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 15 

ABSTRACT 16 

Plant phenology, which describes the timing of plant development, is a major aspect of 17 

plant response to environment and for crops, a major determinant of yield. Many studies have 18 

focused on comparing model equations for describing how phenology responds to climate but 19 

the effect of crop model calibration, also important for determining model performance, has 20 

received much less attention. The objectives here were to obtain a rigorous evaluation of 21 

prediction capability of wheat phenology models, to analyze the role of calibration and to 22 

document the various calibration approaches.  The 27 participants in this multi-model study 23 

were provided experimental data for calibration and asked to submit predictions for sites and 24 

years not represented in those data. Participants were instructed to use and document their 25 

“usual” calibration approach. Overall, the models provided quite good predictions of 26 

phenology (median of mean absolute error of 6.1 days) and did much better than simply using 27 

the average of observed values as predictor.  The results suggest that calibration can 28 

compensate to some extent for different model formulations, specifically for differences in 29 

simulated time to emergence and differences in the choice of input variables. Conversely, 30 

different calibration approaches were associated with major differences in prediction error 31 

between the same models used by different groups. Given the large diversity of calibration 32 

approaches and the importance of calibration, there is a clear need for guidelines and tools to 33 

aid with calibration. Arguably the most important and difficult choice for calibration is the 34 

choice of parameters to estimate. Several recommendations for calibration practices are 35 

proposed. Model applications, including model studies of climate change impact, should 36 

focus more on the data used for calibration and on the calibration methods employed.  37 
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Introduction 38 

Crop models are widely used to simulate the effect of weather, soil and management 39 

on crops (Rauff & Bello, 2015; van Ittersum et al., 2003).  Here we focus specifically on the 40 

use of crop models to simulate crop phenology i.e. the cycle of biological events in plants. 41 

Matching the phenology of crop varieties to the climate in which they grow is a critical crop 42 

production strategy (Hunt et al., 2019; Rezaei, Siebert, & Ewert, 2015; Rezaei, Siebert, 43 

Hüging, & Ewert, 2018). Thus, understanding and improving our ability to simulate 44 

phenology with crop models is important step in using models for improving crop 45 

management, for designing better adapted genotypes and for preparing for and adapting to 46 

global change. Process-based models similar to those for crops can be used for natural 47 

vegetation, so crop models can serve as examples for studies of phenology in ecosystems 48 

(Piao et al., 2019). 49 

Crop model evaluation is an essential aspect of modeling, assessing whether model 50 

performance is acceptable for the intended use of the model. For studies of phenology two 51 

major questions are a) how accurate are current models for the prediction of crop 52 

development stages? and b) what determines model accuracy and what does that imply about 53 

how accuracy can be improved?  We use here prediction in the sense of determining outputs 54 

(dates of development stages) from known inputs (weather, soil, management). The problem 55 

of predicting future events, with unknown weather, is not considered.  56 

There have been numerous evaluation studies of crop model simulations, including but 57 

not restricted to phenology, both of individual models and of multi-model ensembles. The 58 

typical procedure is to first calibrate each model using a part of the available field data and 59 

then to evaluate it using the remaining data.  60 
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Most crop model evaluation studies focusing on crop phenology have had relatively 61 

little data for calibration or evaluation. (Andarzian, Hoogenboom, Bannayan, Shirali, & 62 

Andarzian, 2015) for example, used data from one location covering five growing seasons and 63 

two or three sowing dates per year. Out of these data, one year was used for calibration and 64 

the other two years of data to evaluate the model. (Yuan, Peng, & Li, 2017) used one year of 65 

data for calibration and the second year of data from the same location for evaluation of the 66 

rice crop model ORYZA. Hussain, Khaliq, Ahmad, & Akhtar (2018) tested four models using 67 

data from two locations with two years of data, 11 crop planting dates, and three varieties. 68 

Paucity of data means that model parameters are estimated with relatively large uncertainty 69 

and model evaluation is quite uncertain.  70 

Another common feature of crop model evaluation is that the data are often such that 71 

model error for the evaluation data cannot be assumed to be independent of model error for 72 

the calibration data. That holds for the examples listed above since the evaluation and 73 

calibration data come from the same sites. In such cases, the evaluation does not give an 74 

unbiased estimate of how well the model will predict for other sites not included in the 75 

calibration data. Since usually the model is meant for use over a range of sites, this clearly 76 

reduces the usefulness of the evaluation information.  77 

A third feature often found in crop model evaluation is that the range of situations 78 

from which the calibration data are drawn (the “calibration population”) is often different than 79 

the range of conditions from which the evaluation data are drawn (the “evaluation 80 

population”). For example, Hussain et al. (2018) used data from an experiment that included a 81 

range of crop stresses to calibrate their model. They used data from the least stressed 82 

treatment in the calibration process and evaluated the resultant model on the remaining 83 

planting dates at the same location. The evaluation data thus represented a different range of 84 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 24, 2019. ; https://doi.org/10.1101/708578doi: bioRxiv preprint 

https://doi.org/10.1101/708578


4 

 

conditions than the calibration data. In a multi-model ensemble study of the effect of high 85 

temperatures on wheat growth (Asseng et al., 2015) detailed crop measurements were 86 

provided for one planting date and the models were evaluated using other planting dates, 87 

some with additional artificial heating. Again, the evaluation data represented a much larger 88 

range of temperatures than represented in the calibration data. While the capacity of crop 89 

models to extrapolate to conditions quite different than those of the calibration data is 90 

obviously of interest, it is a rather different type of evaluation than the case where the 91 

calibration and evaluation populations are similar. 92 

Thus, evaluation of crop phenology models to date has mainly concerned situations 93 

that would tend to make prediction difficult, because of small amounts of data for calibration 94 

and differences between the calibration and target populations. Furthermore, the quality of the 95 

evaluation is often questionable, because of the relatively small amounts of data and the non-96 

independence of the errors for the calibration and evaluation situations. There is thus a need 97 

for more rigorous assessments of simulation capability of crop phenology models. The first 98 

objective of this paper is, therefore, to provide a rigorous evaluation of how well crop models 99 

predict wheat phenology, in the situation where there is substantial data for calibration and 100 

where the calibration and evaluation data can be assumed to come from the same underlying 101 

population. To ensure the rigor of the evaluation, we create a situation where the model errors 102 

for the calibration and simulation data can be assumed independent. 103 

The emphasis in model evaluation studies is often on the role of model structure, i.e. 104 

model equations (Maiorano et al., 2017; Svystun, Bhalerao, & Jönsson, 2019; Wang et al., 105 

2017). There has been relatively little work on the diversity and importance of calibration 106 

approaches in crop modeling. Clearly however the simulated values also depend on the 107 

parameter values estimated by calibration and therefore on the calibration approach. 108 
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Confalonieri et al., (2016) found that the model user, responsible for calibration, had a very 109 

large effect on predictive quality. The second objective of this study then was to investigate 110 

the role of calibration in determining prediction quality. 111 

In a wide-ranging survey, (Seidel, Palosuo, Thorburn, & Wallach, 2018) found that 112 

there  is a wide diversity of calibration strategies used for crop models, but for that survey 113 

each response was for a different prediction problem. This did not address the problem of the 114 

diversity of calibration approaches by different groups given the same data and the same 115 

prediction objectives.  The third objective of this study was therefore to obtain detailed 116 

information about the diversity of calibration strategies adopted by different modeling groups 117 

for the same prediction problem. This is useful as a step toward developing guidelines for 118 

calibration of phenology models, in that it helps define the range of possible approaches. This 119 

is of practical interest not only for stand-alone phenology models, but also for crop models 120 

more generally, since crop models are often calibrated first just for phenology, and then 121 

separately for biomass increase and partitioning and soil processes.   122 

Materials and Methods 123 

Experimental data 124 

The data were provided by ARVALIS – Institut du vegetal, a French agricultural 125 

technical institute. They run multi-year multi-purpose trials at multiple locations across 126 

France, which include variety trials. The data here are from the two winter wheat check 127 

varieties, Apache which is a common variety grown throughout France and Central Europe 128 

and Bermude, mainly grown in Northern and Central France. The trials have three repetitions 129 

and follow standard agricultural practices, with N fertilization calculated to be non-limiting. 130 

Thus, both the calibration and evaluation data are drawn from sites in France where winter 131 

wheat is grown, subject to standard management. 132 
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The observed data used in model calibration and evaluation are the dates of two 133 

development stages, namely beginning of stem elongation (growth stage 30 on the BBCH and 134 

Zadoks scales (Zadoks, Chzang, & Konzak, 1974) and middle of heading (growth stage 55 on 135 

the BBCH and Zadoks scales). These stages are of practical importance because they can 136 

easily be determined visually and are closely related to the recommended dates for the second 137 

and third nitrogen fertilizer applications.  138 

The data were divided into two categories (table 1). One part, the calibration data (six 139 

sites, five years for a total of 14 environments i.e. site-year combinations), was provided to 140 

participants for calibration. A second part, the evaluation data (five sites, two years for a total 141 

of eight environments), was not given to participants. The division of the data was such that 142 

the calibration and evaluation data had no sites or years in common. To achieve this some 143 

data (denoted “other” data) were used neither for calibration nor evaluation (but were used in 144 

the calculation where overall variability in simulated values was evaluated).    145 

Table 1. 146 

Environments (site-year combinations) that provided the data. C= calibration data. E = 147 

evaluation data. O = data not used for calibration or evaluation (only used for 148 

evaluating variability between models).  Blank cells indicate no data.  149 

Site 

(longitude,latitude) 

Harvest year 

2010 2011 2012 2013 2014 2015 2016 

FORESTE 

(3.20,49.82) 

    E E OO
*
 O   

MERY C C   O C C   

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 24, 2019. ; https://doi.org/10.1101/708578doi: bioRxiv preprint 

https://doi.org/10.1101/708578


7 

 

4.02,48.33) 

ROUVRES 

5.09,47.28) 

    E E O O   

CESSEVILLE
1
 

(0.90,49.15) 

  C           

IVILLE
1
 

(0.90,49.15) 

    E         

VILLETTES
1
 

(0.90,49.15) 

      E       

EPREVILLE
1
 

(0.90,49.15) 

        C     

CRESTOT
1
 

(0.90,49.15) 

          C   

OUZOUER 

(1.52,47.90) 

  O E E O O   

BIGNAN 

(-2.73,47.88) 

C C O O C C   

BOIGNEVILLE 

(2.38,48.33) 

    O O C C C 

 150 
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 *
There were two sowing dates at FORESTE in 2014. 

1 
These are separate sites that are 151 

geographically close to one another and share a single weather station.  152 

 153 

The background and input information provided to the modelers for all environments 154 

included information about the sites (location, soil texture, field capacity, wilting point), 155 

management (sowing dates, sowing density, irrigation and fertilization dates and amounts), 156 

and daily weather data (precipitation, minimum and maximum air temperature, global 157 

radiation and potential evapotranspiration). Initial soil water and N content were not measured 158 

in these experiments, but best estimates were provided by the experimental scientist. If any 159 

models required other input data, modeling groups were asked to derive those values in 160 

whatever way that seemed appropriate.  161 

The range of observed days from sowing to development stages BBCH30 and 162 

BBCH55 for the two varieties for each category of data (calibration, evaluation, other hidden 163 

data) is shown in figure 1. The spread from minimum to maximum in the evaluation data is 164 

between 24 and 27 days depending on stage and variety. The spread is larger for the 165 

calibration data, and in fact, the calibration data cover the range of the evaluation data and the 166 

range of other hidden data. Thus, the models are not being used to extrapolate outside the 167 

observed values of the calibration data.  168 

 169 

   Figure 1 170 

Boxplots of calibration, evaluation and other data for development stages 171 

BBCH30 and BBCH50 and varieties Apache (left) and Bermude (right). The y-axis 172 

shows days from sowing to the indicated development stage. Boxes indicate the lower 173 

and upper quartiles. The solid line within the box is the median. Whiskers indicate the 174 
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most extreme data point, which is no more than 1.5 times the interquartile range from 175 

the box, and the outlier dots are those observations that go beyond that range.  176 

177 
 178 

 179 

Crop models 180 

Twenty-seven modeling groups participated in this study, noted M1-M27. Information 181 

about the underlying model structures is given in Supplementary table S1.  The four groups 182 

M2, M3, M4, and M5 all used the same model structure (i.e. models with the same name), 183 
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denoted as model structure S1. The four models M7, M12, M13, and M25 also shared a 184 

common model structure, denoted as S2. As will be seen, different groups using the same 185 

model structure had different results. This could be due to differences in model version, but 186 

the differences are not in the basic phenology equations, and therefore, should have no or only 187 

a negligible effect on the simulated development stages. The differences are assumed to 188 

mainly be due to differences in the values of the parameters, either those not fit by calibration 189 

or those estimated by calibration. Since groups using the same model structure obtained 190 

different results, we refer to the 27 contributions as different models. In the presentation of the 191 

results the models are anonymized and are identified simply as M1 to M27.  It would be 192 

misleading to use the names of the model structures, since the results depend on both model 193 

structure and on the values of the parameters.  194 

Two of the models (M9, M18) only simulated days to development stage BBCH55 195 

and not to stage BBCH30. Results for these two models are systematically included with the 196 

results for the other models, but averages over development stages for these two models only 197 

refer to BBCH55. This is not repeated explicitly every time an average over development 198 

stages is discussed.  199 

In addition to the individual model results, we show the results for the model ensemble 200 

mean (“e-mean”) and the model ensemble median (“e-median”). We also define a very simple 201 

predictor, denoted “naive”, which was calculated as the average of the observations in the 202 

calibration data for prediction. The naive model thus predicts that all days from sowing to 203 

stage BBCH30 (BBCH55) will correspond to the average of days from sowing to BBCH30 204 

(BBCH55) in the calibration data, separately for each variety. The naive model predictions for 205 

days from sowing to BBCH30 and BBCH55 are respectively 155.9 days and 206.9 days for 206 

variety Apache, and 156.1 days and 213.1 days for variety Bermude. 207 
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Calibration and simulation experiment 208 

The participants were provided with observed phenology data (dates of BBCH30 and 209 

BBCH55) only for the calibration environments. The participants were asked to calibrate their 210 

model using those data, and then to use the calibrated model to simulate phenology for all 211 

environments (i.e. calibration, evaluation and hidden data environments). No guidelines for 212 

calibration were provided. Participants were instructed to calibrate their model in their “usual 213 

way” and fill out a questionnaire explaining what they did (Supplementary table S2).  214 

Evaluation 215 

A common metric of error is mean squared error (MSE). We calculated MSE for each 216 

model, each development stage (BBCH30 and BBCH55) and for each variety, as well as 217 

averaged over stages and varieties. This was done separately for the calibration and evaluation 218 

data. For example, MSE for model m, for predicting BBCH30, variety Apache, based on the 219 

evaluation data, is:  220 

  
2

30, 30, 30,

, ,
ˆ(1/ 8)BBCH Apache BBCH Apache BBCH Apache

eval m i i m

i eval

MSE y y


              (1) 221 

 222 

where the sum is over the eight environments used for evaluation and 30,BBCH Apache

iy  and 223 

30,

,
ˆ BBCH Apache

i my  are respectively the observed value and value simulated by model m for 224 

evaluation environment i, development stage BBCH30 and variety Apache. For ,

all

eval mMSE , the 225 

average is over the eight evaluation environments, both stages and both varieties, so overall 226 

32 predictions. 227 

Mean squared error can be shown to be the sum of three positive terms, namely 228 

squared bias, the difference in variance between the observed and simulated values and a term 229 
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related to the correlation between observed and simulated values (Kobayashi & Salam, 2000). 230 

We specifically examined the bias, defined as the average over observed values minus the 231 

average over simulated values.  232 

The mean absolute error (MAE) is of interest as a more direct measure of error, that 233 

does not give extra weight to large errors as MSE does. For example, MAE for model m for 234 

predicting BBCH30, variety Apache, based on the evaluation data, is:  235 

 
30, 30, 30,

, ,
ˆ(1/ 8)BBCH Apache BBCH Apache BBCH Apache

eval m i i m

i eval

MAE y y


   236 

                  237 

We also look at modeling efficiency (EF) defined for model m as  238 

 1 /m m naiveEF MSE MSE    239 

where mMSE   is MSE for model m and naiveMSE  is MSE for the naive model defined above. 240 

EF is a skill measure, which compares the predictive capability of a model to that of the naive 241 

model. Since the naive model makes the same prediction for all environments, it does not 242 

account for any of the variability between environments. A model with  EF≤0 is a model that 243 

does no better than the naive model, and so would be considered to be a very poor predictor. 244 

A perfect model, with no error, has modeling efficiency of 1.  245 

 246 

Results 247 

Goodness-of-fit and prediction error 248 

Summary statistics for MSE averaged over both varieties and over both development 249 

stages, for the calibration and evaluation data, are shown in table 2. Summary MSE values for 250 
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the calibration data for each development stage and variety separately are shown in 251 

Supplementary table S7, and results for each individual model are given in Supplementary 252 

figure S1.  253 

Table 2 254 

Summary statistics of MSE (days²) averaged over both varieties and over both 255 

development stages.   256 

MSE 

(days²) Minimum 1st quartile Median Mean 

3rd 

quartile Maximum 

Calibration 

data  15 28 47 77 63 426 

Evaluation 

data 20 35 62 79 111 235 

 257 

Figure 3 and Supplementary tables S4-S6 show results for each development stage and 258 

variety and averaged over development stages and varieties for the evaluation data. Results 259 

for each model are given in Supplementary table S3. The median of MAE for the evaluation 260 

data is 6.1 days. The median of overall efficiency is 0.62, signifying that half of the models 261 

have MSE values for the evaluation data that are at most 38% as large as that of the naive 262 

predictor.   Only two models have negative values of EF, indicating that one would do better 263 

to predict using the average of the calibration data. For the four individual predictions (two 264 

development stages, two varieties), the median of MAE ranges from 5.1 to 6.4 and the median 265 

of EF ranges from 0.6 to 0.8. The ensemble models e-median and e-mean, though not the best 266 

predictors, are among the best, with e-median being rated second best and e-mean fourth best.  267 
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The range of results among individual models is appreciable. The mean absolute errors for the 268 

evaluation data averaged over all predictions ( all

evalMAE ) go from 3.5 to 13 days. The all

evalMSE269 

values vary by over a factor of 10, from a minimum of 20 days² to a maximum of 235 days².  270 

Figure 3 271 

Box and whisker diagrams of absolute errors for evaluation data for each 272 

prediction and on average (top panel) and modeling efficiency for each prediction and 273 

on average (bottom panel). BBCH30A and BBCH30B refer respectively to prediction of 274 

days to BBCH30 for variety Apache and variety Bermude. BBCH55A and BBCH55B 275 

refer respectively to prediction of days to BBCH55 for variety Apache and variety 276 

Bermude. The variability comes from differences between models.  277 

 278 

 279 

 280 

 281 
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 282 

 283 

 284 

 285 

Role of calibration 286 

The relationship between overall MSE for the evaluation data and overall MSE for the 287 

calibration data is quite close (adjusted R²=0.70, figure 4). That is, much of the variability 288 

between models in MSE for the evaluation data can be explained by the variability in MSE 289 

values for the calibration data, which emphasizes the importance of obtaining a good fit to the 290 

calibration data, which in turn depends to a large extent on the method of calibration.  291 

The four models that have model structure S1 and the four models that have model 292 

structure S2 are identified in figure 4. Models with the same structure have different MSE 293 

values; the differences are particularly large for S1. The models with structure S1 are ranked 294 

3rd, 9th, 14th and 27th best for overall evaluation MSE among the 27 individual models. The 295 

models with structure S2 are ranked 4th, 8th, 17th and 18
th

 best.  296 
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 297 

Figure 4 298 

Mean squared error (MSE) for the calibration data, averaged over environments, 299 

development stages and varieties  ( all

calibMSE  days²), as related to MSE for the evaluation 300 

data ( all

evalMSE , days²). The regression line all

calibMSE = -27.6 + 1.32 all

evalMSE is shown 301 

(R²=0.70). ● indicates models with structure S1. ⁎ indicates models with structure S2. ○ 302 

indicates other models.  303 

 304 
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 305 

Twenty-one models simulated and reported time from sowing to emergence. For these 306 

models, we can separate simulated time from sowing to BBCH30 (sow_30) into two 307 

contributions, the simulated time from sowing to emergence (sow_em) plus the simulated 308 

time from emergence to BBCH30 (em_30), so that sow_30=sow_em+em_30. Figure 5 shows 309 

results from two environments, typical of essentially all environments and both varieties, for 310 

the relation between em_30 or sow_30 and sow_em. The average slope of the regression 311 

em_30=a+b*sow_em over all environments (including calibration, evaluation and other 312 

environments) and both varieties is b=-1.04, so that each day increase in simulated days to 313 

emergence is on average associated with a 1.04 day decrease in simulated time from 314 

emergence to BBCH30. The negative correlation between sow_em and em_30 leads to a 315 

between-model variance for sow_30 (average variance 92 days²) that is smaller than the sum 316 

of the variances of  sow_em (average variance 20 days²) and em_30 (average variance 101 317 

days²). The right panels of figure 5 show that different models could simulate almost exactly 318 

the observed value of sow_30 with quite different values of sow_em.  319 

Figure 5 320 

Relation between simulated days from emergence to BBCH30 and simulated days 321 

from sowing to emergence as reported by 21 crop models for two environments (left 322 

panels). Relation between simulated days from sowing to BBCH30 and simulated days 323 

from sowing to emergence for the same environments (right panels). A small amount of 324 

noise has been applied to avoid overlap. The slope of the linear regression line and the p-325 

value for testing slope=0 are shown for the left panels. The observed days from sowing to 326 

BBCH30 is shown as a horizontal line in the right panels.    327 

 328 
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 329 

 330 

Bias (average over environments of observed values – average of simulated values) is 331 

one aspect of goodness-of-fit. For most models, the bias for the calibration data is quite small. 332 

Considering absolute bias for both development stages and both varieties, the median value 333 

over models was 2 days (Supplementary table S8). In cases where the bias is relatively large, 334 

it is often of opposite sign for BBCH30 and BBCH55, as in the examples of figure 2.  335 

 336 
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Figure 2 337 

Observed vs. simulated days after sowing (DAS) for calibration data for models 338 

M10 and M24. The legend shows MSE (days²) for each stage and for calibration and 339 

evaluation data. (The individual evaluation results are not displayed). In the subtitles, 340 

bias values (days) for each stage are shown. The first number in parentheses is for the 341 

calibration data, the second number is for the evaluation data.  342 

 343 

 344 
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 345 

Calibration approach 346 

Each participant was asked to calibrate the model in the “usual” way, using the 347 

calibration data provided. The questionnaire about calibration focused on three aspects of 348 

calibration; the criterion of error to be minimized, the software used and the choice of 349 

parameters to estimate. The choices of the participants are summarized in table 3 and choices 350 

for each model are shown in Supplementary table S9.  351 

Table 3 352 

Summary of calibration approaches. Numbers are number of models with 353 

indicated choice. The specific models associated with each choice are shown in 354 

Supplementary tables S3 and S9. More information about the software is presented in 355 

Supplementary table S10.  356 

 357 

  

Number of 

parameters
1 

Minimum 1st Quartile   Median    Mean     3rd Quartile    Maximum  

   1.00               2.00          3.00         3.63          4.50                9.00 

Which 

parameters 

Thermal time to a single development stage 16 

Thermal time to two or more development stages 6 

Related to vernalization 11 

Related to photoperiod 11 

Related to effect of temperature (e.g. base temperature) 6 

Related to phyllochron 6 

Related to tiller appearance 2 
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Related to time to emergence 3 

Parameters unrelated to calibration data
2 

 6 

Objective 

function 

Sum of squared errors or of root mean squared errors 21 

Sum of absolute errors 2 

Concentrated likelihood 1 

No single explicit objective function 3 

 

Software
3 

Trial and error 10 

DIRECT-L  (Gablonsky & Kelley, 2001; Johnson, n.d.) 2 

Ucode (E. P. Poeter, Hill, Banta, Mehl, & Christensen, 2005; Eileen P. Poeter & 

Hill, 1999) 3 

DE Optim (Mullen, Ardia, Gil, Windover, & Cline, 2011) 3 

PEST (Doherty, Hunt, & Tonkin, 2010) 2 

SCE (Duan, Gupta, & Sorooshian, 1993; Houska, Kraft, Chamorro-Chavez, & 

Breuer, 2015) 2 

GLUE  (Beven & Binley, 2014; J. He, Jones, Graham, & Dukes, 2010) 1 

DREAM (J. A. Vrugt et al., 2009; Jasper A. Vrugt, 2016) 2 

Wrote code 
4
 4 

1 
Summary of number of estimated parameters for models M1-M27. 

2 
These are 358 

parameters that do not affect simulated days to BBCH30 or BBCH55. 
3
 Some modeling 359 

groups used more than one software package. 
4
Modeling groups that wrote their own 360 

software.  361 

Objective function 362 

Most modeling groups defined the sum of squared errors or the sum of root mean 363 

squared  errors  as the objective function to be minimized, where the sum is over the two 364 
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stages. (In all cases, the calibration was done separately for the two varieties). Two groups 365 

minimized the sum of absolute errors. Calibration for model M21 was based on maximizing 366 

the concentrated likelihood (Seber & Wild, 1989) assuming a normal distribution of errors 367 

with possibly different error variances for the two development stages. In this case, the 368 

objective function involves a product of errors for the two outputs, rather than a sum. Four of 369 

the participants (M12, M16, M18) did not define an explicit objective function to be 370 

minimized. In these cases, the parameter values were chosen to obtain a “good fit” to the data 371 

by visual inspection. Finally, two of the models (M7, M8) divided the calibration into two 372 

steps. In these cases  three of the parameters were used to fit the BBCH30 data, and then in 373 

another step another parameter was used to fit the BBCH55 data.  374 

Minimizing the sum of squared errors is a standard statistical approach to model 375 

calibration, which has highly desirable properties if certain assumptions about model error are 376 

satisfied, including equal variance of model error for all data points and non-correlation of 377 

model errors. Only model M21 took into account the possibility that the error variances are 378 

different for BBCH30 and BBCH55, and none of the modeling groups took into account 379 

possible correlations between errors for BBCH30 and BBCH55 in the same field. Based on 380 

the errors for all the data and all the models, it was found that there is a highly significant 381 

difference in variance between errors for BBCH30 (variance of error 100.7 days²) and 382 

BBCH55 (variance of error 67.3 days²). Also, the correlation between the error for BBCH30 383 

and the error for BBCH55 in the same field is 0.53 and highly significant. However, if only 384 

results for a single model are considered, then for most models the differences in variance and 385 

the correlation are not significant.   386 

Two models defined a posterior probability of the parameters equal to the likelihood 387 

times the prior probability, as usually assumed in a Bayesian approach. The parameters used 388 
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for prediction were those that maximized the posterior probability (i.e., the estimated mode of 389 

the posterior distribution). In both cases, the likelihood was assumed Gaussian with 390 

independent errors, and the prior distribution was assumed uniform between some minimum 391 

and maximum value. This approach is equivalent to minimizing the mean squared error, with 392 

constraints on the parameter values.  393 

Software 394 

Seven participants simply used trial and error to search for the optimal parameters. 395 

The other participants used software specifically adapted to minimizing the objective 396 

function, either written specifically for their model or, in most cases, available from other 397 

sources (Supplementary table S10). 398 

Choice of parameters to estimate 399 

 The choice of parameters to estimate was based on expert judgement in most cases. 400 

The participants declared that they chose parameters known to affect phenology in the model, 401 

or more specifically parameters expected to have a major effect on time to BBCH30 and 402 

BBCH55 and expected to differ between varieties. Five participants did a sensitivity analysis 403 

to aid in the choice of parameters to estimate. The number of estimated parameters ranged 404 

from 1 to 9. In almost all cases, the number of parameters to estimate was decided a priori. In 405 

three cases, the number was the result of testing the fit with different numbers of parameters. 406 

In one of those cases  the Akaike Information Criteria (AIC, Akaike, 1973) and adjusted R² 407 

were used to test whether additional parameters should be estimated.  408 

Almost all modeling groups estimated one or more parameters that represent thermal 409 

time between development stages (table 6). Some adjustments were necessary for models that 410 

did not explicitly calculate time of BBCH30 or BBCH55. In model M2, for example, a new 411 

parameter was added to the model, and estimated, representing the fraction of thermal time 412 
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from double ridge to heading at which BBCH30 occurs. Thirteen groups estimated a 413 

parameter related to the effect of photoperiod. Ten groups estimated a parameter related to 414 

vernalization. Six groups modified one or more parameters related to the temperature 415 

response (for example model M6 estimated Tbase, the temperature below which there is no 416 

development). Only three models modified parameters related to the time from sowing to 417 

emergence, and only one model modified a parameter related to the effect of water stress. Six 418 

models included among the parameters to estimate, parameters that have no effect on the 419 

variables furnished as calibration data. Such parameters included thermal times for 420 

development stages after BBCH55, potential kernel growth rate, kernel number per stem 421 

weight and the temperature below which there is 50% death due to cold (Supplementary table 422 

S9). 423 

 424 

Discussion 425 

Prediction error  426 

The challenge in this study was to predict the time from sowing to beginning of stem 427 

elongation and to heading in winter wheat field trials performed across France. This is a 428 

problem of practical importance, since these two development stages are important for wheat 429 

management (e.g. fertilization). The evaluation  concerned years and sites not included in the 430 

calibration data, making this one of the most rigorous evaluations to date of how well crop 431 

models simulate  phenology. 432 

Twenty-seven modeling groups participated in the exercise. Most models predicted 433 

times to stem elongation and heading quite well (median MAE of 6 days). Half the models 434 

had MSE values of prediction that were 36% or less than MSE of a naive predictor. It must be 435 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 24, 2019. ; https://doi.org/10.1101/708578doi: bioRxiv preprint 

https://doi.org/10.1101/708578


25 

 

kept in mind that this study is a rather favorable situation for prediction, with a substantial 436 

amount of calibration data and predictions for environments similar to those of the calibration 437 

data.  438 

Role of calibration 439 

What is the role of calibration in determining prediction accuracy?  We cannot answer 440 

this exactly, because differences between models result not only from differences in 441 

calibration approach, but also from differences in structure and from differences in the values 442 

of parameters not estimated by calibration. However, several aspects of the results indicate 443 

that calibration is important.  444 

Consider first the comparison between models with the same structure. There are 445 

fairly large differences in MSE between models with the same structure. This could  partially 446 

be due to different values for the parameters not estimated by calibration. However,  since 447 

there are major differences in calibration approach, and in general the parameters estimated 448 

by calibration are among the most important controlling phenology, it seems reasonable to 449 

conclude that the differences between models with the same structure are largely due to 450 

differences in calibration.   451 

Conversely, our results indicate that calibration can result in models with very 452 

different structures achieving similar values of MSE. One essential aspect of model structure 453 

is the choice of input variables. In fact, MSE can be expressed as a sum of two terms, the first 454 

of which depends only on the choice of the model input variables, while the second measures 455 

the distance between the model used and the optimal model for those inputs (Wallach, 456 

Makowski, Jones, & Brun, 2019). Calibration has a major effect of the second term, and in 457 

fact the objective of calibration is to minimize that term. The most important inputs that 458 

determine spring wheat phenology are daily temperature and photoperiod (Aslam et al., 2017) 459 
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and for winter wheat it is also necessary to include the process of vernalization, i.e. the effect 460 

of low winter temperatures on development (Li et al., 2013). Five of the best eight predicting 461 

models here, with all

evalMSE  < 40 days², do use all three of those variables (daily temperature, 462 

photoperiod, vernalizing temperatures) as inputs. Two of those best eight models however do 463 

not use vernalizating temperatures, and one of those best eight does not use photoperiod. Thus 464 

there are similarly low values of MSE for prediction even for models so fundamentally 465 

different in structure that they use different input variables. It seems likely that this is largely 466 

due to the fact that the different models are calibrated using the same data.  467 

Another indication that calibration compensates for differences in structure is the 468 

result that there is less variability between models for predicting days from sowing  to 469 

BBCH30, which is provided as calibration data, than would be expected if the uncertainties in 470 

days from sowing to emergence and days from emergence to BBCH30 simply added up. 471 

Compensation is usually discussed in the context of single models. For example, equifinality, 472 

which is a well-known phenomenon of complex models, means that different combinations of 473 

parameter values, and thus different quantitative descriptions of processes, can lead to the 474 

same results for outputs because there is compensation between the processes (Beven, 2006; 475 

D. He et al., 2017). However, this phenomenon has not been described in the context of multi-476 

model studies. Here, we have an example of compensation for differences between models in 477 

the way they partition days from sowing to BBCH30 into days from sowing to emergence 478 

plus days from emergence to BBCH30. Models with longer simulated times from sowing to 479 

emergence tend to have a shorter simulated time from emergence to development stage 480 

BBCH30 and vice versa. In fact, each extra day from sowing to emergence is associated on 481 

average with almost exactly one less day from emergence to BBCH30.  The result is that 482 

models with quite different simulated days from sowing to emergence can have nearly 483 

identical times from sowing to BBCH30. This can be expressed in terms of model 484 
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uncertainty, as quantified by between-model variance. The variance of days from sowing to 485 

BBCH30 is less than the sum of variances of days from sowing to emergence and days from 486 

emergence to BBCH30. That is, calibration reduces, but does not eliminate, model uncertainty 487 

for the variable provided for calibration. 488 

We do not have observed time to emergence, but in any case, the models with 489 

different simulated days to emergence can’t all be right. This is an  example of how models 490 

can get the right answer (correct days to BBCH30, thanks to calibration) for the wrong 491 

reasons (wrong days to emergence and compensating wrong days from emergence to 492 

BBCH30), illustrating the problem pointed out for example by  (Challinor, Martre, Asseng, 493 

Thornton, & Ewert, 2014). The same compensation of errors between sowing to emergence 494 

and emergence to BBCH30 will not be appropriate for all environments. This is one of the 495 

main reasons that extrapolation to populations different than the calibration population is 496 

dangerous.  497 

Much previous work on improving the predictive capability of crop models has 498 

focused on the model equations, for instance the way temperature is taken into account in 499 

various processes (Maiorano et al., 2016; Wang et al., 2017). Here we show that models with 500 

the same structure can have very different levels of prediction error, if the calibration methods 501 

differ, while models with quite different structures can have very similar prediction accuracy, 502 

thanks to calibration using the same data. This means that model comparison studies may 503 

often be comparing calibration approaches as much or more as they are comparing model 504 

equations. This is in line with the conclusions of Confalonieri et al. (2016), who argued that 505 

one should not speak of evaluation of a model but rather of the combination of a model and a 506 

model user, where  a major role of  the user is in implementing calibration.  507 
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Calibration  approach 508 

This study was designed to identify how different groups do calibration, given the 509 

same data and prediction objectives.  We focused here on three specific aspects of the 510 

calibration approach; the choice of objective function, the software used and the choice of 511 

parameters to estimate. The results show the diversity of approaches. Since different models 512 

differ in multiple ways, the study does not allow us to define best practices for each aspect of 513 

calibration. However, it is possible to point out practices which should probably be avoided. 514 

Objective function 515 

Most participants defined an objective function based on what one would use in a 516 

statistical approach to non-linear regression, namely a sum of squared errors to be minimized 517 

or a likelihood to be maximized.  However  three models (see Supplementary table S9) did 518 

not have an explicit quantitative objective function. Those models all had relatively large 519 

values of  overall MSE for the evaluation data ( all

evalMSE ) , having 15
th

, 16
th

, and 18
th

 largest 520 

all

evalMSE  values out of the 25 models that predicted both BBCH30 and BBCH55. It seems 521 

reasonable to suppose that the lack of a quantitative objective function can be a drawback 522 

since then one does not have a clear criterion for deciding on the best parameter values.  523 

Among the models that chose to minimize a sum of squared errors or to maximize  a 524 

likelihood, all but one implicitly or explicitly assumed that all model errors had equal variance 525 

and were independent. This will in general not be the case when there are multiple 526 

measurements in the same field, as is the case here (measurement of days to BBCH30 and 527 

days to BBCH55 in each field). Ignoring unequal variances and correlated errors in non-linear 528 

regression leads to inefficient estimators (Seber & Wild, 1989). One should at least test 529 

whether heteroscedasticity and non-independence are important.  530 
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Software 531 

Several different software solutions were used for calibration by the different models. 532 

There does not seem to be any clear connection between the software used and predictive 533 

quality. Various different software solutions were used by the best predicting models, but 534 

largely the same software solutions were also found among the models with the largest 535 

prediction errors. 536 

 A problem that may arise concerns the test for convergence to the parameter values 537 

that minimize the chosen objective function. Having such a test allows the user to have 538 

confidence that the best parameter values have been found. With trial and error, there is no 539 

such test, which is a major drawback of this approach. Algorithms to estimate a Bayesian 540 

posterior distribution normally test convergence to the posterior distribution, which may not 541 

be relevant if one is using just the mode of the distribution. It would be good practice to adopt 542 

a software option that includes an appropriate test of convergence.  543 

Choice of parameters to estimate 544 

There was a large diversity of choices of parameters to estimate by calibration, and 545 

this had in certain cases an important effect on prediction error. One rather unexpected 546 

observation was that several participants included, among the parameters to estimate, 547 

parameters that have no effect on the variables furnished as calibration data among the 548 

parameters to estimate. The data cannot in those cases give any information about the 549 

parameter value. At best, including such parameters among the parameters to estimate is 550 

useless, and those parameters will simply have final values exactly equal to their initial 551 

values. However, there may also be serious disadvantages to including such parameters. It 552 

gives the erroneous impression that one is estimating parameters that cannot in fact be 553 

estimated, it increases computation time and it can cause problems for the parameter 554 
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estimation algorithm. The very poor fit of model M5 to the calibration data seems to be 555 

directly related to the fact that for this model, several parameters unrelated to the calibration 556 

data were chosen to be fitted. The software used here was PEST (Doherty et al., 2010), with 557 

the singular value decomposition option, which allows one to deal with non-estimable 558 

parameters, but at the cost of introducing bias in the estimated parameter values.  This bias 559 

may be at the origin of the poor performance.  Obviously, one should not include non-560 

estimable parameters among the parameters to estimate.  561 

The choice of parameters to estimate may be the principal cause of bias in fitting the 562 

calibration data for some models. If a model includes an additive constant term, and squared 563 

error is minimized, bias will be 0 for the calibration data. Even for more complex models, 564 

calibration can bring bias close to 0, as illustrated here by the fact that many of the models 565 

had very small biases for the calibration data. Eliminating bias is important, since squared 566 

bias is one component of MSE, and therefore the bias necessarily adds on to MSE (Kobayashi 567 

& Salam, 2000). If one does not have a parameter with a nearly additive effect for each of the 568 

development stages BBCH30 and BBCH55, the elimination of bias for both outputs is not 569 

assured. Model M24 estimated only a single parameter. In such a case, at best one can 570 

estimate a parameter value that gives the best compromise between errors in BBCH30 and 571 

BBCH55. This may lead to a negative bias for one of those outputs and more or less 572 

corresponding positive bias for the other. This is exactly the behavior illustrated in figure 2. 573 

Model M10 also had fairly large biases. Here three parameters were estimated, but one is 574 

unrelated to the observed data and a second concerns time to emergence, which was only 575 

allowed to vary in a limited range. Apparently in this case also there was not enough 576 

flexibility to eliminate bias for both development stages.  Models with large bias for the 577 

calibration data tended to have large MSE values for the evaluation data (Supplementary 578 

figure S2). This suggests that the parameters to estimate should include one parameter that is 579 
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nearly additive (i.e. that adds an amount that is nearly the same for all environments) for each 580 

observed output, and that is not too limited in the allowed range of values.  581 

Conclusions 582 

Overall, we have shown in a rigorous evaluation of prediction for new environments 583 

that most of the 27 crop models tested, given calibration data, provide good predictions of 584 

phenology in winter wheat and do much better than predicting with the average of the 585 

calibration data. Calibration has a major effect on predictive quality. Calibration can 586 

compensate to some extent even for different choices of input variables. It reduces variability 587 

between models for outputs used for calibration, but may lead to models getting the right 588 

answer for the wrong reason. Poor practices of calibration can seriously degrade predictive 589 

capability. Arguably the most difficult aspect of calibration, and yet the least studied, is the 590 

choice of parameters to estimate. Unlike the choice of objective function and of software, 591 

there is little guidance here from other fields. Furthermore, the problem is specific to each 592 

model, since each model has a different set of parameters. Given the large diversity of 593 

calibration approaches and the importance of calibration, there is a clear need for guidelines 594 

and tools to aid model users with respect to calibration. Model applications, including model 595 

studies of climate change impact, should focus more on the data used for calibration and on 596 

the calibration methods employed.  597 

  598 
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