  
(Figure   5),   including   a   strong   item   repetition   effect,   a   moderate   predictive   context   repetition  
effect,   and   no   non-predictive   context   repetition   effect.   The   predictive   context   repetition   effect  
was   smaller   than   the   item   repetition   effect   [Welch’s   t(2158)=-26.57,   p<.001]   and   greater   than   the  
non-predictive   context   effect   [Welch’s   t(1438)=29.84,   p<.001]   (Figure   5,   left   and   middle).   The  
best   parameter   set   found   in   the   grid   search   included   both   moderate   enhancement   (y-max=.4),   a  
moderate   suppressive   dip   (y-min=-.5,   dip   center=.2,   dip   width=.1),   and   a   moderate   discount  
(γ=.3)   (Figure   5,   right).  
 
We   compared   results   using   plasticity   functions   with   different   parameters.   We   observed   that   a  
broad   range   of   suppressive   dip   values   produced   low   search   costs.   However,   given   the   best  
suppressive   dip   parameter   value,   even   small   changes   to   the   enhancement   and   discount   (γ)  
parameters   resulted   in   rapidly   increasing   cost   (Figure   5).   Notably,   using   a   monotonic   weight  
updating   function   with   no   suppressive   dip   reduced   the   predictive   context   repetition   effect   and,  
interestingly,   induced   a   non-predictive   context   repetition   effect   not   observed   in   SHS   (2013).   Both  
the   predictive   and   non-predictive   context   repetition   effects   were   inversely   correlated   with   the  
magnitude   of   the   suppressive   dip   [Predictive:   Pearson’s   R=-.32,   p<.001;   non-predictive:  
Pearson’s   R=-.27,   p<.001],   with   the   optimal   suppression   parameter   (y-min=-.5)   resulting   in   a  
non-predictive   context   repetition   effect   close   to   zero.   
 
Importantly,   this   shows   that   non-monotonic   plasticity   plays   a   counterintuitive   but   critical   role   in  
context   enhancement.   NMP   prevents   generalization   of   an   item   to   non-predictive   contexts  
because   it   limits   associations   between   novel   items   and   previously   presented   contexts.  
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Figure   5.   SAMPL   simulates   item   repetition   and   context   repetition   effects.    (Top)   Simulation  
results   (left)   match   human   behavior   (middle)   reported   in   Smith,   Hasinsky,   Sederberg   (2013),   or  
SHS   (2013).   Repeating   an   item   A,   enhances   the   memorability   of   that   item   (IRE:   item   repetition  
effect).   Repeating   a   predictive   context   for   item   A,   i.e.,   a   context   that   immediately   preceded   item  
A ,    enhances   the   memorability   of   the   predicted   item   (P-CRE:   predictive   context   repetition   effect).  
Finally,   repeating   a   non-predictive   context   for   item   A,   i.e.,   a   context   that   was   previously  
presented   immediately   before   a   different   item,   B,   does   not   enhance   the   memorability   of   item   A  
(NP-CRE:   non-predictive   context   repetition   effect).   Optimal   plasticity   function   and   discount   ( γ )  
parameters   were   determined   by   grid   search   (right).   (Bottom)   The   fit   between   SAMPL   and  
human   behavior   changes   as   a   function   of   the   suppression,   enhancement,   and   discount   ( γ )  
parameters,   as   other   model   parameters   are   held   constant.   Lower   cost   values   (y   axis)   indicate   a  
better   fit   of   the   SAMPLE   behavior   to   SHS   (2013)   results.   The   red   dots   indicate   optimal  
parameters   found   by   grid   search.  
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Figure   6.   The   role   of   non-monotonic   plasticity   in   context   repetition   effects.    (Top)  
Removing   the   suppressive   dip   from   the   plasticity   function,   i.e.,   using   a   monotonic   weight  
updating   rule   (right)   reduced   the   predictive   context   repetition   effect   (left)   and,   interestingly,  
induced   a   non-predictive   context   repetition   effect   not   observed   in   human   behavior   in   SHS  
(2013).   (Bottom)     Both   the   predictive   and   non-predictive   context   repetition   effects   were   inversely  
correlated   with   the   magnitude   of   the   suppressive   dip.   Importantly,   this   shows   that   suppression  
prevents   generalization   to   non-predictive   contexts.   
 

Study   3:   Memory   synchronization   in   communicating  
agents  

Methods  
Memory   enhancement   and   forgetting   effects   including   retrieval-induced   forgetting   and   the  
context   repetition   effect   have   been   observed   in   studies   of   dyadic   as   well   as   multi-agent  
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conversation 10,12,13 .   We   assessed   whether   SAMPL   can   simulate   the   synchronization   of  
remembered   and   forgotten   items   in   conversational   networks 10,12 .   Before   testing   the   model   in   a  
network   of   multi-agent   simulations,   we   conducted   a   dyadic   agent-based   modeling   study.   This  
study   measured   the   effect   of   different   conversation   strategies   on   memory   similarity   across   two  
agents.   Because   the   focus   of   this   study   was   to   test   the   effect   of   different   conversation  
strategies,   a   single   non-monotonic   weight   updating   function   with   moderate   enhancement  
(y-max=.15),   a   small   suppressive   dip   (y-min=.025,   dip   center=.3,   dip   width=.4),   and   a   moderate  
discount   (γ=.3)   was   used.   Both   agents   were   given   the   same   vocabulary   by   assigning   the   same  
labels   to   their   graph   nodes.   This   vocabulary   contained   a   range   of   strongly   and   weakly  
associated   items.   As   in   Study   1,   to   ensure   realistic   word-to-word   associations,   edge   weights  
were   determined   by   taking   the   cosine   distance   between   words   in   a   word2vec   model 11    trained   on  
the   Google   News   corpus.   
 
We   operationalized   conversations   as   series   of   exchanges.   In   each   exchange   one   agent,  
designated    the   sender ,   selected   a   pair   of   words   to   be   activated   in   the   other   agent,   designated  
the   receiver.    The   word   selection   process   is   described   below.   This   activation   was   then   spread  
across   the   receiver’s   memory   network,   and   the   receiver’s   edge   weights   were   adjusted  
according   to   the   weight   updating   function.   The   process   was   then   repeated   with   the   sender   and  
receiver   roles   reversed,   so   each   agent   acted   as   both   sender   and   receiver   in   each   exchange.   
 
Mnemonic   convergence   (or   synchronization)   increases   when   the   agents’   memory   network  
graphs   become   more   similar   to   one   another,   as   measured   by   the   correlation   distance   between  
the   edge   weight   matrices   of   the   two   agents   after   every   exchange.   We   simulated   100  
conversations,   each   containing   50   exchanges,   supporting   the   calculation   of   a   mean   distance  
over   time   trajectory.   For   one   agent,   the   edge   weights   were   shuffled   at   the   start   of   each  
conversation,   ensuring   that   the   agents   had   different   but   comparable   memory   networks.  
 
We   compared   three   conversation   strategies   used   by   the   sender   to   select   a   word   pair.   For   the  
uniform    strategy,   both   words   were   selected   from   the   sender’s   vocabulary   uniformly   at   random  
without   replacement.   For   the    mean   in-degree    strategy,   the   mean   in-degrees   of   all   of   the   words  
in   the   sender’s   vocabulary   were   normalized   to   create   a   probability   distribution,   and   both   words  
were   selected   by   taking   random   draws   without   replacement   from   that   distribution.   In   the    paired  
associate    strategy,   the   first   word   was   selected   with   the   mean   in-degree   strategy,   and   the   second  
word   was   selected   from   the   associates   of   the   first   word.   That   is,   the   second   word   was   selected  
by   normalizing   the   outbound   edge   weights   from   the   first   word   to   create   a   probability   distribution  
and   taking   a   random   draw   from   that   distribution.   The   paired   associate   strategy   was   designed   to  
resemble   human   conversations,   where   related   words   tend   to   co-occur.  

Study   3   Simulation   Results  
We   found   that   changes   in   mnemonic   convergence   strongly   depended   on   conversation   strategy  
(Figure   7).   For   all   strategies,   the   initial   correlation   distance   between   the   agents’   edge   weight  
matrices   was   approximately   equal   [Uniform:   initial   distance=.98,   95%   CI   [.93,   1];   Mean  
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in-degree:   initial   distance=.99,   95%   CI[.96,   1.02];   Paired   associate:   initial   distance=.97,   95%   CI  
[.93,   1]].   Each   strategy   produced   different   convergence   behavior.   Uniform   selection   resulted   in  
no   change   in   correlation   distance   [Δ   distance=0,   final   distance=.98,   95%   CI[.97,   1.03]].   Mean  
in-degree   selection   resulted   in   some   reduction   in   distance   [Δ   distance=-.09,   final   distance=.9,  
95%   CI   [.87,   .93]]   that   was   greater   than   the   reduction   for   uniform   selection   [Welch’s  
t(198)=-.3.44,   p<.001].   Paired   associate   selection   resulted   in   a   large   increase   in   similarity,   or  
reduction   in   distance   [Δ   distance=-.79,   final   distance=.19,   95%   CI[.18,   .21]]   that   was   greater  
than   both   the   reduction   for   uniform   selection   [Welch’s   t(198)=-36.68,   p<.001]   and   for   mean  
in-degree   selection   [Welch’s   t(198)=-31.72,   p<.001].   
 
Notably,   in   agents   with   the   paired   associate   selection   strategy   the   initial   standard   deviation   of  
the   edge   weights   was   similar   to   the   final   standard   deviation   [initial   mean   std=.15;   final   mean  
std=.18].   This   indicates   that   the   observed   mnemonic   convergence   was   not   simply   convergence  
to   a   single   value,   and   was   not   the   result   of   floor   or   ceiling   effects.   Typical   initial   and   final   edge  
weight   matrices   are   visualized   in   Supplementary   Figures   2   and   3.   These   results   indicate   that  
SAMPL   is   sufficient   to   simulate   the   convergence   of   memory   in   communicating   agents,   but   only  
when   conversation   stays   “on   topic,”   consisting   of   exchanges   of   associated   words.  

 
Figure   7.   Memory   networks   become   more   similar   during   conversations.    We   used   SAMPL  
to   simulate   conversations   between   two   agents   with   different   memory   networks   drawn   from   the  
Google   News   corpus.   We   tested   how   three   different   conversation   strategies   affected   changes   in  
their   memory   similarity   as   a   function   of   their   conversations   over   time,   measured   using  
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correlation   distance.    Uniform   strategy :   For   every   round   of   conversation,   the   sender   selected   two  
words   randomly,   with   uniform   probability.   The   nodes   corresponding   to   these   words   were  
activated   in   the   receiver’s   memory   graph,   which   was   then   updated   by   SAMPL.    Mean   in-degree  
strategy :   Same   as   the   uniform   strategy,   except   instead   of   selecting   words   from   a   uniform  
distribution,   the   probability   distribution   for   selecting   words   was   weighted   by   the   mean   in-degree  
of   each   word.    Paired   associate   strategy :   In   this   strategy   the   first   word   was   selected   using   the  
mean   in-degree   strategy,   and   the   second   word   was   an   associate   of   the   first   word,   selected   with  
a   probability   proportional   to   the   strength   of   the   edge   weight   between   the   two   words.   Here  
correlation   distance   over   time   is   displayed   on   the   Y   axis   for   the   three   conversation   strategies  
over   the   course   of   50   exchanges.   Non-monotonic   plasticity   created   mnemonic   convergence  
when   agents   stay   “on   topic,”   i.e.,   when   they   exchanged   words   using   the   paired   associate  
strategy,   but   not   when   they   had   random   conversations.  

Study   4:   Social   networks   and   collective   memory  

Methods  
To   assess   whether   SAMPL   is   sufficient   to   simulate   collective   memory   effects   at   the   level   of  
multi-agent   networks,   we   conducted   an   agent-based   modeling   study   replicating   Coman,  
Momennejad,   Drach,   &   Geana   (2016) 10 ,   henceforth   CMDG   (2016).   In   the   study   phase   of   CMDG  
(2016),   participants   studied   four   facts   about   four   fictional   characters.   In   the   pre-conversational  
recall   test   phase,   participants   were   given   a   character   name   as   a   cue,   and   asked   to   recall   the  
studied   information.   In   the   conversational   recall   phase,   participants   were   split   into   10-member  
communities.   Each   participant   then   had   a   series   of   dyadic   conversations   with   partners   from   the  
same   community,   during   which   they   were   instructed   to   jointly   recall   the   studied   information.  
Each   community   was   either   assigned   to   a   clustered   condition   or   a   non-clustered   condition,  
determining   the   order   in   which   participants   conversed.   
 
In   the   clustered   condition,   the   network   structure   of   the   community   contained   two   subclusters  
with   a   moderate   global   clustering   coefficient   (C=0.4),   whereas   in   the   non-clustered   condition,  
the   network   structure   consisted   of   a   single   large   cluster   (C=0)   (Figure   8).   Finally,   in   the  
post-conversational   recall   phase,   participants   were   cued   with   character   names   and   asked   to  
recall   facts   about   each   character.   CMDG   (2016)   assessed   the   mnemonic   alignment   between  
every   pair   of   participants   in   each   community,   expressed   as   the   change   in   memory   similarity  
from   pre-   to   post-conversation.   They   found   that   mnemonic   alignment   was   higher   for   pairs   of  
participants   that   were   closer   to   each   other   in   the   social   network.   CMDG   (2016)   also   assessed  
mnemonic   convergence   across   entire   networks,   expressed   as   the   average   of   pairwise   memory  
similarity   scores   within   each   community.   The   results   showed   slightly   increased   convergence   in  
the   non-clustered   network   both   pre-   and   post-conversation.  
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Figure   8.   Design   schematic   for   collective   memory   study.    In   Coman,   Momennejad,   Drach,  
Geana   (2016),   or   CMDG   (2016),   participants   first   studied   memory   material   and   took   a   memory  
recall   test   (Phase   1).   Then   they   each   had   3   sequential   conversations   with   others,   determined   by  
one   of   two   social   network   graphs,   clustered   or   non-clustered,   each   with   10   participants   (Phase  
2).   Finally,   they   took   a   memory   recall   test   (Phase   3).   Comparing   memory   similarity,   i.e.,  
correlation,   before   and   after   the   conversations   revealed   the   effect   of   conversation   on   mnemonic  
convergence.   In   our   simulation   of   this   study,   SAMPL   agents   were   initialized   with   a   memory  
network   containing   20   nodes,   corresponding   to   four   characters   and   four   facts   about   those  
characters,   as   in   CMDG   (2016).   (Left)     In   phase   1,   individual   study   was   simulated   by   randomly  
selecting   and   sequentially   activating   half   of   the   node   pairs   in   each   agent’s   network,   and  
applying   SMPL.   This   ensured   that   each   agent   had   memory   for   some,   but   not   all   facts   about   the  
characters.   (Center)   In   phase   2,   pairs   of   agents   (represented   by   black   circles)   conversed   in   an  
order   dictated   by   whether   they   were   in   the   clustered   or   non-clustered   network   condition   (order  
shown   in   red   numbers).   Conversational   exchange   proceeded   using   the   paired-associate  
strategy   and   SAMPL.   (Right)     In   phase   3,   the   recall   test   was   simulated   by   averaging   pairwise  
correlations   between   the   final   memory   networks   of   the   agents.  
 
 
We   simulated   the   collective   memory   paradigm   of   CMDG   (2016)   using   an   agent-based   modeling  
approach   similar   to   that   of   Study   3.   Agents   were   initialized   with   a   memory   network   containing   20  
nodes,   corresponding   to   four   characters   and   four   facts   per   character.   Because   participants   in  
CMDG   (2016)   began   with   no   knowledge   of   the   fictional   characters,   all   edge   weights   in   the  
agents’   memory   graphs   were   initially   set   to   zero.   
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The   study   and   pre-conversational   recall   phases   were   simulated   by   a   single   study   phase,  
designed   to   provide   each   agent   with   memory   for   some,   but   not   all,   facts   about   the   characters,  
and   to   ensure   that   each   agent   remembered   a   different   set   of   facts.   For   each   agent,   half   of   the  
character-fact   node   pairs   were   randomly   selected,   then   each   pair   was   activated   in   series,  
causing   non-monotonic   reweighting   of   the   agent’s   memory   graph.   
 
The   conversational   recall   phase   was   simulated   first   by   selecting   pairs   of   agents   in   the   order  
described   in   Figure   8,   then   by   simulating   a   conversation   between   those   agents   using   the  
paired-associate   strategy   as   described   in   Study   3   above.   Each   conversation   consisted   of   100  
paired-associate   exchanges,   including   non-monotonic   adjustment   of   each   agent’s   edge   weight  
matrix.   The   agent   architecture   was   elaborated   to   account   for   the   episodic   nature   of   the  
conversation   paradigm.   At   the   beginning   of   each   conversation,   the   agent’s   memory   graph   was  
copied,   and   changes   during   that   conversational   episode   were   applied   only   to   the   copy.   At   the  
end   of   each   conversation,   the   original   memory   graph   was   replaced   by   a   linear   interpolation  
between   the   original   graph   and   the   copy,   with   a   learning   rate   parameter   controlling   the   amount  
of   interpolation   (from   0%   to   100%).   
 
To   simulate   the   post-conversational   recall   phase,   the   correlation   between   the   edge   weight  
matrices   of   a   pair   of   agents   was   used   to   measure   memory   similarity.   This   memory   similarity  
measure   was   used   to   measure   mnemonic   alignment   and   mnemonic   converge   analogously   to  
CMDG   (2016).   However,   because   we   directly   measured   agents’   edge   weight   matrices   rather  
than   testing   remembered   and   forgotten   items,   our   results   use   different   units   and   are   on   a  
different   scale.  
 
We   used   a   simple   grid   search   to   find   model   parameters   that   best   reproduced   the   main   findings  
of   CMDG   (2016).   The   cost   of   each   simulation   at   each   point   on   the   parameter   grid   was   a  
weighted   average   of   four   values:   the   absolute   error   of   the   proportion-adjusted   mnemonic  
convergence   results,   the   absolute   error   of   the   proportion-adjusted   mnemonic   alignment   results,  
the   absolute   error   of   the   effect   of   network   hops   on   alignment,   and   one   minus   the   signed  
alignment   value   at   one   network   hop.   The   first   two   values   were   proportion   adjusted   because   our  
operationalization   of   convergence   and   alignment   produced   results   on   a   different   scale   than   the  
behavioral   results,   as   described   above.   The   fourth   value,   one   minus   signed   alignment,   was  
included   for   the   same   reason.   The   weights   for   these   values   were   1,   3,   2,   and   3,   respectively,  
prioritizing   results   that   matched   the   alignment   finding   of   CMDG   (2016)   even   if   they   differed  
slightly   in   absolute   terms.  

Study   4   Simulation   Results  
The   model   reproduced   the   main   findings   of   CMDG   (2016):   Mnemonic   convergence   was   higher  
post-conversation   than   pre-conversation   [Clustered:   t(158)=59.85,   p<.001;   Non-clustered:  
t(158)=82.87,   p<.001],   and   post-conversation   convergence   was   slightly   higher   in   the  
non-clustered   condition   [t(78)=3.12,   p=.002]   (Figure   9,   top).   Simple   linear   regression   confirmed  
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that   mnemonic   alignment   decreased   with   network   distance   both   in   the   clustered   condition   [F(1,  
3598)=1198,   adj.   R 2 =.25,   β distance =-.11,   p<.001]   and   the   non-clustered   condition   [F(1,  
3598)=496.8,   adj.   R 2 =.12,   β distance =-.14,   p<.001]   (Figure   9,   bottom).   The   best   parameter   set  
found   in   the   grid   search   included   moderate   enhancement   (y-max=.5),   a   relatively   large  
suppressive   dip   (y-min=-.8,   dip   center=.3,   dip   width=.4),   a   moderate   discount   (γ=.5),   and   a  
maximal   learning   rate   (learning   rate=1.0)   (Figure   9).  
 
 

 

 
Figure   9.   Agent-based   modeling   with   SAMPL   simulates   memory   convergence   in   social  
networks.    (Top   and   middle)     SAMPL   simulation   results   (blue)   matched   human   behavior   from  
CMDG   (2016)   (orange).   Mnemonic   convergence   was   higher   post-conversation,   and  
post-conversational   convergence   was   slightly   higher   in   the   non-clustered   condition.   Mnemonic  
alignment   between   two   agents   decreased   with   their   degree   of   separation   in   the   social   network  
graph.   (Bottom)     The   fit   between   SAMPL   and   human   results   changes   as   a   function   of   the  
suppression,   enhancement,   discount   ( γ ),   and   learning   rate   parameters,   as   other   model  
parameters   are   held   constant.   Lower   cost   values   (Y   axis)   indicates   a   better   fit   of   SAMPL   to  
CMDG   (2016)   results.   Red   dots   indicate   optimal   parameters   found   by   grid   search.  

21  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 23, 2019. ; https://doi.org/10.1101/778563doi: bioRxiv preprint 

https://doi.org/10.1101/778563
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
 
Given   relative   strong   suppression,   a   range   of   enhancement   values   produced   low   search   cost,  
but   small   changes   to   the   discount   (γ)   parameter   resulted   in   increased   cost   (Figure   9).   This  
suggests   that   small   changes   in   how   activation   propagates   through   individual   memory   graphs  
has   an   effect   on   memory   synchronization   at   the   social   network   level.   In   particular,   when   the  
discount   (γ)   or   suppression   parameters   were   decreased,   causing   activation   to   propagate  
greater   distances   within   individual   memory   graphs,   then   the   simulation   produced   results  
diverging   from   the   human   results   of   CMDG   (2016).   
 
Importantly,   using   a   monotonic   weight   updating   function   with   no   suppressive   dip   nullified   the  
difference   in   convergence   between   the   clustered   and   non-clustered   conditions   [t(158)=1.23,  
p=.22],   as   well   as   the   effect   of   social   network   distance   on   alignment   in   both   the   clustered  
condition   [F(1,   3598)=2.39,   adj.   R 2 =0,   β distance =0,   p=.12]   and   the   non-clustered   condition   [F(1,  
3598)=3.77,   adj.   R 2 =0,   β distance =0,   p=.05]   (Figure   10).   This   suggests   non-monotonic   plasticity  
plays   an   important   role   in   the   formation   of   collective   memory.  
 

 
Figure   10.   Monotonic   plasticity   cannot   simulate   empirical   findings   on   mnemonic  
convergence.    Using   a   monotonic   weight   updating   function   with   no   suppressive   dip,   instead   of  
NMP,   nullified   both   the   observed   difference   in   memory   convergence   between   clustered   and  
non-clustered   conversational   networks,   as   well   as   the   overall   effect   of   degree   of   separation  
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between   two   agents   on   memory   alignment.   This   shows   that   SAMPL   requires   a   non-monotonic  
plasticity   rule   to   simulate   CMDG   (2016).  

Discussion  
We   propose   SAMPL,   the   Spreading   Activation   and   Memory   PLasticity   Model.   SAMPL   is   a  
graph-based   model   of   how   memory   retrieval   changes   what   will   be   remembered   in   the   future.  
SAMPL   combines   two   simple   rules:   a   propagation   rule   for   spreading   activation   in   memory  
networks,   and   a   plasticity   rule   for   updating   associations   between   memories.   We   hypothesized  
that   spreading   activation   and   non-monotonic   plasticity   would   be   sufficient   to   account   for  
seemingly   contradictory   memory   enhancement   and   forgetting   phenomena.   Confirming   this  
hypothesis,   we   show   that   SAMPL   simulates   context-based   memory   enhancement 8    and  
retrieval-induced   forgetting    9,14 .   Further,   simultaneous   support   for   enhancement   and   forgetting  
allows   SAMPL   to   simulate   the   synchronization   of   memory   in   conversational   dyads   and   in  
multi-person   conversational   networks. 9   
 
Our   second   hypothesis   was   that   the   memory   update   rule   must   have   a   non-monotonic   shape.  
That   is,   while   low   activation   would   not   lead   to   change,   moderate   activation   would   lead   to  
weakening   of   associations   between   memories,   and   high   activation   would   lead   to   strengthening  
of   associations.   To   test   this,   we   used   a   grid   search   to   find   the   best   fitting   parameters   for   the  
update   rule.   This   allowed   us   to   compare   the   performance   of   update   rules   with   and   without   a  
suppressive   dip   for   retrieval-induced   forgetting   (Figure   4),   the   context   repetition   effect   (Figure  
6),   and   memory   convergence   in   social   networks   (Figure   10).   Confirming   our   hypothesis,   we  
found   that   a   non-monotonic   "dip"   in   the   plasticity   curve   was   required   to   reproduce   human  
results.   Conversely,   plasticity   rules   with   no   dip   led   to   results   that   did   not   fit   human   behavior.   
 
Importantly,   SAMPL   reveals   that   non-monotonic   plasticity   plays   a   counterintuitive   but   crucial   role  
in   context-based   enhancement.   We   found   that   non-monotonic   plasticity   prevented  
generalization   of   an   item   to   a   non-predictive   context.   This   is   because   NMP   suppresses   the  
association   between   novel   items   and   previously   presented   contexts,   in   line   with   human  
behavioral   findings   in   non-predictive   context   repetition   studies 2    (Figure   6).   This   finding   has  
implications   for   understanding   the   role   of   memory   processes   in   adaptive   and   maladaptive  
generalization,   in   both   health   and   disease.   It   also   informs   the   design   of   novel   experimental  
paradigms   to   study   generalization   and   test   SAMPL   predictions.   In   the   long-run,   we   expect   that  
SAMPL   will   help   simulate   computational   interventions   designed   to   correct   maladaptive  
generalization.  
 
Relationship   to   existing   memory   models.    In   the   past   two   decades,   two   groups   of   different   but  
related   models   have   been   proposed   to   capture   memory   enhancement   and   forgetting  
phenomena.   All   of   these   models   capture   the   enhancement   of   directly   retrieved,   or   practiced,  
items.   However,   retrieval   also   induces   changes   in   the   memory   of   related   items   that   are,  
importantly,   unpracticed.   While   one   group   of   models   focuses   on   capturing   the   forgetting   of   these  
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related   items,   another   group   focuses   on   the   enhancement   of   related   or   predictive   items.   Our  
simulations   capture   both   of   these   behaviors   using   simple   propagation   and   plasticity   rules.  

 
The   first   group   of   models   focuses   on   explaining   forgetting   of   related   unpracticed   items.  
Non-monotonic   plasticity   alone   predicts   enhancement   and   weakening   of   associations  
depending   on   activation   levels,   but   does   not   in   itself   specify   how   those   activations   propagate  
and   change   across   memory   networks.   This   requires   specifying   what   items   are   in   memory   and  
the   strengths   of   associations   between   them.   SAMPL,   the   Spreading   Activation   and   Memory  
PLasticity   Model,   addresses   this   limitation   by   combining   a   non-monotonic   update   rule   and   a  
spreading   activation   rule,   both   of   which   are   applied   to   realistic   memory   networks,   such   as   those  
derived   from   a   large   corpus   of   human   data.   Furthermore,   previous   studies   have   suggested   that  
the   NMPH   explains   retrieval-induced   forgetting,   but   have   not   directly   investigated   enhancement  
of   related   but   unpracticed   items.   Our   results   show   that   spreading   activation   and   non-monotonic  
plasticity   as   implemented   in   SAMPL   are   sufficient   to   produce   both   forgetting   and   enhancement  
of   related   unpracticed   items,   providing   a   unified   account   of   memory   change.   
 
Fitting   the   parameters   of   SAMPL   to   observed   human   behavior   allows   us   to   both   estimate   the  
optimal   shape   of   the   plasticity   function   and   to   track   changes   in   each   item’s   activation   over   time.  
As   such,   SAMPL   predicts   both   enhancement   and   forgetting   across   a   wide   range   of   tasks.  
 
Another   model   for   explaining   retrieval-induced   forgetting   is   a   neural   network   model   that  
implements   an   oscillating   inhibition   mechanism 3 .   An   advantage   of   this   model   is   that   it   is  
mechanistic   and   biologically   plausible.   However,   compared   to   SAMPL,   its   implementation   is  
computationally   expensive.   In   comparison,   SAMPL   operates   on   a   higher   level   of   abstraction,   it  
does   not   require   manual   fitting   of   experimental   items   in   the   model,   remains   agnostic   about   how  
items   are   represented,   and   does   not   require   a   separate   context   element   to   explain   context  
effects.   Therefore,   it   can   be   easily   adapted   to   a   wide   range   of   tasks   and   can   predict   behavior   in  
larger   networks   at   lower   computational   cost.  
 
A   second   group   of   memory   models   focuses   on   memory   enhancement   due   to   associative   and  
predictive   relations   among   items.   This   includes   models   of   association   learning   such   as   the  
successor   representation 8,5 ,   the   Temporal   Context   Model 15 ,   the   Context   Maintenance   and  
Retrieval   model 16 ,   and   complementary   learning   systems   for   statistical   learning 17 .   A   series   of  
recent   empirical   studies   suggest   the   successor   representation   as   a   unifying   principle   for   neural  
representations   in   memory   organization   and   generalization   at   multiple   scales 6,7,18,19 .   The  
memory   enhancement   study   of   context   repetition   effects   simulated   in   the   present   paper  
suggests   the   successor   representation   as   a   potential   account   of   their   findings 2 .   Furthermore,   it  
has   been   shown   that   the   temporal   context   model   (TCM) 15    is   a   special   case   of   the   successor  
representation,   offering   simple   update   principles   for   organization   of   and   generalization   across  
memory   networks 5 .   The   Context   Maintenance   and   Retrieval   model   (CMR)   has   been   proposed  
as   a   generalization   of   TCM,   separately   accounting   for   semantic   clustering   (due   to   long-standing  
semantic   associations)   and   temporal   associations   (due   to   study   episodes) 16 .   Note   that   both   of  
CMR’s   contributions   are   accounted   for   in   SAMPL:   semantic   clustering   is   captured   by   the   graph  
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structure   of   the   memory   network,   and   temporal   associations   during   an   experiment   are   learned  
via   sequential   activation   of   study   and   practice   items.   Because   these   models   are   mathematically  
related 5,15,16 ,   here   we   discuss   them   in   relation   to   one   another.   
 
Similarities   among   these   models   suggest   that   a   unifying   principle   of   memory   representation   and  
updating   could   parsimoniously   explain   the   phenomena   they   capture.   One   proposal   is   that   the  
successor   representation   might   offer   a   unifying   computational   principle. 5    However,   while   some  
models   combine   the   successor   representation   with   principles   such   as   prioritized   offline   replay  
(SR-Dyna 6,18 ),   the   successor   representation   does   not   by   itself   constrain   how   sequential  
activation,   memory   search,   and   updating   occur 19 .   What   is   needed   is   a   model   that  
simultaneously   offers   principles   for   representation   learning,   memory   search   and   retrieval,   and  
memory   update   rules.   Future   modeling   work   is   required   for   a   direct   mathematical   comparison   of  
these   models.   
 
SAMPL’s   propagation   is   similar   to   the   learning   of   the   successor   representation:   both   capture  
multi-step   dependencies   on   a   graph   of   association   states,   and   this   can   be   done   by   multiplying   a  
matrix   of   association   strengths   by   itself   and   scaled   by   a   discount   factor.   SAMPL   and   SR   differ   in  
two   ways.   First,   SAMPL   implements   a   non-monotonic   update   rule   while   SR   updates   based   on  
increases   in   predictivity.   Second,   SAMPL   constrains   multi-step   dependencies   by   preventing  
loops   in   the   spread   of   activation.   
 
SAMPL   is   related   to   context-based   models   such   as   TCM   and   CMR   in   two   ways.   First,   SAMPL  
captures   temporal   context:   items   that   are   activated   and   updated   together   serve   as   contexts   for  
each   other   during   future   episodes.   Because   non-monotonic   edge   reweighting   carries   these  
updates   forward   in   time,   we   anticipate   SAMPL   could   simulate   studies   of   temporal   contiguity 20,21  
effects 22,23    that   are   explained   by   TCM   using   sequential   updating,   as   well   as   the   successor  
representation 5 .   Second,   SAMPL   captures   semantic   context:   long-standing   consolidated  
semantic   associations   are   currently   captured   in   edge   weights   that   are   determined   using   an  
independent   corpus   of   data.   This   is   comparable   to   the   semantic   clustering   captured   by   CMR.  
SAMPL   differs   from   context-based   models   in   making   the   simplifying   assumption   that   everything  
is   an   item:   context   is   not   modeled   as   a   special   and   separate   entity.   Instead,   context  
relationships   are   captured   within   SAMPL’s   network   relations   and   the   temporal   succession   of   a  
task’s   episodes.  
 
Relationship   to   brain   function.     We   have   shown   that   SAMPL,   the   Spreading   Activation   and  
Memory   PLasticity   Model,   captures   a   range   of   human   memory   behaviors,   but   we   have   not   yet  
shown   how   it   may   be   implemented   in   the   brain.     To   do   so,   we   will   first   summarize   related   neural  
findings   and   how   SAMPL   corresponds   to   them.   Neuroimaging   and   electrophysiological   studies  
indicate   that   the   hippocampus   and   prefrontal   cortex   (PFC)   are    the   main   components   of   the  
learning   and   memory   network 24 ,   and   that   long-term   and   semantic   memory   networks   are  
represented   across   the   neocortex 25,26 .   Broadly   speaking,   a   neural   SAMPL   would   correspond   to  
hippocampal   and   prefrontal   processes.   
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Furthermore,   it   has   been   shown   that   the   representations   in   the   posterior   hippocampus  
(analogous   to   dorsal   hippocampus   in   rodents 27 )   are   at   finer   spatial,   temporal,   and   predictive  
scales,   while   the   anterior   hippocampus   represents   dependencies   at   larger   scales,   allowing   it   to  
play   a   role   in   inference   and   abstraction 19,28–30 .   Compared   to   the   anterior   hippocampus,   the  
prefrontal   cortex   may   support   even   larger   scales   of   abstraction,   representing   longer   predictive  
horizons,   enabling   prospective   memory,   and   inference   over   more   distant   associations 31–35 .  
Though   the   present   version   of   SAMPL   does   not   represent   hierarchically   organized   networks   at  
different   scales   of   abstraction,   applying   different   SAMPL   parameters   could   simulate   neural  
representations   at   different   scales.   
 
Assuming   the   brain   implements   the   model,   then   SAMPL’s   memory   network   component   may   be  
learned   via   hippocampal-prefrontal   interactions   and   consolidated   and   stored   in   long-term  
memory   throughout   the   neocortex 36 .   Furthermore,   since   different   brain   regions   support  
predictive   representations   at   different   scales,   it   is   possible   that   the   spread   of   activation  
discussed   in   the   model   reaches   more   distant   memories   in   some   brain   regions   compared   to  
others.   In   the   present   model,   spreading   activation   to   more   distant   items   in   the   memory   network  
requires   a   lower   discount   factor.   An   important   future   direction   is   extending   the   model   to   capture  
the   hierarchical   organization   of   memory   representations   in   the   brain.   
 
Neuroimaging   studies   often   use   representational   similarity   between   two   items   as   a   proxy   for   the  
strength   of   association   between   those   items 37–42 .    For   instance,   say   item   A   is   retrieved   and   the  
subsequent   spread   of   activation   reaches   a   distal   item   G.   A   region   with   a   large   associative   scale  
may    show   a   high   activation   of   G   representations,   in   which   case   a   non-monotonic   plasticity  
update   rule   would   increase   the   similarity   between   the   representations   of   A   and   G.   This   is   known  
as   integration 4,14,40,43–46 ,   generalization,   or   overlap 47 .   Generalization   can   occur   over   short  
time-scales   (during   the   experiment)   and   long   time   scales   (after   overnight   consolidation).   On   the  
other   hand,   a   region   with   a   smaller   associative   scale   may   only   show   moderate   activation   of   G,  
in   which   case   non-monotonic   plasticity   would   lead   to   a   decrease   in   A-G   similarity.   This   is   known  
as   separation 4,46 .   In   regions   with   small   enough   scales   where   there   is   no   G   activation   at   all,   the  
A-G   connection   remains   unchanged.   
 
By   fitting   the   discount   factor   and   plasticity   function   to   data   collected   from   different   brain   regions,  
it   may   be   possible   to   estimate   the   associative   scale   of   each   region   within   and   across   brains.  
This   may   also   allow   us   to   explain   seemingly   contradictory   findings   showing   that   retrieval  
practice   sometimes   leads   to   integration   and   sometimes   separation   in   the   same   brain   region,   for  
instance   the   anterior   hippocampus.   Let   us   assume   that   anterior   hippocampus   is   a   region   in  
which   activation   can   spread   from   X   to   Y.   Given   non-monotonic   plasticity,   X-Y   integration   takes  
place   when   Y   is   highly   activated   and   separation   takes   place   when   Y   is   moderately   activated.  
Therefore,   the   differences   in   integration   and   separation   in   the   same   region   across   studies   might  
be   due   to   different   network   relationships   between   X   and   Y:   either   different   distances,   strength   of  
connections   between   X   and   Y,   or   a   combination   thereof.   
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In   short,   the    associative    scale   of   a   given   region   determines   whether   and   to   what   extent   the  
spread   of   activation   from   retrieving   one   item   activates   another   item.   Non-monotonic   plasticity  
can   then   explain   why   the   same   brain   region   can   sometimes   show   integration   and   sometimes  
separation.   Future   research   is   required   to   identify   how   the   associative   scale   of   different   brain  
regions   relates   to   differences   in   parameters   governing   spread   of   activation   and   non-monotonic  
plasticity.   
 
Here   we   have   shown   that   non-monotonic   plasticity   always   produced   more   human-like   behavior  
than   monotonic   plasticity.   However,   both   the   optimal   discount   parameter   and   the   optimal   shape  
of   the   non-monotonic   plasticity   function   differed   for   each   study.   This   may   be   because   different  
tasks   demand   different   scales   of   memory   organization.   Earlier   we   discussed   how   different   brain  
regions   operate   at   different   scales   of   the   memory   hierarchy.   Furthermore,   it   has   been   suggested  
that   the   strength   of   inhibition   and   sparseness   of   representation   in   a   brain   region   may   determine  
the   shape   of   NMP   in   that   region 4 .   For   instance,   hippocampal   subregions   with   sparser   activity  
and   higher   inhibition   (CA3/DG)   show   separation   and   differentiation,   and   are   hypothesized   to  
have   a   different   NMP   shape   from   subregions   with   less   sparse   activity   that   show   integration  
(CA1) 4,17 .   Furthermore,   different   discount   factors   (for   a   decaying   spread   of   activation)   and   NMP  
shapes   may   be   optimal   for   different   real-world   tasks,   contexts,   and   goals.   A   previous   study  
using   functional   magnetic   resonance   imaging   (fMRI)   has   shown   that   the   suppressive   dip   of   the  
weight   updating   function   can   be   captured   at   the   level   of   the   BOLD   signal. 48   
 
Careful   future   experimentation   is   required   to   determine   how   memory   plasticity   changes   as   a  
function   of   task   demands,   contexts,   goals,   and   individual   differences.   Extensions   of   the   model   to  
offline   replay   processes   can   serve   to   more   precisely   quantify   the   range   and   sequence   of  
replayed   events   and   sampling   across   brain   regions   during   memory   retrieval.   
 
Other   embeddings   for   memory   graphs.    The   memory   networks   in   the   simulations   were  
constructed   by   extracting   semantic   embeddings   via   word2vec   from   the   Google   News   Corpus 11 .  
We   initialized   memory   networks,   graphs   of   items   with   weighted   associations,   based   on   the  
items   used   in   the   design   of   each   human   experiment.   However,   it   is   unclear   whether   word2vec   is  
the   most   plausible   proxy   for   a   network   of   memory   associations.   For   instance,   the   current  
embedding   is   bidirectional   while   real   world   associations   can   sometimes   be   asymmetrical.  
Furthermore,   the   word2vec   method   is   suboptimal   for   capturing   conditional   or   hierarchical  
relationships,   such   as   those   represented   in   prefrontal-hippocampal   networks.   Therefore,   future  
research   is   required   to   implement   and   test   more   sophisticated   embeddings,   such   as   multi-scale  
successor   representations 19 ,   Glove 49 ,   BERT 50 ,   ELMO 51 ,   or   other   bidirectional   word   embedding  
and   neural   NLP   (Natural   Language   Processing)   methods 52 .   
 
Applications   in   computational   psychiatry.    SAMPL   could   provide   a   computational   framework  
for   understanding   maladaptive   memory   function   in   psychiatric   disorders,   such   as   post   traumatic  
stress   disorder   (PTSD) 53 .   The   model   can   be   used   to   understand   common   symptoms   of   such  
disorders   and   design   interventions.   For   instance,   it   may   provide   a   process-based   understanding  
of   overgeneralization 54    and   flashbacks 55 .   It   may   also   help   identify   network   properties   underlying  
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the   over-accessibility   of   intrusive   memories.   For   instance,   this   could   be   done   by   constructing   a  
semantic   embedding   model   and   corresponding   memory   network   from   transcripts   of   a   patient’s  
therapy   sessions   or   diaries,   focusing   on   the   connections   between   neutral   memories   and  
intrusive   target   words.   In   conjunction   with   SAMPL,   this   information   could   help   design  
computationally   assisted   interventions,   such   as   targeted   “forgetting   attacks”   designed   to  
diminish   the   accessibility   of   memory   subnetworks   that   are   activated   during   undesirable   intrusive  
thoughts.   For   instance,   it   would   be   possible   to   determine   which   series   of   memory   items   need   to  
be   activated   in   order   to   diminish   the   reachability,   or   alter   the   communicability   distance 56 ,   of   a  
particular   memory   node   or   subgraph   within   the   memory   network.   
 
Summary.    We   present   SAMPL,   a   simple   model   of   memory   using   spreading   activation   and  
non-monotonic   plasticity.   SAMPL   simulates   the   results   of   a   series   of   human   experiments   on  
retrieval-induced   forgetting,   memory   enhancement   due   to   item   and   context   repetition,   and  
synchronization   of   memory   across   conversational   networks   with   different   structures.   Importantly,  
we   find   that   the   suppressive   dip   of   the   non-monotonic   plasticity   function   is   required   for   capturing  
human   behavioral   findings.   The   model   offers   a   simple   but   powerful   framework,   unifying  
seemingly   contradictory   accounts   of   memory.   
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Supplementary   Materials  

Supplementary   Table   1.   Study   1   categories   and   exemplars  

Category  Exemplars  

Fruit  orange,   nectarine,   pineapple,   banana,   cantaloupe,   lemon  

Leather  saddle,   gloves,   wallet,   shoes,   belt,   purse  

Tree  palm,   hickory,   willow,   poplar,   sequoia,   ash  

Profession  tailor,   florist,   farmer,   critic,   grocer,   clerk  

Drink  bourbon,   scotch,   tequila,   brandy,   gin,   rum  

Hobby  gardening,   coins,   stamps,   ceramics,   biking,   drawing  

Metal  chrome,   platinum,   magnesium,   mercury,   pewter,   tungsten  

Weapon  hammer,   fist,   lance,   rock,   arrow,   dagger  
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Supplementary   Table   2.   Grid   search   details  

 Study   1,   ABB   (1994)  Study   2,   SHS   (2013)  Study   4,   CMDG  

(2016)  

#   simulations   per  
parameter   set  

1   (no   randomness)  30  20  

Suppression  
(y-minimum)  

-.75,   -.5,   -.4,   -.3,   -.2,  
-.1,   -.05,   -.025,   -.01,  
0  

1.0,   .8,   .6,   .5,   .4,   .3,   .2,  

.1,   0  

1.0,   .8,   .6,   .5,   .4,   .3,   .2,  

.1,   0  

Enhancement  
(y-maximum)  

.75,   .5,   .4,   .3,   .2,   .1,  

.05,   .025,   .01,   0  
-1.0,   -.8,   -.6,   -.5,   -.4,  

-.3,   -.2,   -.1,   0  

-1.0,   -.8,   -.6,   -.5,   -.4,  

-.3,   -.2,   -.1,   0  

Dip   center  .05,   .1,   .15,   .2,   .25,  
.3,   .35,   .4  

.1,   .2,   .3,   .4,   .5  .1,   .2,   .3,   .4,   .5  

Dip   width  .05,   .1,   .15,   .2,   .25,  
.3,   .35,   .4  

.1,   .2,   .3,   .4,   .5  .1,   .2,   .3,   .4,   .5  

Discount   (γ)  .1,   .2,   .3,   .4,   .5,   .75,  
.9  

.1,   .2,   .3,   .4,   .5,   .7,   .9  .1,   .2,   .3,   .4,   .5,   .7,   .9  

Learning   rate  N/A  N/A  .2,   .4,   .6,   .8,   1.0  
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Supplementary   Figure   1.   A   schematic   of   a   retrieval   induced   forgetting   (RIF)   experiment.  
Let   us   assume   a   simple   memory   network   with   two   unconnected   clusters:   the   dinner   cluster   with  
sushi   and   kebob   as   items,   and   the   comics   cluster,   with   black   panther   and   jessica   jones.   Initially,  
let   us   assume   that   the   retrieval   for   all   items   is   equal,   e.g.,   50%.   When   sushi   is   activated,   the  
strength   of   association   between   dinner   and   sushi   increases.   Therefore,   sushi   becomes  
memorable   (from   50%   to   70%).   On   the   other   hand,   the   weight   of   association   with,   and   hence  
the   memorability   of,   a   related   but   unpracticed   item,   Kebob,   drops   (from   50%   to   40%).   Note   that  
the   comics   cluster   is   not   activated   at   all,   and   hence   the   memorability   for   Black   Panther   and  
Jessica   Jones   remain   at   50%.  
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Supplementary   Figure   2.   The   initial   state   of   the   memory   network   for   simulation.    We  
constructed   a   memory   network,   displayed   as   a   matrix   of   weights   between   pairs   of   items,   based  
on   the   distances   of   the   items   in   a   word2vec   embedding   of   Google   news.   Before   the   simulation,  
initial   edge   weights   between   every   pair   of   items   or   exemplars   were   determined   by   word2vec  
cosine   distances,   and   labeled   by   category.   For   a   complete   list   of   exemplars   per   category,   see  
Supplementary   Materials.  
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Supplementary   Figure   3.   The   final   state   of   the   memory   network   after   simulation.  
Categorical   relationships   were   maintained,   and   the   largest   weight   changes   were   between   items  
and   their   category   labels.  
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Supplementary   Figure   3.   Memory   network   graphs   before   and   after   conversations.    Typical  
edge   weight   matrices   for   both   sender   and   receiver   agents   before   conversation   (top)   and   after  
conversation   (bottom)   are   displayed.   These   simulation   results   are   obtained   when   the   sender  
agent   selected   words   using   the   paired   associate   strategy.  
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