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Summary 

Mortality from breast cancer is almost exclusively a result of tumor metastasis, and lungs are 
one of the main metastatic sites. Cancer-associated fibroblasts (CAFs) are prominent players 
in the microenvironment of breast cancer. However, their role in the metastatic niche is 
largely unknown. In this study, we profiled the transcriptional co-evolution of lung fibroblasts 
isolated from transgenic mice at defined stage-specific time points of metastases formation. 
Employing multiple knowledge-based platforms of data analysis provided powerful insights 
on functional and temporal regulation of the transcriptome of fibroblasts. We demonstrate 
that fibroblasts in lung metastases are transcriptionally dynamic and plastic, and reveal 
stage-specific gene signatures that imply functional tasks, including extracellular matrix 
remodeling, stress response and shaping the inflammatory microenvironment. Furthermore, 
we identified Myc as a central regulator of fibroblast rewiring and found that stromal 
upregulation of Myc transcriptional networks is associated with worse survival in human 
breast cancer.  
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Introduction 

Breast cancer continues to be one of the leading causes of cancer related death in women, 
and mortality is almost exclusively a result of tumor metastasis. Advanced metastatic 
cancers are mostly incurable and available therapies generally prolong life to a limited extent. 
It is increasingly appreciated that in addition to tumor cell-intrinsic survival and growth 
programs, the microenvironment is crucial in supporting metastases formation (Erez and 
Coussens, 2011; Obenauf and Massague, 2015; Quail and Joyce, 2013). Nevertheless, 
while years of research have revealed the central role of the microenvironment in supporting 
tumor growth and response to therapy at the primary tumor site (Albini et al., 2018; Hanahan 
and Coussens, 2012; Quail and Joyce, 2013), the role of the metastatic microenvironment 
and the molecular crosstalk between stromal cells, including fibroblasts and immune cells at 
the metastatic niche are poorly characterized.   

Preparation of secondary sites to facilitate subsequent tumor cell colonization has been 
described for multiple cancers (Peinado et al., 2017). Secreted factors and extracellular 
vesicles from tumor and stromal cells were reported to instigate a permissive pre-metastatic 
niche by influencing the recruitment and activation of immune cells (Coffelt et al., 2015; Deng 
et al., 2012; Peinado et al., 2011; Qian et al., 2011; Quail et al., 2017), and by modifying the 
composition of the extracellular matrix (ECM) (Erler et al., 2009; Malanchi et al., 2012; 
Nielsen et al., 2016; Oskarsson et al., 2011; Oskarsson and Massague, 2012). Each 
metastatic microenvironment exerts specific functions that support or oppose colonization by 
disseminated tumor cells (Nguyen et al., 2009; Peinado et al., 2017). Therefore, 
understanding distinct organ-specific mechanisms that enable metastatic growth is of crucial 
importance. 

Lungs are one of the most common sites of breast cancer metastasis. Various immune cell 
populations were shown to be functionally important in facilitating breast cancer pulmonary 
metastasis (Albrengues et al., 2018; Coffelt et al., 2015; DeNardo et al., 2009; Fridlender et 
al., 2015; Jablonska et al., 2017). However, very little is known about the role of fibroblasts 
during the complex process of metastases formation.  
Cancer-associated fibroblasts (CAFs) are a heterogeneous population of fibroblastic cells 
found in the microenvironment of solid tumors. In some cancer types, including breast 
carcinomas, CAFs are the most prominent stromal cell type, and their abundance correlates 
with worse prognosis (Liu et al., 2016). We previously demonstrated a novel role for CAFs in 
mediating tumor-promoting inflammation in mouse and human carcinomas (Erez et al., 2013; 
Erez et al., 2010). We further characterized the origin, heterogeneity and function of CAFs in 
breast cancer (Cohen et al., 2017; Raz et al., 2018; Sharon et al., 2015). Importantly, we 
found profound changes in the expression of pro-inflammatory genes in fibroblasts isolated 
from metastases-bearing lungs (Raz et al., 2018). However, comprehensive profiling of 
metastases-associated fibroblasts was not previously done. Based on the central role of 
CAFs in supporting tumor growth at the primary tumor site (Kalluri, 2016), we hypothesized 
that transcriptional reprogramming of lung fibroblasts is an important factor in the formation 
of a hospitable metastatic niche that supports breast cancer metastasis.  

In this study, we set out to characterize the dynamic co-evolution of fibroblasts during 
pulmonary metastasis. To achieve this goal, we utilized novel transgenic mice that enable 
visualization, tracking, and unbiased isolation of fibroblasts from spontaneous lung 
metastases. Here we demonstrate the profiling and analysis of the dynamic evolution of 
fibroblast transcriptome at distinct disease stages, including early and late metastatic 
disease. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 23, 2019. ; https://doi.org/10.1101/778936doi: bioRxiv preprint 

https://doi.org/10.1101/778936
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

Results 

Fibroblasts are activated in the lung metastatic niche and acquire tumor promoting 
traits 

We previously demonstrated that fibroblasts at the primary tumor microenvironment are 
reprogrammed to obtain a pro-inflammatory and tumor-promoting phenotype (Cohen et al., 
2017; Erez et al., 2010; Sharon et al., 2015). Moreover, we found that fibroblasts are also 
modified at the lung metastatic niche (Raz et al., 2018). In this study, we set out to 
characterize the changes in lung fibroblasts that mediate the formation of a hospitable niche 
in breast cancer metastasis.  
Fibroblasts at the primary tumor site were previously demonstrated to be reprogrammed by 
tumor cell-derived paracrine signaling (Jin et al., 2017; Sharon et al., 2015). Therefore, we 
initially asked whether fibroblasts at the metastatic microenvironment are activated in 
response to tumor-secreted factors. We isolated primary lung fibroblasts from lungs of 
normal female mice (normal lung fibroblasts-NLF), incubated them with conditioned media 
(CM) from Met-1, a PyMT-derived breast carcinoma cell line (Borowsky et al., 2005), and 
analyzed the effect of tumor-derived factors on multiple tasks associated with activation of 
fibroblasts. One of the central physiological roles of activated myofibroblasts is to facilitate 
wound healing, where their motility and contractility are crucial for wound closure (Rouabhia 
et al., 2013). We therefore performed an in vitro wound closure assay. Quantification of the 
wound area indicated that fibroblasts incubated with tumor cell secreted factors had 
significantly enhanced motility and scratch closure ability as compared with control 
fibroblasts (Figure 1A, B). Activated myofibroblasts are known to have enhanced matrix 
adhesions, leading to increased contraction of collagen gel matrices (Cooke et al., 2000). 
Thus, we next analyzed the effect of tumor-secreted factors on the ability of lung fibroblasts 
to mediate collagen contraction. Fibroblasts were suspended in collagen matrices and 
incubated with Met-1 conditioned media or in serum-free conditions. We found that tumor-
secreted factors significantly enhanced the capacity of NLF to contract collagen gels as 
compared with control non-activated fibroblasts (Figure 1C, D). One of the prerequisites for 
metastatic progression is the ability of tumor cells to migrate to distant sites (Nguyen et al., 
2009). Therefore, we next examined whether reprogrammed lung fibroblasts can enhance 
tumor cell migration. To that end, we incubated tumor cells with secreted factors derived from 
activated lung fibroblasts (ALF CM) or with normal controls (NLF CM). Transwell migration 
assays indicated that tumor cells incubated with ALF-derived factors exhibited increased 
migratory capacity as compared with controls (Figure 1E, F). Thus, normal lung fibroblasts 
are reprogrammed by signaling from breast cancer cells, resulting in acquisition of tumor-
promoting properties. 
We next set out to analyze the activation of metastases-associated fibroblasts in vivo. To that 
end, we utilized MMTV-PyMT mice, a transgenic mouse model of mammary carcinogenesis 
and spontaneous lung metastasis (Lin et al., 2003). We initially assessed the expression of 
αSMA, a known marker of activated fibroblasts (Kalluri and Zeisberg, 2006), in normal lungs 
and in metastases-bearing lungs. We found that the abundance of αSMA expressing 
fibroblasts was significantly increased in metastatic lungs as compared with normal lungs 
(Figure 1G, H). In order to be able to track fibroblasts in an unbiased manner, we employed a 
transgenic mouse model of genetically labeled fibroblasts (Raz et al., 2018). Flow cytometric 
analysis of normal lungs as compared with lungs of tumor-bearing mice revealed significantly 
increased numbers of fibroblasts in the metastatic lung (Figure 1I), indicating that activation 
of fibroblasts at the metastatic niche includes changes in their abundance, as well as in their 
activation state. Taken together, these results demonstrate that breast cancer lung 
metastasis is associated with fibroblast activation in the lung metastatic microenvironment.  
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Figure 1. Fibroblasts are activated in the lung metastatic niche and acquire tumor promoting traits. (A) 
Representative images of scratch closure assay at 0 hours and 24 hours following scratch. Lung fibroblasts 
were incubated with SFM (NLF-normal lung fibroblasts), or with Met-1 CM (ALF-activated lung fibroblasts), 
scale bar: 300µM. (B) Quantification of scratch closure shown in (A), ****p<0.0001, Two-way ANOVA multiple 
comparisons, Data are represented as mean ± SD, n=3. (C)  Representative images of collagen contraction 
assay at 24 hours. Lung fibroblasts were embedded in collagen gel and incubated with SFM (NLF) or in Met-1 
CM (ALF). (D) Quantification of collagen contraction shown in (C), *p<0.05, Data are represented as mean ± 
SD, n=8.  (E) Representative images of transwell migration assay of Met-1 tumor cells incubated with NLF CM 
or ALF CM. scale bar: 100µM. (F) Quantification of (E). Migrated tumor cells were counted using ImageJ in 
multiple fields of view (FOV). **p<0.01, Data are represented as mean ± SD, n=3. (G) Representative images 
of aSMA staining in normal lungs isolated from FVB/n mice, (n=3), and metastases-bearing lungs isolated 
from MMTV-PyMT mice (n=3). Scale bar: 100µM (H) Quantification of aSMA mean fluorescent intensity (MFI) 
in multiple fields of view (FOV) from 3 slides per mouse. ***p<0.001. Data are represented as mean ± SD 
(I) Number of fibroblasts (CD45-CD31-EpCAM-YFP+) in total lungs from FVB/n;Col1a1-YFP mice (n=7) and 
PyMT; Col1a1-YFP mice (n=6) were counted using flow cytometric analysis. *p<0.05. Data are represented 
as mean ± SD.
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Transcriptome profiling of metastases-associated fibroblasts reveals dynamic stage-
specific changes in gene expression.  

To analyze the dynamic co-evolution of fibroblasts at the lung metastatic niche we performed 
unbiased transcriptome profiling by RNA-seq of fibroblasts isolated from lungs at distinct 
metastatic stages. To enable visualization, tracking, and isolation of fibroblasts, we 
established transgenic mouse models of breast cancer with fibroblast-specific reporter 
genes: transgenic mice that express the fluorescent reporter YFP under the Collagen-1α 
promoter (Col1a1-YFP) were crossed with MMTV-PyMT mice to create PyMT;Col1a1-YFP 
transgenic mice, in which all fibroblasts are fluorescently labeled (Raz et al., 2018). To 
explore the temporal dynamic changes in functional gene networks, we profiled fibroblasts 
(EpCAM-CD45-YFP+ cells) isolated from normal lungs, and from lungs with micro- or 
macrometastases (Figure 2A, B). Micrometastases were defined as the latest time point in 
which metastases are not detectable macroscopically, or by CT imaging.  

Initial data analysis indicated that fibroblasts isolated from lungs with macrometastases 
(macrometastases-associated fibroblasts- MAF) were strikingly different from NLF as well as 
from fibroblasts isolated from lungs with micrometastases (micrometastases-associated 
fibroblasts- MIF) (Figure 2C, Figure S1). Notably, since fibroblasts were isolated from entire 
lungs, rather than from specific metastatic niches, the MIF fraction contained also normal, 
non-metastases-associated fibroblasts. As a result, initial data analysis did not reveal 
significant differences between NLF and MIF (Figure 2C, Figure S1). To focus on the genes 
that are differentially expressed between the different stages, we selected the top 2% most 
upregulated and downregulated genes in each comparison (NLF vs. MIF, NLF vs. MAF, MIF 
vs. MAF), yielding a total of 871 genes. Notably, Venn Diagram analysis showed that only a 
small number of these genes were shared across the different stages, suggesting that each 
stage is defined by its own specific gene signature (Figure 2D). Unsupervised methods 
including Principal Component Analysis (PCA) and hierarchical clustering validated that each 
metastatic stage clustered separately and was defined by a unique gene signature (Figure 
2E, F). Thus, although the transcriptional changes in the fibroblasts isolated from micro-
metastases may have been masked by the presence of NLF in this fraction, analyses 
confirmed that MIF represent a bona fide functionally distinct stage.   

Aiming to delineate the stage-specific gene signatures and the molecular mechanisms 
operative in metastases-associated fibroblasts, and to identify the most relevant functional 
pathways, we performed protein-protein interaction (PPI) analysis using the STRING 
platform (Szklarczyk et al., 2017). We found that the 871 unique altered genes had 
significantly more interactions than expected (p-value<1*10-16). Specifically, out of 871 
genes, 491 genes were inter-connected with other genes from the list (Figure 2G, Figure 
S2A). Furthermore, unsupervised hierarchical clustering and PCA analyses on the connected 
491 genes indicated that their expression pattern maintained the distinct segmentation of the 
three fibroblast populations: NLF, MIF and MAF (Figure 2H, I). Interestingly, the remaining 
unconnected genes did not maintain the segmentation of distinct stages (Figure S2B), 
suggesting that the stage-specific gene expression signatures represent PPI connected 
pathways that are functional in metastases-associated fibroblasts. Therefore, we designated 
these 491 genes “stage-specific gene signature” and further focused our subsequent 
analyses on their functional roles. 
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Figure 2. Transcriptome profiling of metastases-associated fibroblasts reveals dynamic stage-
specific changes in gene expression. (A) Workflow illustration of fibroblast isolation (CD45-EpCAM-YFP+) 
from normal FVB/n; col1a1-YFP mice (NLF), and of Micro- or Macro- metastases associated fibroblasts from 
PyMT; col1a1-YFP mice (MIF and MAF). (B) Flow cytometry gating strategy for the isolation of fibroblasts. 
(C) Principal Component Analysis (PCA) of 11,115 protein coding genes identified in the RNA-seq data. See 
also Figure S1.  (D) Venn diagram of top 2% upregulated or downregulated genes (871 genes) in the different 
comparisons (MIF vs. NLF, MAF vs. NLF, MAF vs. MIF). (E) Two-way hierarchical clustering of top 2% genes 
based on Euclidian distance and average linkage. (F) PCA of top 2% genes. (G) Protein-protein interaction 
analysis of the 871 top 2% genes performed in STRING platform. Interconnected genes were selected for 
subsequent analysis. See also Figure S2A (H) PCA of 491 genes selected in (G). (I) Hierarchical clustering 
dendogram of 491 genes selected in (G) based on Euclidian distance and average linkage. See also Figure 
S2B.
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Fibroblast metastases-promoting tasks are driven by functional gene signatures 
related to stress response, inflammation, and ECM remodeling.  

We next asked whether the stage-specific gene signature in fibroblasts represents specific 
metastases-promoting tasks. To address this question, we performed further analysis of the 
selected genes in each stage by using the over-representation enrichment analysis of the 
Consensus Path DB (CPDB) platform (Kamburov et al., 2011). Our focus in these analyses 
was based on three different databases: GO (Ashburner et al., 2000; The Gene Ontology, 
2019), KEGG (Kanehisa et al., 2017; Kanehisa and Goto, 2000), and Reactome (Fabregat et 
al., 2018). For our analysis, we selected terms that represent biological processes enriched 
in at least two databases, with a relative overlap of at least 0.2 and at least 2 shared entities 
(Figure 3A). Data analysis revealed significant and stage-specific changes in functional 
pathways including cellular stress response, extracellular matrix (ECM) remodeling and 
inflammation (Figure 3B, Table S1). 

Interestingly, we found that gene expression signatures in fibroblasts isolated from the micro-
metastatic stage were highly and specifically enriched for functions related to cellular 
response to stress, including HSF1 activation, heat shock response and response to 
unfolded protein (Table S1). Upregulated genes in MIF that were related to stress and 
protein folding included several heat shock proteins: Hspa8, Hsp90aa1, Hspd1, Hspe1 and 
others (Figure 3C). ECM remodeling terms were enriched in both MIF and MAF (Figure 3B), 
indicating the central importance of ECM modifications in facilitating metastasis. Notably, 
while ECM remodeling was operative throughout the metastatic process, the specific genes 
related to ECM remodeling in the different metastatic stages were distinct (Figure 3D). 

Gene expression signatures in fibroblasts isolated from macro-metastases were highly 
enriched for inflammation-related gene sets (Figure 3B, Table S1). Notably, while there was 
a slight decrease in inflammatory related signaling in MIF, it is based on a small number of 
genes, as compared with the plethora of genes related to inflammation and chemokine and 
cytokine activities upregulated in MAF (Figure 3E).  
Taken together, these findings imply that metastases-associated fibroblasts assume distinct 
functional roles during the process of lung metastasis.  

Encouraged by these findings, we next set out to obtain further insights on functional 
pathways that were modified in fibroblasts isolated from different metastatic stages. To that 
end, we performed Gene Set Enrichment Analysis (GSEA) of the whole dataset 
(Subramanian et al., 2005). We focused our analysis on the H collection: Hallmark gene sets 
that summarize specific well-defined biological states or processes based on multiple 
datasets (Liberzon et al., 2015). Similarly to the results obtained in our previous analyses, we 
found several functions related to inflammatory responses enriched in MAF (Figure 3F, Table 
S2). Interestingly, we found that Myc target genes were the most highly and significantly 
enriched in both metastatic stages (Figure 3G, Table S2), suggesting that this transcription 
factor may play a central role in the functional molecular co-evolution of metastases-
associated fibroblasts.  
Taken together, these findings imply that the transcriptome of lung fibroblasts is rewired 
during metastatic progression, driving changes in the expression of distinct molecular 
pathways. Moreover, the transcriptional changes in ECM remodeling and stress response, 
which are potential metastases-promoting tasks, are evident at early stages of metastases 
formation, suggest that fibroblasts play an important role already at the onset of the 
metastatic process. 
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Figure 3. Metastases-promoting tasks are driven by functional gene signatures related to stress 
response, inflammation, and ECM remodeling. (A) Flow chart of the pathway enrichment over-
representation analyses based on GO, Reactome and KEGG using the CPDB platform. (B) Bubble graph 
heat map based on the number of specific enrichment terms and their average Log-transformed q-value per 
group. Circle sizes denote number of terms included in a group, color indicates the average Log-transformed 
q-value. Enrichments based on downregulated genes are presented as negative values. See also Table 
S1. (C-E) Bubble graph heat map presenting genes in selected group annotations. Circle size denotes the 
number of terms that included the gene, color indicates the average Log-transformed q-value of these terms. 
Only genes found in at least 2 different terms are presented. (C) "Stress response and protein folding" 
enriched genes. (D) "Extracellular Matrix remodeling" enriched genes. (E) "Inflammatory signaling" and/or 
"Cytokine and Chemokine activity" enriched genes, genes with an average q-value>0.01 were excluded. (F) 
Gene Set Enrichment Analysis (GSEA) results for hallmark datasets upregulated in MAF vs. NLF related to 
inflammatory signaling, FDR<0.05, NES>2. See also Table S2.  (G) GSEA results for “Myc targets” hallmark 
dataset that were upregulated in all comparisons (MIF vs. NLF, MAF vs. NLF, MAF vs. MIF), FDR<0.05 
NES>2. See also Table S2.
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Multiple gene network analyses identify Myc as a central transcription factor in the 
rewiring of metastases-associated fibroblasts. 

To further characterize the regulatory nodes that govern the functional changes in fibroblasts, 
we hypothesized that these changes may be driven by the transcription factors that were 
identified by the CPDB and GSEA analyses (Figure 3). Specifically, we identified five 
candidate transcription factors (TFs) that were enriched in at least one analysis and in at 
least one metastatic stage: Hif1a, Hsf1, Myc, Nfkb1 and Stat3. 

To rank these TFs, we performed knowledge-based multiple analyses examining their 
centrality in the selected gene signatures. First, we examined in how many different 
comparisons each TF was enriched. We found that Hsf1 was only enriched in the micro-
metastatic stage vs. normal lungs, and Hif1a was enriched only in the macro-metastatic 
stage. Nfkb1 and Stat3 were enriched in the macro-metastatic stage, compared with both 
normal and micro-metastases. Notably, only Myc was enriched in all three comparisons 
(Figure 4A, blue, Table S3). We next examined the protein-protein interactions (PPIs) of 
these TFs utilizing the STRING platform, and counted the number of direct connections of 
each TF with the stage-specific gene signature. Stat3 had the largest number of connections, 
closely followed by Myc (Figure 4A, orange, Table S3). In addition to STRING, we examined 
PPIs using ANAT (Advanced Network Analysis Tool) (Yosef et al., 2011). In this platform, the 
inference is based on setting all the candidate TFs as anchors and the selected genes as 
targets in a network of protein-protein interactions (PPI), and searching for a putative 
compact sub-network that connects them. We analyzed the results according to four 
parameters: the number of direct connections of each TF, the total number of connected 
genes (including non-directly connected genes), the characteristic path length, and network 
centralization. Analysis of the results revealed that Myc had the largest number of direct 
connections, as well as the largest number of total connections and is overall connected to 
the fibroblast stage-specific gene signature with the shortest path and with the highest 
centrality (Figure 4A, yellow, Figure 4B, Fig S3, Table S3). These results suggested that Myc 
plays a central role in mediating the transcriptional rewiring of fibroblasts in the lung 
metastatic niche.  

We next examined the specific connection of each TF as a regulator in the metastases-
associated gene network. To that end, we utilized the RegNetwork tool (Liu et al., 2015), a 
knowledge-based database of gene regulatory networks. We found that Myc had the 
greatest number of targets, followed by Stat3 and Nfkb1 (Figure 4A, green, Table S3). 
Finally, we analyzed the correlation of the metastases-associated gene network with each 
candidate TF using the VarElect tool (Stelzer et al., 2016). This tool enables prioritization of 
genes related to a specific query term by using a direct and indirect relatedness score. We 
analyzed the scores of the stage specific signature genes with each candidate TF, and the 
number of directly related genes. The TFs were ranked based on the number and average 
score for the directly related genes, and the average score of the indirectly related genes. In 
agreement with previous analyses, Myc had the highest number of connections and the 
highest average score for both directly and indirectly related genes (Figure 4A, pink, Figure 
4C, Table S3). To consolidate these comprehensive gene network analyses, we performed a 
comparative analysis on the TF bioinformatics measurements listed in Figure 4A. The results 
indicated that Myc achieved significantly higher scores than all other TFs (Figure 4D,E). 
These results implicate the centrality of Myc in the dynamic transcriptional changes that 
govern the function of metastases-associated fibroblasts in lung metastasis. 
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Platform Analysis Hif1a Hsf1 Myc Nfkb1 Stat3
Enrichments # comparisons 1 1 3 2 2

STRING # 1st neighbour 66 39 134 80 144
# 1st neighbour 14 4 152 4 84

total connections 416 447 465 412 438
characteristic path length 3.93 4.83 3.222 4.566 3.677

network centralization 0.111 0.217 0.419 0.104 0.231
RegNetwork # targets 12 10 122 58 46

directly related 293 226 458 332 408
average score directly related 1.01 1.15 1.91 1.5 1.92

average score indirectly related 0.54 0.84 2.83 1.12 1.47

ANAT

VarElect

Figure 4. Multiple gene network analyses identify Myc as a central transcription factor in the rewiring 
of metastases-associated fibroblasts. (A) Table of ranking parameters and analyses performed to identify 
the centrality of the five candidate transcription factors (TFs): Hif1a, Hsf1, Myc, Nfkb1, Stat3. Blue - number of 
comparisons that identified each TF. Orange – STRING PPI analysis results. Yellow - ANAT pathway analysis 
results. Green - RegNetwork analysis of connectivity between target genes and TFs. Pink - VarElect analysis 
results. See also Table S3. (B) Representative ANAT protein-protein network, using all TFs as anchors (green) 
and the stage-specific signature as target genes (red). (Presenting only confidence >0.6). See also Figure 
S3. (C) Box Plot of VarElect scores for directly related genes to each TF (Presenting top 200 per TF). (D,E) 
Heat map and graph of Z-scores of the results described in (A), *** p<0.001, one-way ANOVA with Tukey 
correction for multiple comparisons. Data are represented as mean ± SD.
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 7 

Myc is a central regulator in metastases-associated fibroblasts and contributes to 
their acquisition of tumor-promoting traits 

Myc (myelocytomatosis oncogene) is a transcription factor involved in many biological 
processes, including cell growth and proliferation, cell stemness, and metabolism. Myc is 
deregulated in many human cancers, and is known to play an important role in the 
pathogenesis of cancer, particularly in cancer cells (Dang, 2012; Poole and van Riggelen, 
2017).  
To validate the ranking results, we analyzed by qRT-PCR the expression of Myc in 
fibroblasts isolated from normal lungs, or from lungs with micro- and macrometastases. 
Analysis of the results indicated that Myc is significantly upregulated in macrometastases-
associated fibroblasts (Figure 5A). In addition, we assessed the expression of central Myc 
targets that were found to be upregulated in metastases-associated fibroblasts, including 
Hspe1, Hsp90aa1, Odc1 and Fosl1 (Belinky et al., 2015; Chakravorty et al., 2017). We found 
that these Myc targets were upregulated in fibroblasts isolated from lungs with metastases 
(Figure 5B). Interestingly, the qRT-PCR results validated our findings in the RNA-seq data, in 
which Hsp90aa1 was upregulated in MIF, whereas the other Myc targets were upregulated in 
MAF (Figure 5B). Importantly, fibroblasts highly upregulated the expression of Myc in 
response to tumor cell secreted factors (Figure 5C, left bars). To elucidate the functional 
importance of Myc in mediating lung fibroblast reprogramming, we targeted its expression by 
a specific Myc targeting siRNA in primary lung fibroblasts. Abrogation of Myc expression by 
siMyc resulted in significant inhibition of Myc expression as compared with control 
fibroblasts. Moreover, Myc inhibition abrogated the upregulation of Myc in response to tumor 
cell secreted factors in activated fibroblasts (Figure 5C, right bars). We next assessed 
whether inhibition of Myc affected the upregulation of selected Myc target genes in activated 
lung fibroblasts. Analysis of the results indicated that the expression of Myc is central to the 
upregulation of its known targets (Figure 5D). Finally, we examined the importance of Myc for 
functional activation of fibroblasts in response to tumor cell-secreted factors, by analyzing 
hallmark functions of activated lung fibroblasts, including enhanced migration and matrix 
contraction. To that end, we performed a wound healing assay and collagen contraction 
assay with tumor-activated lung fibroblasts that were transfected with siMyc or with siCtrl.  
We found that siMyc fibroblasts were less contractile and exhibited significantly attenuated 
migration capacity as compared with controls (Figure 5E-H). Taken together, our findings 
imply that Myc has a central role in enhancing fibroblast activation and in mediating their 
acquisition of metastasis-promoting functions.  
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Figure 5. Myc is a central regulator of metastases-associated fibroblasts and contributes to their 
acquisition of tumor promoting traits. (A) qRT-PCR analysis of Myc expression in sorted NLF, MIF and 
MAF. **p<0.01, Data are represented as mean ± SD, n=3 per group. (B) qRT-PCR analysis in sorted NLF, 
MIF and MAF. Relative expression of Myc target genes that were found to be differentially expressed in the 
RNA-seq. *p<0.05, Data are represented as mean ± SD, n=3 per group. (C) Myc targeting by siRNA: Myc 
expression in NLF transfected with siRNA targeting Myc or with control siRNA (siMyc or siCtrl). Following 
transfection, cells were incubated with SFM or with Met-1 CM supplemented with the same siRNA for additional 
24h. Data are represented as mean ± SD, n=3. (D) qRT-PCR analysis of Myc targets following treatment as 
in (C). Data are represented as mean ± SD, n=3. (E,F) Representative images and quantification of collagen 
contraction assay of fibroblasts transfected with siMyc or siCtrl, incubated with Met-1 CM. *p-value<0.05, 
Data are represented as mean ± SD, n=5. (G,H) Representative images and quantification of scratch closure 
assay at 0h and 48h of NLF transfected with siMyc or siCtrl and incubated with Met-1 CM. Scale bar: 400µm. 
Two-way ANOVA with multiple comparisons, ***p-value<0.001, Data are represented as mean ± SD, n=5.
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High expression of MYC and the metastases-associated fibroblast gene signature is 
associated with worse survival in human breast cancer 

Encouraged by these findings, we next asked if the metastases-associated gene signature is 
operative in human breast cancer.  Since there are no available transcriptomic datasets of 
lung metastases we analyzed patient data from breast tumors. We initially analyzed the 
expression of genes that we found to be upregulated in murine metastases-associated 
fibroblasts (upMAG-upregulated metastases-associated genes) in the stromal and epithelial 
compartments of human breast tumors, utilizing a publicly available dataset (Ma et al., 2009). 
This analysis revealed that while some of the genes are more expressed in the epithelial 
compartment (cancer cells, E), 40% of the genes were significantly more expressed in the 
stromal compartment (S) of human breast tumors (Figure 6A). Motivated by this result, we 
then performed survival analysis based on the genes that were significantly overexpressed in 
the stroma, and found that high expression of 21 of these genes was correlated with worse 
prognosis in breast cancer patients, including: SERPINE1, PLAUR, FGFR4 and BCAT1 
(Figure 6B, Table S4). Notably, these results implicate stromal gene expression in predicting 
patient survival, and suggest that the expression of genes identified in metastases-
associated fibroblasts contributes to worse prognosis in human breast cancer.  
Since we showed that MYC is a central regulator of fibroblast rewiring during metastatic 
progression in mice, we next asked whether stromal expression of upMAG in human breast 
cancer is related to MYC. Interestingly, analysis of MYC expression in the stromal 
compartment of breast cancer patients revealed that MYC is upregulated in breast cancer 
stroma in correlation with disease progression, as reflected by pathological grade: 
expression of MYC was elevated in grade 3 disease, compared with stroma isolated from 
more differentiated tumors (Figure 6C). Moreover, to assess the centrality of MYC in the 
stromal compartment of breast tumors, we performed correlation analysis between the 
expression of MYC and the expression of the upMAG signature. We found that stromal 
expression of MYC was positively correlated with stromal expression of multiple genes that 
we found to be upregulated in fibroblasts (Figure 6D). Furthermore, the number of MYC 
positively correlated genes was significantly higher than the number of negatively correlated 
genes (Figure 6E). Notably, both STAT3 and NFKB1 had significantly less positive 
correlations as compared with MYC, further supporting our findings that MYC is a central 
regulator of stromal rewiring in breast cancer (Figure 6F).  
We next stratified patients based on the expression of MYC and the expression of each gene 
from the upMAG signature into 4 groups: high-high, high-low, low-high, low-low, respectively, 
and performed survival analysis. Strikingly, in 80 different genes, including the MYC 
downstream genes validated in murine fibroblasts in Figure 5, patients with combined 
overexpression (high-high) had the worst survival, while patients with combined lower 
expression had the best survival (Figure 6G-H, Table S4). Taken together, these results 
indicate that the activation of MYC transcriptional networks in the stroma of breast tumors 
plays a role in tumor progression and survival in human breast cancer. 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 23, 2019. ; https://doi.org/10.1101/778936doi: bioRxiv preprint 

https://doi.org/10.1101/778936
http://creativecommons.org/licenses/by-nc-nd/4.0/


# 
po

si
tiv

e 
co

rr
el

at
io

ns
# 

co
rr

el
at

io
ns

upMAG

E S

BA

Time (months)

NIP7 CDH2 SERPINE1 PLAUR

Su
rv

iv
al

 P
ro

ba
bi

lit
y

Time (months)

FGFR4 MLKL

Su
rv

iv
al

 P
ro

ba
bi

lit
y CHST2

p-value = 0.000000

High
Low

High
Low

High
Low

High
Low

High
Low

High
Low

High
Low

High
Low

p-value = 0.000001 p-value = 0.000001 p-value = 0.000039

p-value = 0.000033 p-value = 0.000592 p-value = 0.001408 p-value = 0.001513

C
MYC

Ex
pr

es
si

on

S1 S2 S3

C
or

re
la

tio
n 

co
ef

fic
ie

nt
 (r

)

D

E

F

Neg. Pos.

MYC NFKB1 STAT3

G

Time (months)

Su
rv

iv
al

 P
ro

ba
bi

lit
y HSP90AA1 HSPD1 BCAT1 ODC1

High-High
High-Low
Low-High
Low-Low

High-High
High-Low
Low-High
Low-Low

High-High
High-Low
Low-High
Low-Low

High-High
High-Low
Low-High
Low-Low

p-value = 3.2X10-8 p-value = 5.7X10-6 p-value = 8.1X10-6 p-value = 1.0X10-5

H
Time (months)

Su
rv

iv
al

 P
ro

ba
bi

lit
y

High-High
High-Low
Low-High
Low-Low

High-High
High-Low
Low-High
Low-Low

High-High
High-Low
Low-High
Low-Low

High-High
High-Low
Low-High
Low-Low

p-value = 9.1X10-8p-value = 7.0X10-8p-value = 6.9X10-8p-value = 6.4X10-8

PANX1 CDH12 APLP1 CDK5R1

BCAT1

Shani et al. Figure 6
.CC-BY-NC-ND 4.0 International licenseavailable under a

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 
The copyright holder for this preprint (whichthis version posted September 23, 2019. ; https://doi.org/10.1101/778936doi: bioRxiv preprint 

https://doi.org/10.1101/778936
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6. High expression of MYC and the metastases-associated fibroblast gene signature is 
associated with worse survival in human breast cancer. (A) Heat Map presenting upregulated metastases-
associated genes (upMAG) that were significantly overexpressed in the stroma of human breast cancer (S) as 
compared with the epithelial (cancer cell) tissue (E), based on GSE14548, q-value<0.05.  (B) Kaplan-Meier 
analyses for overall survival in breast cancer patients in the METABRIC cohort based on the expression 
of genes found to be overexpressed in the stroma in (A). High=top 20%, Low=bottom 80%, p-value<0.05. 
See also Table S4. (C) Box-plot of MYC expression in tumor associated-stroma (S) from the GSE14548 
by disease grade (Stroma-grade 1: S1; Stroma-grade 2: S2; Stroma-grade 3: S3). One-way ANOVA with 
Tukey correction for multiple comparisons, *p-value<0.05. (D) Positive correlations between the expression 
of MYC and the expression of upMAG in tumor-associated stroma based on GSE14548. P-value<0.05. 
(E) Comparison between the number of significant positive and significant negative correlations between 
upMAG and MYC in tumor-associated stroma based on GSE14548. Chi-square test, ****p-value<0.0001 
(F) Comparison between the number of significant positive correlations between upMAG and MYC, NFKB1 
and STAT3 in tumor-associated stroma based on GSE14548. Chi-square test, ****p-value<0.0001 (G-H) 
Kaplan-Meier analyses for overall survival in breast cancer patients in the METABRIC cohort based on the 
expression of MYC in combination with upMAG. High-High: top 20% MYC and top 20% upMAG gene, High-
Low: top 20% MYC and bottom 80% upMAG gene, Low-High: bottom 80% MYC and top 80% upMAG gene, 
Low-Low: bottom 80% MYC and bottom 80% upMAG gene. P-value<0.0001. (G) Top 4 most significant 
genes. See also Table S4. (H) Genes validated in Figure 5.
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Discussion 

In this study we set out to elucidate the dynamic changes in the stromal compartment that 
facilitate the formation of a hospitable metastatic niche during breast cancer metastasis to 
lungs. We utilized a unique model of transgenic mice that enabled unbiased isolation of 
fibroblasts from spontaneous lung metastasis and performed comprehensive analysis of the 
transcriptome of fibroblasts isolated from normal lungs, and lungs with micro- or 
macrometastases. By employing multiple platforms of data analysis, we integrated ontology 
analyses with data on protein interactions and functional pathways from knowledge-based 
databases to identify the relevant and stage-specific gene signatures that imply functional 
tasks of metastases-associated fibroblasts. 

Importantly, we performed the analysis on fibroblasts isolated directly from fresh tissues, with 
no additional culture step that may affect gene expression. Our findings indicated that ECM 
remodeling programs were instigated early in micrometastases, and persisted to be 
functional throughout the metastatic pathway, while other signaling pathways were activated 
in a stage-specific manner. Activation of the cellular stress response was associated with 
micrometastases, and inflammatory signaling was instigated in fibroblasts isolated from 
advanced metastases, suggesting that fibroblasts are transcriptionally dynamic and plastic, 
and that they adapt their function to the evolving microenvironment (Figure 7). 

Initial analysis of the RNA-seq data revealed distinct gene signatures associated with early 
and advanced metastatic disease. By performing step by step analysis, utilizing the STRING 
and CPDB platforms combined with GSEA, we unraveled multiple pathways operative in 
fibroblasts in different metastatic stages, relying not only on altered gene expression but also 
on mechanistic significance and interaction of genes.  

Interestingly, this multi-layered analysis indicated that fibroblasts isolated from 
micrometastases instigated the expression of genes related to cellular response to stress, 
including the transcriptional regulator Hsf1. Hsf1 was previously shown to be upregulated in 
CAFs in early stage breast and lung cancers and to drive a stromal tumor-promoting 
transcriptional program that correlated with worse prognosis (Scherz-Shouval et al., 2014). 
Moreover, Hsf1 was recently implicated in activating stromal expression of Dickkopf-3 (Dkk3) 
in mammary fibroblasts, which is a central modulator of their pro-tumorigenic activity, thus 
linking Hsf1 with reprogramming of stromal fibroblasts to CAFs (Ferrari et al., 2019). Our 
findings expand these observations, and show that activation of Hsf1 transcriptional 
regulation in lung fibroblasts occurs during the early stages of metastasis and may play an 
important role in instigating tumor-promoting tasks in metastases-associated fibroblasts.  

In addition to stress response, our findings indicated that ECM remodeling is a central task of 
metastases-associated fibroblasts throughout the metastatic cascade. Indeed, ECM 
components and remodeling were demonstrated to facilitate breast cancer metastasis to 
lungs, and pancreatic cancer metastasis to liver (Cox et al., 2013; Malanchi et al., 2012; 
Nielsen et al., 2016; Oskarsson et al., 2011;Yuzhalin et al., 2018). We show that 
transcriptional rewiring of fibroblasts to mediate tasks such as collagen synthesis and ECM 
organization is a central function of metastases-associated fibroblasts, which is instigated 
early during the metastatic process and persists during advanced metastatic disease.   

Notably, analyzing the central pathways in fibroblasts that were isolated from advanced 
metastases, indicated that metastases-associated fibroblasts upregulated pro-inflammatory 
pathways including multiple cytokines and chemokines. CAFs are known to play a central 
role in mediating tumor-promoting inflammation at the primary tumor site (Servais and Erez, 
2013). Importantly, in recent years activation of inflammation has also emerged in shaping of 
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the metastatic microenvironment (Albrengues et al., 2018; Coffelt et al., 2015; Quail et al., 
2017), but the role of fibroblasts in mediating inflammation at the metastatic site was not 
previously shown. Our findings implicate CAF-derived inflammatory signaling in promoting 
the growth of lung metastases. Further studies are required to determine which pro-
inflammatory factors upregulated in metastases-associated fibroblasts are functionally 
important in formation of a hospitable metastatic niche in lungs. 

We further characterized the molecular mechanisms operative in metastases-associated 
fibroblasts, by identifying the central transcription factors that drive the metastases-
associated gene programs upregulated in lung fibroblasts. Our analyses revealed several 
central regulators that are operative in metastases-associated fibroblasts, including the well-
known modulators of CAF activity Nfkb1 (Erez et al., 2013; Erez et al., 2010) and Stat3 
(Chakraborty et al., 2017; Li et al., 2018).  
Surprisingly, the most prominent regulator in the metastasis-associated fibroblasts network 
was the transcription factor Myc. While the importance of Myc in promoting cell 
transformation and tumorigenesis is well established (Poole and van Riggelen, 2017), its role 
in the tumor stroma is largely uncharacterized. Myc expression in tumor cells was shown to 
drive an inflammatory and immunosuppressive microenvironment (Kortlever et al., 2017). 
Moreover, the expression of Myc in the stromal compartment was suggested to mediate 
metabolic and transcriptional reprogramming of fibroblasts (Minciacchi et al., 2017; Yan et 
al., 2018). Our study identifies Myc as a central regulator in the transcriptional plasticity of 
metastases-associated fibroblasts.  Indeed, inhibition of Myc attenuated tumor promoting 
functions of fibroblasts, confirming that Myc functionally contributes to their acquisition of 
tumor promoting traits. Importantly, validation of these findings in human breast cancer 
patients revealed that stromal expression of Myc and its downstream genes is highly 
correlated with worse survival in breast cancer patients. Stromal gene expression was 
previously found to be associated with bad prognosis in colon cancer (Calon et al., 2015). 
Our findings implicate activation of Myc and stromal gene expression in breast cancer patient 
survival. Taken together, these findings indicate that in addition to its known role in driving 
carcinogenesis in tumor cells, Myc functions in stromal rewiring in the tumor 
microenvironment in both primary tumors and metastases of breast cancer.   

In summary, we show that integration of multiple analytical platforms of gene expression, 
connectivity and function provided a powerful insight on functional and temporal regulation of 
the dynamic transcriptome of fibroblasts in lung metastasis. We uncovered central molecular 
pathways that drive the activation of growth-promoting tasks in fibroblasts via known 
regulators of CAF tumor-promoting activities including Stat3, Nfkb1, and Myc, a novel 
regulator of fibroblast metastases-promoting tasks. Our findings elucidate for the first time 
the dynamic transcriptional co-evolution of fibroblasts during the multi-stage process of 
breast cancer metastasis.  
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Figure 7. Summary scheme: The co-evolution of lung fibroblasts at the metastatic microenvironment is 
driven by stage-specific transcriptional plasticity that activates growth-promoting tasks including stress 
response, ECM remodeling and instigation of inflammatory signaling.
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Methods 

Mice 

All experiments were performed using 6-8 weeks old female mice, unless otherwise stated. 
All experiments involving animals were approved by the Tel Aviv University Institutional 
Animal Care and Use Committee. FVB/n Col1a1-YFP mice were a kind gift from Dr. Gustavo 
Leone. FVB/N-Tg (MMTV-PyMT) 634Mul/J were backcrossed with FVB/n;Col1a1-YFP mice 
to create PyMT;Col1a1-YFP double-transgenic mice as described previously (Raz et al., 
2018). All animals were maintained within the Tel Aviv University Specific Pathogen Free 
(SPF) facility.  

Cell cultures 

Met-1 mouse mammary gland carcinoma cells: Met-1 cells were a gift from Prof. Jeffrey 
Pollard. Met-1 cells were plated on 100mm plastic dishes and cultured with DMEM medium 
supplemented with 10% FCS, 1% penicillin-streptomycin and 1% Sodium-pyruvate 
(Biological Industries). 

Primary lung fibroblasts cultures: Lungs were isolated from 6-8 weeks old FVB/n female 
mice. Single cell suspensions were prepared as previously described (Sharon et al., 2013). 
Single cell suspensions were seeded on 6-well plates pre-coated with Rat tail collagen 
(Corning; 354236). Cells were grown in DMEM media supplemented with 10% FCS, and 
maintained at 37°C with 5% CO2.  

Conditioned media 

Tumor cell conditioned media (Met-1 CM): cells were cultured as described above. When 
cells reached 80% confluency, plates were washed twice with PBS and fresh serum free 
DMEM medium (SFM) was applied. After 48h, medium was collected, filtered through 
0.45μm filters under aseptic conditions, flash-frozen in liquid nitrogen and stored at -80°C. 
DMEM SFM supplemented as above was used as control.  

Normal lung fibroblasts (NLF) or Activated lung fibroblasts (ALFs) conditioned media: NLF 
were plated as described above. CM was prepared by incubating NLF with either SFM (for 
NLF CM) or Met-1 CM (for ALF CM) for 24 hours. After 24h, plates were washed twice with 
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PBS and cells were incubated for additional 24h with fresh SFM. After 48h, medium was 
collected, filtered through 0.45μm filters under aseptic conditions, flash-frozen in liquid 
nitrogen and stored at -80°C. 

Scratch assay 

NLF were plated in a 96-well IncuCyte® imageLock plate (Essen BioSciense). SFM was 
applied for 16h. Wells were then washed three times with PBS and a scratch was made 
using the IncuCyte® WoundMaker (EssenBiosciense). Wells were washed three times with 
PBS and Met-1 CM or SFM were applied. The plate was placed in the IncuCyte® system 
(Essen BioSciense) for 48 hours. Images were analyzed using the IncuCyte® software.  

Collagen contraction 

NLF were plated as mentioned above and incubated with SFM for 16h. Following, Cells were 
detached from dishes with trypsin and counted. A total of 1.5×105 fibroblasts were 
suspended in a medium and collagen mixture [Met-1 CM or SFM mixed with High 
Concentration Rat Tail Collagen, type 1 (BD bioscience)], and allowed to set at 37°C for 45 
min. Met-1 CM or SFM were applied, gels were released and incubated for 24 hours. Gels 
were photographed at various time points. ImageJ software was used to measure gel area 
and assess collagen contraction. 

Migration assay 

Met-1 (5×104) cells were placed into the upper chamber of 24 Transwell inserts, with pore 
sizes of 8µm, in 300µl NLF CM or ALF CM. Following 24h incubation, the upper side of the 
apical chamber was scraped gently with cotton swabs to remove non-migrating cells, fixed 
with methanol and stained with DAPI. Migrated cells were documented under a fluorescence 
microscope. ImageJ software was used to quantify migration.  

Immunostaining 

Lungs were harvested, shortly washed in PBS and embedded in Optimal Cutting 
Temperature compound (O.C.T, Tissue-Tek) on dry ice. Serial sections were obtained to 
ensure equal sampling of the examined specimens (8μm trimming). Tissue sections were 
incubated for 1 hour at room temperature with anti-mouse αSMA antibody (Sigma-Aldrich; 
F3777). Sections were mounted with DAPI Fluoromount-G (Southern Biotech; 0100-20). 
Slides were visualized using Leica SP5 microscope. Quantitative analyses were performed 
using ImageJ Software.  

Flow cytometry analysis and cell sorting  

Single cell suspensions of Lungs isolated from FVB/n;Col1α1-YFP or PyMT;Col1α1-YFP 
mice were stained using the following antibodies: anti-EpCAM-APC (eBioscience, 17-5791), 
anti-CD45-PerCP-Cy5.5 (eBioscience; 45-0451), anti-CD31-PE-Cy7 (eBioscience; 25-0311). 
DAPI was used to exclude dead cells (Molecular Probes; D3571). Flow cytometric analysis 
was performed using CytoFLEX Flow Cytometer (Beckman Coulter). Cell sorting was 
performed using BD FACSAria II or BD FACSAria Fusion (BD bioscience). Data analysis 
was performed with the Kaluza Flow Analysis software (Beckman Coulter).  

RNA isolation and qRT-PCR 

RNA from sorted cells was isolated using the EZ-RNAII kit (20-410-100, biological industries) 
according to the manufacturer's protocol. RNA from in vitro experiments was isolated using 
the PureLinkTM RNA Mini Kit (Invitrogen; 12183018A). cDNA synthesis was conducted using 
qScript cDNA Syntesis kit (Quanta; 95047-100). Quantitative real-time PCRs (qRT-PCR) 
were conducted using PerfeCTa SYBR Green Fastmix ROX (Quanta; 95073-012). In all 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 23, 2019. ; https://doi.org/10.1101/778936doi: bioRxiv preprint 

https://doi.org/10.1101/778936
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

analyses expression results were normalized to Gusb or Gapdh and to control cells. RQ (2-

ΔΔCt) was calculated.  

Transfection of primary fibroblasts 

NLF were cultured in DMEM supplemented with 10% FCS. At 70% confluency, cells were 
transfected with Accell Delivery Media (GE Dharmacon; B-005000) supplemented with 1µM 
Accell SMARTpool mouse Myc siRNA (Dharmacon; E-040813) or Accell Control Pool non-
targeting siRNA (Dharmacon; D-001910) for 96h. Accell SMARTpool contains a mixture of 
four siRNAs targeting one gene, and provide extended duration of gene knockdown with only 
minimal effects on cell viability and the innate immune response. The efficiency of Myc 
siRNA knockdown was analyzed by qRT-PCR.  

RNA-seq  

CD45-EpCAM-YFP+ Fibroblasts were isolated by cell sorting from Normal FVB/n; Col1a1-
YFP mice (n=4), PyMT;Col1a1-YFP Micro-metastases bearing mice (n=3) and 
PyMT;Col1a1-YFP Macro-metastases bearing mice (n=4). Micro-metastases were defined 
as visible mammary tumors, the absence of visible macro-metastases and the presence of 
EpCAM+ cells in lungs. Cells were collected into Trizol LS reagent (Life Technologies; 10296-
028) and RNA was isolated according to the manufacturer’s instructions. Transcriptomic 
sequencing of RNA was performed using NEBNext® rRNA Depletion Kit (New England 
Biolabs, Inc.; E6310S) and SMARTer Stranded Total RNA-Seq Kit - Pico Input (Clontech; 
635005) and sequenced on the Illumina HiSeq 2500 sequencer (Illumina, Inc.) at the 
Technion Genome Center. Sequenced reads were aligned to the mouse genome (mm9) 
using TopHat2 (Kim et al., 2013). Gene expression counts were calculated using HTseq-
count (Anders et al., 2015) using Gencode annotations. Only genes that got at least 20 
counts in at least 3 replicate samples were included in subsequent analysis (12,105 genes). 
Gene expression counts were normalized using quantile normalization (Bolstad et al., 2003). 
Levels below 20 were then set to 20 to reduce inflation of fold-change estimates for lowly 
expressed genes. Preliminary differential expression analysis was carried out using DESeq2 
(Love et al., 2014). For subsequent analyses, only protein coding genes were included. In 
addition, coefficient of variance (CV) was calculated per group (NLF, MIF, MAF) and the top 
1% most in-group deviated genes (top 1% CV) were excluded, leaving a total of 11,115 
genes.  

Stage-specific signature analysis  

The top 2% most altered genes from each comparison (up/down) were selected (871 genes 
in total) as a primary signature for the different stages (NLF, MIF, MAF). Data was Z-scored 
per gene. Venn diagram was generated using Bioinformatics & Evolutionary Genomics 
website (http://bioinformatics.psb.ugent.be/webtools/Venn/). All hierarchical clustering (based 
on Euclidian distance and average linkage) and principal component analyses were 
performed using JMP 14 software.  

Gene selection based on network connectivity 

All 871 selected genes were subjected to protein-protein interactions analysis using the 
STRING platform (Szklarczyk et al., 2017). The minimum confidence of interaction was 
defined based on the upper quartile of all interactions (confidence>0.3) and connections 
based on text-mining were excluded. Groups of under 4 genes were excluded, leaving a total 
of 491 genes ("stage-specific gene signature"). 

Pathway enrichment 

For functional annotation, pathway and enrichment analysis, each comparison was analyzed 
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separately, to a total of 6 comparisons (MIF vs. NLF up, MIF vs. NLF down, MAF vs. NLF up, 
MAF vs. NLF down, MAF vs. MIF up, MAF vs. MIF down). Over-representation analysis was 
performed using the ConsensusPath DataBase CPDB, (Kamburov et al., 2011) 
(http://cpdb.molgen.mpg.de/MCPDB) platform for GO-molecular function (MF) and GO-
biological process (BP), Reactome, and KEGG. Terms larger than 500 genes were excluded. 
Results were considered significant with a p-value<0.01, q-value<0.05 and the top 75% 
highest coverage (>3%). The CPDB platform utilizes multiple databases, enables 
visualization of relationships between different enrichments, and allows comparison and 
integration between them (Herwig et al., 2016). To increase the specificity of the enriched 
terms, we compared the relative overlap and the number of shared entities between the 
enriched terms from the three different databases (GO, KEGG and Reactome). Selected 
terms with at least 2 shared entities and a relative overlap > 0.2 were grouped and annotated 
based on a common enriched function. Groups containing more than 15-20 terms were 
divided to sub-groups based on a higher relative overlap criteria. Groups smaller than 5 
terms were excluded. These steps enabled the selection of the ~10% most highly and 
significantly connected terms. 

For the generation of bubble plot heat maps all q-values were log transformed [-Log10(q-
value)]. For the group annotation heat map, log-transformed q-values of all the terms 
included in a specific group were averaged. For terms enriched in a group of downregulated 
genes, the value of the average log transformed q-value was transformed to a negative value 
by duplicating the average log transformed value by (-1). For the generation of gene bubble 
graph heat maps per selected groups, the average of log-transformed q-values was 
calculated per gene, based on the enrichment terms that included it.  

Gene Set Enrichment Analysis (GSEA) 

The GSEA Java plug-in was used to probe log-transformed normalized expression data 
(Subramanian et al., 2005) http://software.broadinstitute.org/gsea/index.jsp). Settings for the 
analysis were defined as the follows: Gene set database – Hallmark gene sets only, Number 
of permutations -1000, comparisons – each separately (MIF vs. NLF, MAF vs. NLF, MAF vs. 
MIF), Permutation type - gene_set, minimum size - 5, maximum size - 500. Significant results 
were considered for False Discovery Rate (FDR) <0.05 and normalized enrichment score 
(NES) > |2|. 

Transcription Factor Ranking 

Selection of transcription factors 

Transcription factors (Hif1a, Hsf1, Myc, Nfkb1, Stat3) that were shown to be enriched in the 
pathway enrichment and/or GSEA analyses described above were selected as candidates 
and subjected to subsequent analyses. The Transcription Factors (TFs) were ranked as 
candidates for their relevance to the transcriptional rewiring of metastases-associated 
fibroblasts. 

Selection of transcription factors 

Transcription factors (Hif1a, Hsf1, Myc, Nfkb1, Stat3) that were shown to be enriched in the 
pathway enrichment and/or GSEA analyses described above were selected as candidates 
and subjected to subsequent analyses. The Transcription Factors (TFs) were ranked as 
candidates for their relevance to the transcriptional rewiring of metastases-associated 
fibroblasts.  

STRING 

All five candidate TFs were subjected to protein-protein interaction analysis in combination 
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with the "stage-specific gene signature" using the STRING platform (Szklarczyk et al., 2017). 
The minimum confidence of interaction was defined based on the median confidence value 
of all interactions (confidence >0.2). For the ranking of each TF, the number of separate 
interactions for each TF was counted. 

ANAT 

The ANAT (Advanced Network Analysis Tool) application (Yosef et al., 2011) was used as 
an add-in to Cytoscape (version 7 and up) software. We performed the analysis for each TF 
separately and for all of the TFs combined. The TFs were defined as anchors in the list, and 
the target genes were the stage-specific list of genes. An HTML report of all possible 
pathways between the anchor and each gene in the target genes list was generated. The 
minimum confidence for a connection was defined based on the median confidence value of 
all interactions (confidence >0.2). An anchor could be connected to a target directly, or 
indirectly. For the ranking of each TF, we calculated several parameters of the protein-
protein network: 1) The number of stage-specific genes connected with each TF (directly and 
2-4 shells); 2) The average shortest path for each TF; 3) The centrality of the network. 
Parameters 2 and 3 were calculated using the network analysis tool of the Cytoscape 
software. 

RegNetwork 

Each TF was defined as a regulator in the RegNetwork database (Liu et al., 2015) and all 
non-microRNA results were downloaded. For the ranking of each TF, the number of genes 
out of the stage-specific gene signature that are registered as targets were counted.  

VarElect 

Using the VarElect platform (Stelzer et al., 2016), we analyzed the relation of the stage-
specific genes with each TF. Each gene from the list received a score according to its 
relation to the TF. For the ranking of each TF, we analyzed several parameters: 1) the 
number of directly related genes; 2) The average score of related genes; 3) The average 
score of indirectly related genes.  

Ranking 

To assess the relative relevance of the candidate TFs, ranking analysis was performed. 
Ranking parameters described above were Z-scored per parameter. For "Characteristic path 
length" results were first transformed with a (-1) power. Statistical analysis was performed 
using One-Way ANOVA with Tukey correction for multiple comparisons.  

Human breast cancer data 

Stromal and epithelial expression profiles and correlation analyses 

The expression of upMAG (upregulated metastases-associated genes) and Myc, Nfkb1 and 
Stat3 were analyzed in human breast cancer stroma and epithelial tissues based on a 
publicly available dataset GSE14548 (Ma et al., 2009). Correlation analysis was performed 
on normalized expression values using Pearson correlation. P-value below 0.05 was 
considered significant. 

Kaplan-Meier analyses 

Overall survival analysis was performed using patient gene expression profiles generated by 
the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) study 
(Curtis et al., 2012). Kaplan-Meier analysis was performed using MATLAB on patients 
stratified by gene expression (high=top 20% expression, low=bottom 80% expression). For 
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the combination with Myc patients were divided into 4 groups: Myc high (top 20%) and 
upMAG gene high (top 20%), Myc high and upMAG gene low (bottom 80%), Myc low and 
upMAG gene high, and Myc low and upMAG gene low. p-value below 0.05 was considered 
significant. 

Statistical analysis 

Statistical analyses were performed using GraphPad Prism software and JMP pro 14 
software. For two groups, statistical significance was calculated using t-test with Welch 
correction unless otherwise stated. For more than two comparisons, One-Way ANOVA with 
Tukey correction for multiple comparisons was applied unless otherwise stated. All tests 
were two-tailed. P-value of ≤0.05 was considered statistically significant unless otherwise 
stated. Bar graphs represent mean and standard deviation (SD) unless otherwise stated. All 
experiments represent at least 3 separate biological repeats. 

Data Access 

All raw and processed sequencing data generated in this study have been submitted to the 
NCBI Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) under accession 
number GSE128999. 

 
Supplementary Tables 

Table S1. Related to Figure 3. Detailed enrichment results for all comparisons based on 
selection criteria. 
Table S2. Related to Figure 3. Full GSEA results for all comparisons, FDR<0.05, NES>|2|. 
Table S3. Related to Figure 4. Full TF network analysis results. 
Table S4. Related to Figure 6. List of significant KM results.   
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