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A.  Building IFNγ and IL10 pathway modelγ and IL10 pathway model 

AI.  Receptor activation and signaling

 IFNγ pathwayγ pathway 

The  ligand  (IFNγ pathwayγ)  binds  to  the  receptor  (IFNγ pathwayR)  to  form an  active  signaling  complex  IFNγ pathway-LR.  We

assumed a  simple activation-deactivation process in our model[1-3] which simplifies multiple biological

steps of receptor signalosome formation .  

                                             IFNγ pathwayR + IFNγ pathway  <=>  IFNγ pathway-LR         --------- (1)

The signaling complex(IFNγ pathway-LR) carries out phosphorylation of STAT1 and STAT3(S/1/3). Additionally

negative regulators like SOCS1[4] can bind to JAK1[5], a component embedded in the simplified IFNγ pathway-LR

signalosome above and subsequently inhibit the downstream signaling [1, 3, 4] .     

                     

                               STAT1 => STAT1p ; IFNγ pathway-LR     ---------(2)          



                               STAT3 => STAT3p ; IFNγ pathway-LR                     ----------(3)

                              IFNγ pathway-LR + SOCS1  <=> [IFNγ pathway-LR. SOCS1]   ------ (4)

 

While in the reactions  (2) – (3),  IFNγ pathway-LR acts as a modifier/enzyme, reaction (4) shows inhibition of

IFNγ pathway-LR by the negative regulator SOCS1. The complex [IFNγ pathway-LR.SOCS1] is functionally inactive which

blocks IFNγ pathwayγ mediated phosphorylation of S/1/3 [1].  

B.  IL10 pathway 

Similar to the IFNγ pathwayγ receptor the IL10 receptor also binds to its ligand and become functionally active. In

our receptor activation module explicit receptor activation deactivation steps are simplified to a one step

activation and deactivation process .   

                                      IL10R + IL10  <=>  IL10-LR         --------- (5)

The active signaling complex IL10-LR phosphorylates and activates STAT3 and  STAT1. Stoichiometric

inhibitor that typically acts by targeting the IL10R1 [5]  is modeled as a potential negative regulator of

IL10 signaling. 

                                                                  

                             STAT1 => STAT1p ; IL10-LR     ---------(6)          

                             STAT3 => STAT3p ; IL10-LR    ----------(7)

                             IL10-LR + IL10Ri  <=> [IL10-LR . IL10Ri]         ------ (8)

As  observed[5],  IL10Ri  production  and  degradation  is  considered  as  a  constitutive  process  that  is

independent of IL10 stimulation which are represented as the reactions below 

                                                         => IL10Ri                        --------- (9)

                                         IL10Ri    =>                                  ---------  (10)

Where reaction (9) and (10) depicts the basal production and degradation of IL10Ri. 

 

II. STAT1 and STAT3  signaling 

STAT1 and STAT3 are activated during both IFNγ pathwayγ and IL10 stimulations. 

                                   STAT1   =>  STAT1_act ;  IFNγ pathway-LR ,  IL10-LR  ----- (11)

                                   STAT3   =>  STAT3_act  ;  IFNγ pathway-LR ,  IL10-LR  ----- (12)



Studies show STAT1 and STAT3 compete with each other for the same receptor phosphotyrosine motif

during IFNγ pathwayγ signaling [7] which is implemented in our model as a competition between both the STATs

to get phosphorylated by the IFNγ pathwayLR. In the same lines, we implemented  competition of STAT1 and

STAT3 for access to IL10. 

STAT1_act  and  STAT3_act  are  the  activated/phosphorylated  forms  of  STATs  which  subsequently

undergo dimerization and become transcriptionally active[1] 

                         STAT1_act + STAT1_act   -> STAT1_act_Dm   ----- (13)

                         STAT3_act + STAT3_act   -> STAT3_act_Dm   ----- (14)

III. Transcriptional induction of SOCS1 and SOCS3

Transcriptional induction of SOCS1 and SOCS3 were experimentally measured for both IFNγ pathwayγ and IL10

signaling.  Both  the  SOCS  are  induced  relatively  strongly  upon  IL10  signaling  compared  to  IFNγ pathwayγ

signaling (Figure 2B and 2D), especially SOCS1 induced upon 1L10 signaling is ~3 fold higher compared

to IFNγ pathwayγ signaling. 

In our model, in the absence of external signal basal production and degradation of the SOCS is given as 

                                      =>  SOCS1    ----- (15)

                                      =>  SOCS3    ----- (16)  

                           SOCS1 =>                 ----- (17)

                           SOCS3 =>                 ----- (18)

                              

Where reaction (15)&(16) represents production and reaction (17) & (18) represents degradation of the

SOCS.  

Studies show upon IFNγ pathwayγ and IL10 signaling both the SOCS are transcriptionally induced as a function of

canonical STAT1 (in IFNγ pathwayγ pathway) or STAT3(in IL10 pathway). In STAT1 null mice SOCS3 but not

SOCS1 is induced  and in STAT3 null mice SOCS3 induction is blocked [7]; thus  we modeled SOCS1

and SOCS3 induction as functions STAT1 dimer(STAT1 _act_Dm) and STAT3 dimer (STAT3_act_Dm)

respectively. Additionally, studies show efficient promoter binding and gene expression by STAT1 and

STAT3 also depends on other complex factors like availability of other cofactors, for instance, during

IFNγ pathwayγ stimulation,  occupation of DNγ pathwayA-binding sites for STAT1 and the transcriptional activator Sp1 are

both required for full  activation of certain genes [8].  Similarly gene expression in IL10 pathway are



dependent on sp1 and sp3 cofactors [9]. Also competition of bind to different cofactors emerge between

STAT1 and  STAT3 [10].  Considering  the  complexity  of  such  interactions  and  to  accommodate  the

plausible  differences  in  STAT1(STAT3)   mediated  induction  of  SOCS1(SOCS3)  in  IFNγ pathwayγ  and  IL10

pathways we assumed differences in their induction rates, Km values and hill coefficients and estimated

these values during model calibration. 

B.  Model details

 BI. Equations

The differential equations  below captures the information propagation in both IFNγ pathwayγ and IL10 pathways.

The xs’ are model species and the ps are model parameters, names of the species and parameter as well as

their best fit values are detailed in supplementary table TS1.    

  

d [x 1]

dt
=  x3*p2 - x1*x2*p1 * p0

 
d [x 2]

dt
=  x3*p2 - x1*x2*p1

 
d [x 3]

dt
=  x1*x2*p1 - x3*p2 + x4*p4 + x4*p16 - x3*x9*p3

d [x 4 ]

dt
= x3*x9*p3 - x4*p16 - x4*p5 - x4*p4

 
d [x 5]

dt
= p8*x6*p7g + p8*x11*p7g - (x3*x5*p6)/(p9*(x5/p9 + x7/p10 + 1)) - (x15*p21*x5*p26)/(p28*(x5/p28 +   

x7/p29 + 1))
 
d [x 6]

dt
= p8*x11*p7g - p8*x6*p7g - 2*x6^2*p11 + (x3*x5*p6)/(p9*(x5/p9 + x7/p10 + 1)) + 

(x15*p21*x5*p26)/(p28*(x5/p28 + x7/p29 + 1))

d [x 7]

dt
= p8*x8*p14g + p8*x12*p14g - (x3*x7*p13)/(p10*(x5/p9 + x7/p10 + 1)) - (x15*p21*x7*p27)/(p29*(x5/p28 +

x7/p29 + 1))

d [x 8]

dt
= p8*x12*p14g - p8*x8*p14g - 2*x8^2*p12 + (x3*x7*p13)/(p10*(x5/p9 + x7/p10 + 1)) + 

(x15*p21*x7*p27)/(p29*(x5/p28 + x7/p29 + 1))
 



d [x 9]

dt
=  p15 - x9*p16 + x4*p4 + x4*p5 - x3*x9*p3 + (p19*p15*(x11/p30)^n2)/((x11/p30)^n2 + 1) + 

(p21*p34*p15*(x11/p32)^n1)/((x11/p32)^n1 + 1)

d [x 10]

dt
= p17 - x10*p18 + (p20*p17*(x12/p31)^n22)/((x12/p31)^n22 + 1) + 

(p21*p35*p17*(x12/p33)^n11)/((x12/p33)^n11 + 1)

d [x 11]

dt
=  x6^2*p11 - p8*x11*p7

 
d [x 12]

dt
=  x8^2*p12 - p8*x12*p14

 

d [x 13]

dt
=  x15*p21*p23 - x13*x14*p21*p22

 
d [x 14]

dt
=  x15*p21*p23 - x13*x14*p21*p22

d [x 15]

dt
= p21*x16*p25 - x15*p21*p23 + p21*x16*p37 - x15*x17*p21*p24 + x13*x14*p21*p22

 
d [x 16]

dt
=x15*x17*p21*p24 - p21*x16*p25 - p21*x16*p37 - p21*x16*p38

 
d [x 17]

dt
=p21*p36 + p21*x16*p38 - x17*p21*p37 + p21*x16*p25 - x15*x17*p21*p24

 
The model above is calibrated to the experimental data (Figure 2), and the calibrated model is used for

making  predictions  that  were  validated  experimentally(Figure  3).  Details  of  model  calibration  and

validation steps can be found in the sections below. 

BII. Species

Species Nγ pathwayame in model Biological meaning
x1 IFNγ pathwayγ IFNγ pathwayγ ligand
x2 IFNγ pathwayR IFNγ pathwayγ receptor
x3 IFNγ pathway-LR Active signaling complex ; IFNγ pathwayγ pathway 
x4 IFNγ pathway-LR.SOCS1 Functionally inactive signaling complex 
x5 STAT1 Inactive  STAT1
x6 STAT1_act Active STAT1
x7 STAT3 Inactive  STAT3
x8 STAT3_act Active  STAT3
x9 SOCS1 Free SOCS1 



x10 SOCS3 Free SOCS3
x11 STAT1_act_Dm Active STAT1 dimer
x12 STAT3_act_Dm Active STAT3 dimer
x13 IL-10 IL-10 ligand
x14 IL-10R IL-10 receptor
x15 IL10-LR Active signaling complex; IL-10 pathway 
x16 IL10-LR.IL10Ri Functionally inactive signaling complex 
x17 IL10Ri  Inhibitor of IL10R

BII. Parameters

Parameters Nγ pathwayame in model

p0 IFNγ pathwayγ_On

p1 kf_Active_Rec_IFNγ pathwayγ

p2 kb_Active_Rec_IFNγ pathwayγ 

p3 kf_feedback_IFNγ pathwayγ 

p4 kb_feedback_IFNγ pathwayγ 

p5 kdeg_Active_Rec_IFNγ pathwayγ 

p6 kphos_STAT1_IFNγ pathway

p7 kdephos_STAT1_IFNγ pathwayγ 

p8 Phosphatase

p9 Km_STAT1_phos_IFNγ pathway

p10 Km_STAT3_phos_IFNγ pathway

p11 kDm_STAT1
p12 kDm_STAT3

p13 kphos_STAT3_IFNγ pathwayγ 

p14 kdephos_STAT3_IFNγ pathwayγ 

p15 kprod_SOCS1

p16 kdeg_SOCS1

p17 kprod_SOCS3

p18 kdeg_SOCS3

p19 index_k_STAT1_induced_prod_SOCS1

p20 index_k_STAT1_induced_prod_SOCS3

p21 IL10_on

p22 kf_Active_Rec_IL10

p23 kb_Active_Rec_IL10

p24 kf_feedback_IL10

p25 kb_feedback_IL10

p26 kphos_STAT1_IL10

p27 kphos_STAT3_IL10

p28 Km_STAT1_phos_IL10

p29 Km_STAT3_phos_IL10

p30 Km_STAT1_SOCS1



p31 Km_STAT1_SOCS3

p32 Km_STAT3_SOCS1

p33 Km_STAT3_SOCS3

p34 index_k_STAT3_induced_prod_SOCS1

p35 index_k_STAT3_induced_prod_SOCS3

p36 kprod_Feedback_inhibitor

p37 kdeg_Feedback_inhibitor

p38 Induced_deg_IL10_receptor

p39 n1

p40 n11

p41 n2

p42 n22

C. Model calibration and validation 

To estimate the variables in the model that best explains the experimental data we fitted the dynamics of S/1/3

trajectories  to  the corresponding experimental  measurements.  We have used 16 independent  experimental

measurements  for  model  calibration  and  three  independent  measurements  were  used  to  validate  model

predictions. As both  IFNγ pathwayγ and IL10 pathways were built within one single model we selectively activated

either  of  the  pathways  for  a  given  stimulus  condition  while  fitting  the  pathways  specific  experimental

conditions.  Only  during  the  costimulation  predictions  both  pathways  were  activated  simultaneously.  The

calibration datasets are listed below

CI. Datasets for IFNγ pathwayγ pathway  calibration

1. STAT1 phosphorylation kinetics at low dose(L)    

2. STAT1 phosphorylation kinetics at medium dose(M)

3. STAT1 phosphorylation kinetics at high dose(H)  

4. STAT3 phosphorylation kinetics at L  

5. STAT3 phosphorylation kinetics at M

6. STAT3 phosphorylation kinetics at H

7. SOCS1 induction kinetics at M

8. SOCS3 induction kinetics at M

CII. Datasets for  IL10 pathway calibration



1. STAT1 phosphorylation kinetics at low dose(L)    

2. STAT1 phosphorylation kinetics at medium dose(M)

3. STAT1 phosphorylation kinetics at high dose(H)  

4. STAT3 phosphorylation kinetics at L  

5. STAT3 phosphorylation kinetics at M

6. STAT3 phosphorylation kinetics at H

7. SOCS1 induction kinetics at M

8. SOCS3 induction kinetics at M

CII. Optimization

Observables: Optimization process involved fitting observables from the model which we fitted against the

experimental data. The following observables were subjected to fitting

 

        STAT1_phos  =     
(x6+2∗x 11)

(x5+ x6+2∗x11)
    -------- (1)

        STAT3_phos  =   
(x 8+2∗x 12)

(x7+x8+2∗x12)
   -------- (2)

        SOCS1IFNγ pathwayγ  =     
(x 4+x 9)

x9 [basal ]
    -------- (3)

        SOCS1IL10  =     
x 9

x9 [basal ]
    -------- (4)

        SOCS3  =     
x 10

x10[basal ]
    -------- (5)

The  observables  STAT1_phos  and  STAT3_phos  captures  the  dynamics  of  phosphorylated  STAT1  and

STAT3, respectively. Similarly the observables SOCS1 and SOCS3 compares the fold change of induction

over the basal The best fit parameters with their upper and lower bound are shown in supplementary table TS1.

Offsets and scaling factors: During model calibration we introduced offset and scaling factors which facilitates

quantitative  comparison  of  model  and  data  by  adjusting  the  model  trajectories  without  influencing  the

biologically significant observables and general conclusions offered by the model [11, 12]. To consider the

contribution of uncertainties in experimental measurement process and additional unknown smaller technical



fluctuations  on the  day of  the experiment we have implemented local  scaling factors.   In  our model  the

optimization  process  minimizes  the  differences  between  the  model  and  the  data  from  16  datasets

simultaneously to estimate the goodness of fit (χ
2
)   

                        χ
2
 = 

(offset global+scaleglobal∗scalelocal∗model – data)❑
2

erro r❑2❑❑  ----(6)

Optimization was carried out using the MATLAB optimization toolbox Data2Dynamics [13] where goodness

of fit (function (6)) is calculated by evaluating a log likelihood function that minimizes the difference between

model and data, as well as the contribution from the fitted error models from different data sets. Details of

fitting processes can be found elsewhere [13, 14]. Fitting was done using a multi-start  local  optimization

strategy where the starting parameter vectors were generated using Latin hypercube sampling method and

MATLAB function lsqnonlin was used for optimization [13, 10]. We estimated one offset_global and one

scale_global for all the experimental conditions across the doses or stimulus type applied. For example, one

offset_global  for STAT1phos is calculated for L,M, H doses of both IFNγ pathwayγ and IL10 treatments. Similarly one

scale_global is calculated and in each independent dataset (L, M or H) a scale_localis calculated(in the range

0.7-1.5) to accommodate plausible measurement fluctuations local to individual datasets; this also ensures that

overfitting plausibly arising due to scaling factors across all datasets is minimized. The bestfit model had 321

data  points(Nγ pathway)  and  χ
2
 =  307.223 (Nγ pathway/χ

2
 <  1).  The  model  has  68  free  parameters  which  comprises  both

biologically relevant model variables, indexes, offsets and scaling factors.  

S1.5. Model validation

Using the best fit parameters (supplementary table TS1) we simulated the costimulation experiment where M

dose of IFNγ pathwayγ and IL10 are applied simultaneously and the resultant dynamics of STAT1 and STAT3 activation

were studied. Due to the inherent parameter uncertainties associated with such biochemical models  robust

predictions are often not derivable from only one best fit model [11]. So, here we used 40 independently fitted

models, each with comparable goodness of fit, to predict the effect of the costimulation on STAT1 and STAT3

dynamics. We achieved quantitative agreements with data for STAT3 and SOCS1 data (Figure 4B and 4D) and

STAT1 predictions(Figure S2A) could be quantitatively matched to the data(Figure 4C) by multiplying the

predicted STAT1 trajectory to a scaling factor that adjusts the height of the predicted trajectory without further

adjustments to the model. Shaded area in Figure 4B, 4C and 4D shows prediction range and the solid lines

show the predictions from the fit with lowest χ
2

.   .

D. Parameter sampling



To understand the significance of  individual  best-fitted parameters  on the signaling dynamics  of  the

STATs we sampled the best fit parameters, simulated the model and captured the trajectories of S/1/3. 

For a given variable p, varied in the range [lu*p,ub*p] where lb and ub are upper and lower bound of

sampling, the following Monte-Carlo sampling method [15] was used 

        sampled_p = (ub*p - lu*p).* random(1) + lu*p  ----- (7)

 random(1) generates a random number between 0 to 1. The method was repeated for all the sampled

variables and it  results  in a  new parameter  vector.  We generated 20000 such independent  parameter

vectors and simulated the model for each parameter vector and analyzed the STATs trajectories. The

range of variation allowed for each parameter was a 5 fold in either direction, implying, ub = 5 and lb =

0.2.  

E. Information content calculation 

As implicated in earlier  studies[15, 16],  we argued,  the parameters with maximum information for a

desired response type would be the most sensitive parameters and they will be constrained to values in a

certain range compared to the less sensitive paramters who in a much wider range can give the response

of interest. For instance, if we have 2000 independent parameter sets that results in bell shaped STAT3

responses(ParaBell-shaped) to the increasing dose of IFNγ pathwayγ, and 2000 other independent parameter sets resulting

in proportional STAT3 dose-responses (Paraproportional ), then to calculate the information content of a given

parameter m we first calculated the entropy of m in both ParaBell-shaped and Paraproportional     . 

                        Em[Bell-shaped]   ¿−∑
❑

❑

p(m)logp (m)---- [8]

 where p(m) implies the probability of m to be located in a given bin within the distribution it assumes in

the assigned range.   

Similarly,  Em[proportional]  is calculated for the parameter m. The information content of the parameter m is

then calculated as[15]   

                                      I(m) =  |Em[Bell-shaped] -  Em[proportional] |  ----- [9]

Information content of all the model variables were calculated in a similar manner. This method

was also used to calculate the information content and identify the most sensitive parameter(s)

determining the robustness of IL10-STAT3 signaling during costimulation.  
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