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 59 

Abstract 60 

Imported cases present a considerable challenge to the elimination of malaria. Traditionally, patient 61 

travel history has been used to identify imported cases, but the long-latency liver stages confound this 62 

approach in Plasmodium vivax. Molecular tools to identify and map imported cases offer a more robust 63 

approach, that can be combined with drug resistance and other surveillance markers in high-64 

throughput, population-based genotyping frameworks. Using a machine learning approach 65 

incorporating hierarchical FST (HFST) and decision tree (DT) analysis applied to 831 P. vivax genomes 66 

from 20 countries, we identified a 28-Single Nucleotide Polymorphism (SNP) barcode with high capacity 67 

to predict the country of origin. The Matthews correlation coefficient (MCC), which provides a measure 68 

of the quality of the classifications, ranging from -1 (total disagreement) to 1 (perfect prediction), 69 

exceeded 0.9 in 15 countries in cross-validation evaluations. When combined with an existing 37-SNP P. 70 

vivax barcode, the 65-SNP panel exhibits MCC scores exceeding 0.9 in 17 countries with up to 30% 71 

missing data. As a secondary objective, several genes were identified with moderate MCC scores 72 
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(median MCC range from 0.54-0.68), amenable as markers for rapid testing using low-throughput 73 

genotyping approaches. A likelihood-based classifier framework was established, that supports analysis 74 

of missing data and polyclonal infections. To facilitate investigator-lead analyses, the likelihood 75 

framework is provided as a web-based, open-access platform (vivaxGEN-geo) to support the analysis 76 

and interpretation of data produced either at the 28-SNP core or full 65-SNP barcode. These tools can 77 

be used by malaria control programs to identify the main reservoirs of infection so that resources can be 78 

focused to where they are needed most. 79 

 80 

Keywords 81 

Plasmodium vivax, malaria, imported malaria, geographic origin, surveillance, genotyping, genomics, 82 

molecular barcode  83 

 84 

Background 85 

The last three World Malaria Reports have revealed a disturbing rise in malaria cases, and, outside 86 

Subsaharan Africa, an increasing proportion of malaria due to Plasmodium vivax, undermining the 87 

painstaking efforts to reduce transmission over the past decade 
1
. These trends highlight the urgent 88 

need for new surveillance tools, with greater attention to the non-falciparum species. In today’s global 89 

climate, human populations are highly mobile, with imported cases of malaria confounding local control 90 

efforts and enhancing the risks of drug resistance spread and outbreaks. There is thus a critical need to 91 

develop tools that can help to determine where patients acquired their infection. 92 
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The challenge of imported infections is particularly pertinent for P. vivax, in view of the parasite’s ability 93 

to form dormant liver stages (hypnozoites) that can reactivate weeks to months after the initial 94 

infection, as well as highly persistent, low density blood-stage infections 
2,3

.The re-emergence of P. vivax 95 

in multiple regions where it was once almost eliminated serves as an important reminder of the need to 96 

maintain diligent surveillance of this species 
4
. In low endemic settings where the incidence of local 97 

infections is declining, the relative proportion of imported cases generally rises, emphasizing the 98 

importance for surveillance tools that can identify imported P. vivax cases. Traditionally, imported cases 99 

have been identified and mapped using information on patient travel history, but the persistent blood 100 

stage infections and long-latency liver stages constrain the accuracy of this approach in P. vivax 101 

infections. Molecular tools to identify and map imported P. vivax cases offer an attractive complement 102 

to traditional epidemiological tools. 103 

Amplicon-based sequencing has become a favored approach for targeted genotyping of malaria 104 

parasites. Using highly parallel sequencing platforms, such as the latest generation of Illumina 105 

sequencers, amplicon-based sequencing can be applied at moderate to high-throughput, with high 106 

accuracy and sensitivity. These platforms are flexible, allowing iterative enhancement of the Single 107 

Nucleotide Polymorphism (SNP) barcodes, which can provide an affordable genotyping approach, 108 

amenable to population-based molecular surveillance.  109 

Previous studies have used mitochondrial and apicoplast markers to resolve imported from local P. vivax 110 

isolates, but the resolution of these organelles is constrained
5-7

. In 2015, a panel of 42 SNPs was 111 

identified to facilitate parasite finger-printing and geographic assignment 
8
. The proposed 42-SNP Broad 112 

barcode was derived from genomic data available from 13 isolates from 7 countries. In the last 4 years, 113 

the repository of genomic data on P. vivax has expanded greatly, allowing further refinement of a 114 

parsimonious and widely applicable genotyping barcode.  115 
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The primary objective of our study was to develop molecular tools for identifying and characterizing 116 

imported P. vivax cases amenable to population-based surveillance frameworks, so that these data can 117 

be used to inform strategic decisions on where and how to deploy malaria control interventions. We 118 

tailored our molecular tools primarily to surveillance frameworks using Illumina or other high-119 

throughput genotyping platforms. As a secondary objective, we sought to identify single gene regions 120 

permissible to lower throughput approaches for use in settings or situations where high-throughput or 121 

centralized approaches are not feasible. In addition, we provide informatics tools to support users in 122 

analyzing genotyping data produced at the barcode that can accommodate missing data and polyclonal 123 

infections.  124 

 125 

Materials and Methods 126 

 127 

Overview of the marker selection approach 128 

A flow diagram outlining the steps involved in the marker selection process is provided in Figure 1a. In 129 

accordance with the multiplexing features of the Illumina platform, we sought to identify approximately 130 

50 new SNP-based markers to append to the recently published Broad barcode
8
, to provide a composite 131 

panel with ≤100 markers for country-level geographic assignment of P. vivax infections. The decision to 132 

append markers to the Broad barcode rather than selecting a de novo panel of SNPs was pragmatic, 133 

aimed at promoting consensus and continuity with existing molecular tools available to the vivax 134 

community. A likelihood-based classifier approach was chosen for the respective evaluation of marker 135 

sets and end-user data analysis tasks. This approach was chosen since it allows manual addition of 136 

specific SNP sets, such as the Broad barcode. Two selector algorithms, hierarchical FST (HFST) and 137 

decision-tree (DT), were implemented in the likelihood-based classifier framework to select SNPs with 138 

high country-level prediction values. The primary SNP selection method was the HFST selector, which 139 

leverages on the prior knowledge of the population structure to inform on a relatively parsimonious SNP 140 
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set with moderately high prediction. The DT selector, the secondary method, was used to select 141 

additional SNPs to append to the Broad barcode and the HFST panel for further enhancement of 142 

geographical prediction. A 10-fold cross-validation strategy was used to assess the performance of the 143 

selectors with the likelihood-based classification framework. 144 

To achieve the secondary objective of the study, identifying single gene regions with moderate-to-high 145 

country-level resolution, simulations were run across individual genes using the HFST-0.75 (HFST with 146 

FST threshold of 0.75) selector model with the likelihood classifier. The top 20 genes with the highest 147 

pooled median Matthew Correlation Coefficient (MCC) scores for each selector model were reported 148 

(Figure 1b). 149 

 150 

Overview of the web-based data analysis and sharing platform 151 

To establish accessible informatics tools to support users to analyze and interpret their data, a platform 152 

was created incorporating data classification tools for determining the most likely country of origin of a 153 

sample using genetic data at a given barcode. Existing source code, developed for a microsatellite-based 154 

P. vivax data sharing and analysis platform 
9
, was modified to create a new web-based platform 155 

(vivaxGEN-geo), to collate SNP data generated at the geographic barcode. A likelihood-based classifier 156 

approach was chosen for geographic assignment within the vivaxGEN-geo platform owing to the ability 157 

to i) incorporate manual SNP sets, ii) evaluate barcodes with missing data, and iii) evaluate heterozygous 158 

genotype calls. 159 

 160 

Likelihood-based classifier framework 161 

The custom classifier was developed to handle bi-allelic heterozygote calls for mix-infection cases by 162 

treating the samples as diploid samples, as well as missing data by treating as heterozygote calls. The 163 
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classifier was derived from Bernoulli Naive Bayes with modification to the likelihood equation and 164 

elimination of prior probability, since the distribution of our dataset did not reflect the distribution in 165 

nature, but rather the implication from sample and extracted DNA quality, as well as the characteristics 166 

of the original study such as duration and type of the study. Hence the classifier only depends on the 167 

likelihood of the SNP data. The likelihood equation was modified to handle the bi-allelic data as follows: 168 

   ��� | ���  	 ∏�
� ���

�� � � � ����
������ 169 

where X is the SNP data set of a sample, Ck is a group (or a country), xi is the number of alternate alleles 170 

at position i and pki is the frequency of the alternate allele at position i of country k counted as diploid 171 

samples. 172 

 173 

SNP Selection 174 

To select optimal SNPs for country classification, a combination of the HFST and DT selector methods 175 

were employed. The DT selector utilized the Python-based scikit-learn package for the decision tree 176 

implementation, which employed an optimized version of the CART (Classification And Regression Tree) 177 

algorithm and Gini coefficient. To avoid overfitting, a minimum of 3 samples was required for a leaf 178 

node. The Hierarchical FST (HFST) approach worked by traversing across a bifurcating guide tree and 179 

selecting SNP with the highest FST between the two populations represented by the two nodes of the 180 

branch with the assumption that the SNP with the highest FST might differentiate those two 181 

populations. If the highest FST of a certain branch was lower than a given threshold during guide tree 182 

traversal, the DT method was employed to obtain additional SNPs to separate the given branch. To 183 

avoid overfitting, a maximum tree depth of 2 was set for this particular DT step. The HFST analysis in this 184 

study was undertaken using a guide tree constructed using Nei’s population distance matrix 185 

implemented with a neighbor-joining algorithm.  186 
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The classification performance was measured with MCC  for each country 
10

. In addition, the pooled 187 

median, mean, minimum and first-quartile MCC were collected as additional measurements. 188 

Three models, HFST-0.90 (HFST and DT with FST threshold of 0.90), HFST-0.95 (HFST and DT with FST 189 

threshold of 0.95), and pure DT were trained with the full dataset. For each of the three models, 500 190 

repeats were run to allow for different random seeds of the DT analysis, and the top 25 SNP sets with 191 

the highest aggregate minimum MCC score as evaluated by the likelihood classifier were obtained from 192 

each model. A stratified 100 repeat, 10-fold cross-validation was run on each of the 25 SNP sets from 193 

each model, and the best SNP set from each of model, as indicated by highest aggregate minimum MCC 194 

score within a repeat, was selected. To compare the Broad SNP panel to the three new SNP panels 195 

identified by the HFST-0.90, HFST-0.95 and pure DT selectors, a 500 repeat, stratified 10-fold cross-196 

validation was undertaken on each SNP panel. 197 

 198 

Missing data evaluation  199 

To assess the durability of prediction performance of the SNP sets with missing data, a simulation was 200 

run by removing genotype data randomly. The Likelihood classifier was trained against the selected SNP 201 

sets using all samples. For each country, 25 samples were sampled randomly with replacement and 202 

missing genotype calls were added to the SNP sets in 10%, 20% and 30% proportions. The random 203 

samples were then subjected to the trained classifier. This process was run in 100 repeats and MCC-204 

score of the prediction for each country was reported.  205 

 206 

Datasets 207 

The analysis included genomic data on P. vivax isolates collected from 26 countries. Published data were 208 

included from 19 countries derived from the European Nucleotide Archive
11-15

, and new data from 10 209 

countries (Supplementary Table 1, Supplementary Figure 1). New genomic data were derived from 210 
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patients recruited to partner studies in Afghanistan, Bangladesh, Bhutan, Colombia, Ethiopia, Indonesia, 211 

Iran, Malaysia, Sudan, and Vietnam. With the exception of Colombia, the patient sampling frameworks 212 

have been described previously 
11,12,14,16-20

. The samples from Colombia were collected within the 213 

framework of cross-sectional epidemiological surveys conducted between 2013 and 2017. Whole 214 

genome sequencing, read alignment and variant calling were undertaken within the framework of a P. 215 

vivax community study in the Malaria Genomic Epidemiology Network (MalariaGEN) 
21

.   Data was 216 

derived from an open dataset of Plasmodium vivax genome variation comprising 2,671,112 discovered 217 

variants across 1,366 isolates (MalariaGEN manuscript in preparation). The data were initially filtered to 218 

derive a set of 670,962 high-quality bi-allelic SNPs with VQSLOD score >0, and minimum read depth and 219 

minimum minor allele count of 2. Individual genotype calls were defined as heterozygotes based on an 220 

arbitrary threshold of a minor allele ratio > 0.1 and a minimum of 2 reads for each allele; all other 221 

genotype calls were defined as homozygous for the major allele. A pair of isolates with distance less 222 

than 0.0005 (0.05%) were considered non-independent. Amongst non-independent sample pairs, the 223 

isolate with the higher percentage of genotype failures was removed from the dataset; this removal 224 

process was iterated until all non-independent isolates had been removed from the dataset. The 225 

samples and SNPs were then subjected to further filtering to eliminate missing data using information 226 

derived from a simulation which calculated the total number of SNPs with no missing data and the 227 

number of consecutive informative SNPs as defined by SNPs with minimum minor allele count (MAC) >2. 228 

The remaining dataset was defined as Dataset 1.  229 

The isolates in Dataset 1 were initially assigned to national groups based on the country in which the 230 

patient presented at the clinic with the infection. The national-level groupings were evaluated further 231 

using country-level assignments derived from the genome-wide data classification with the likelihood 232 

classifier. Infections presenting with country classifications differing from the country of presentation 233 

were considered suspected imported infections and removed to produce Dataset 2. 234 
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Of the 42 Broad barcode SNPs, 37 SNPs were present in the 670K dataset (bi-allelic high-quality SNPs) 235 

and exhibited successful amplicon-based sequencing assays (personal communication, Wellcome Sanger 236 

Institute Core Sequencing Facility); these 37 SNPs were not present in dataset 1 or 2. A new dataset 237 

(Dataset 3) was prepared for evaluation of the Broad barcode comprising of samples with complete data 238 

across the 37 Broad barcode SNPs and partial data across SNPs selected from the HFST and DT 239 

algorithms. 240 

 241 

Software and Web Service Availability 242 

All custom, in-house scripts used for data filtering, simulation, analyses and visualization are available 243 

from http://github.com/trmznt/vivaxgen-geo. The VivaxGEN-geo web service provides a user-friendly 244 

online tool for country classification with all SNP sets, and is accessible at https://geo.vivaxgen.org/.  The 245 

likelihood classifier provided on the online platform has been trained with 809 samples (dataset 4), 246 

consisting of all samples with complete data at all SNP sets. The classifier tool reports the three highest 247 

likelihoods for country of origin and their associated probabilities. 248 

 249 

Ethics 250 

All samples were collected with written informed consent from patients or their legal guardians. Ethical 251 

approvals for the published samples are detailed in the original papers 
11-15

. Approvals for the newly 252 

represented studies are outlined in Supplementary Document 1.  253 

 254 

Results 255 

Geographic clustering patterns using the genome-wide dataset 256 

The primary dataset (Dataset 1) was derived using the missing data simulation, to minimise genotype 257 

failures (Supplementary Figure 3), it comprised 854 high-quality samples and 294,628 high-quality 258 
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informative SNPs, with no missing data. The median percentage of heterozygous calls in each country 259 

ranged from 0.02% to 0.08%. Details on the geographic locations of the samples in dataset 1 are 260 

presented in Supplementary Table 1. Neighbor-joining analysis on dataset 1 revealed distinct geographic 261 

clustering of most countries (Supplementary Figure 4). Exceptions included the isolates from 262 

Afghanistan, Iran, India and Sri Lanka, which appeared to form a single cluster, warranting further 263 

analysis of this geographic region with larger sample sets. Although several isolates in border regions 264 

including Vietnam relative to Cambodia, and Thailand relative to Myanmar, overlapped between 265 

countries, the majority of isolates in these countries could be differentiated by national boundaries.  266 

Visual inspection of the neighbour-joining tree revealed potential imported cases. Using country-level 267 

assignments derived from the genome-wide data classification with the likelihood classifier and manual 268 

confirmation of the neighbor-joining tree, 21 isolates presented country classifications differing from the 269 

country of presentation (Supplementary Table 1). After exclusion of the imported cases, and countries 270 

represented by a single sample, a total of 831 isolates and 20 countries remained, constituting Dataset 2 271 

(Supplementary Table 1).  272 

 273 

Performance of the Broad barcode, HFST and DT SNP selection 274 

When the HFST selector was applied with an FST threshold of 0.90 (HFST-0.90), a set of 28 SNPs (listed in 275 

Supplementary Table 2) were identified. This dataset exhibited median MCC scores exceeding 0.9 in all 276 

countries with the exception of Vietnam (0.75) and Cambodia (0.80). On increasing the FST threshold to 277 

0.95 (HFST-0.95), the HFST model identified 51 SNPs (listed in Supplementary Table 3), which displayed 278 

MCC scores exceeding 0.95 in all countries except for Vietnam (0.85) and Cambodia (0.87). Using the DT 279 

selector alone, 50 SNPs (listed in Supplementary Table 4) displayed comparable performance to the 51-280 

SNP panel, with a slightly lower aggregate minimum MCC score. 281 

The results of cross-validation of the classification performance of the five SNP panels (37-SNP Broad 282 

barcode, 28-SNP, 28-SNP plus Broad barcode (65-SNP), 50-SNP and 51-SNP panels) are illustrated in 283 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 24, 2019. ; https://doi.org/10.1101/776781doi: bioRxiv preprint 

https://doi.org/10.1101/776781


13 

Figure 2, and the MCC and F scores reflecting the consensus results of the cross-validation are 284 

summarized in Table 1. The performance, ranked from lowest to highest, was: 37-SNP Broad barcode 285 

(median MCC = 0.82), 28-SNP (MCC = 0.99), 50-SNP (MCC = 1.00), 65-SNP (MCC = 1.00), and 51-SNP 286 

(MCC = 1.00).  287 

 288 

Missing data simulations 289 

In the missing data simulations, genotyping failures had the greatest impact on the classification of 290 

samples from Cambodia and Vietnam (Figure 3). With 10% missing data, the median MCCs of the 28-SNP 291 

panel exceeded 0.9 in all countries, with exception of Vietnam (MCC = 0.80) and Cambodia (MCC = 292 

0.77). With this level of missing data, the addition of the 37 Broad SNPs (65-SNP panel) increased the 293 

median MCC to 0.83 in Vietnam and 0.82 in Cambodia. When missing data increased to 30%, the 65-SNP 294 

panel achieved median MCCs above 0.9 in most countries, with exception of Vietnam (MCC = 0.79) and 295 

Cambodia (MCC = 0.75). The 50- and 51-SNP panels both achieved MCC scores exceeding 0.95 for all 296 

countries except Cambodia (0.80-0.82) and Vietnam (0.83-0.85) with 10-30% missing data.  297 

 298 

Evaluation of single gene regions to predict country classification 299 

The suitability of single genes to predict country classifications were assessed by simulations of 300 

individual genes using HFST-0.75 selector model with the likelihood classifier framework. The top 20 301 

genes with the highest pooled median MCC scores for the HFST-0.75 are presented in Supplementary 302 

Table 5. The highest prediction capacity, with median MCC score of 0.68, was PVP01_0302600, a gene 303 

coding a 11.5 Kb conserved protein with unknown function.  The gene list also included three members 304 

of the cysteine repeat modular protein family (CRMP): CRMP1 (median MCC = 0.63), CRMP3 (MCC = 305 

0.57) and CRMP4 (MCC = 0.56). 306 

 307 
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Discussion 308 

The primary objective of the study was to develop molecular tools amenable to population-based 309 

surveillance frameworks to identify and map imported P. vivax infections.  Using machine-learning 310 

methods, 3 new SNP panels were identified with high country classification performance, able to 311 

distinguish imported P. vivax infections across a range of endemic scenarios. The most parsimonious 312 

panel, the 28-SNP barcode, exhibited high country classification, and can be appended to the 37 bi-313 

allelic, assayable Broad barcode SNPs for marginal improvement in predictive capacity in samples with 314 

moderate levels of missing data. The combined 65-SNP barcode generated robust country classification 315 

in most endemic areas, even when the proportion of missing data rose to 30%. However, the validity of 316 

the 65-SNP barcode was lower in Cambodia and Vietnam, a likely reflection of the porous border 317 

between these two countries. Although the 50- and 51-SNP panels achieved better resolution in these 318 

areas,  characterization of parasite transmission across borders with high levels of gene flow may be 319 

addressed better by the addition of markers suited to an analysis of identity-by-descent 
22

. The 320 

application and wider validation of the 65-SNP barcode is underway, with amplicon-based sequencing 321 

assays already established for the 37 Broad barcode SNPs, and under development for the 28 new 322 

markers.   323 

The analysis and interpretation of “real-world” genotyping data raises significant challenges from low-324 

quality samples such as those collected on dried blood spots. In anticipation of these needs we 325 

established a likelihood-based framework with the capacity to deal with polyclonal infections as well as 326 

missing data. This framework has been integrated into the vivaxGEN-geo online platform, so that users 327 

can analyze and interpret their data without needing complex bioinformatics skills and avoiding the 328 

subjective visual inspection of neighbour-joining trees or principal component plots. Whilst the 329 

informatics tools implemented in vivaxGEN-geo are tailored to P. vivax, we anticipate that a similar 330 

approach can be adapted to other species. To facilitate wider application the source code will be made 331 

publicly available. 332 
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The variants in the 28-SNP panel are located in genes representing a range of functions, some of which 333 

may be unstable over time.  Although our dataset represents one of the most geographically diverse 334 

panels of P. vivax isolates currently available, with representation of all of the major vivax-endemic 335 

regions, the predictive capacity of the derived tools are likely to be constrained by the geographic 336 

representation of the reference panel. In particular, representation from central and south America and 337 

the Indian subcontinent were limited in our data set. Despite this limitation the dataset used comprises 338 

good representation of isolates from areas of public health relevance, including the epicenter of 339 

chloroquine-resistant P. vivax in Papua Indonesia 
23,24

.  The likelihood-based framework is able to re-340 

evaluate the predictive potential of current marker sets as new genomic data become available, so that 341 

the selected SNP panels can be refined further in an iterative process. Furthermore, as the reference 342 

panel expands with increasing data generated at the barcode SNPs, the accuracy of the likelihood-based 343 

classifications will improve.  344 

In addition to the independent selection of SNPs, a number of informative genes were identified, each 345 

of which had moderately high geographic resolution power. Genotyping of these genes or gene regions 346 

are amenable to standard capillary sequencing, offering an alternative approach, albeit with slightly 347 

lower resolution, to define a parasite’s geographic origin in settings where high-throughput genotyping 348 

facilities are unavailable. The genes with the greatest geographic resolution, included members of the 349 

cysteine repeat modulator protein (CRMP) family (CRMP1, CRMP3 and CRMP4) implicated in essential 350 

roles in parasite transmission from the mosquito to the human host 
25

. It is plausible that the CRMP 351 

genes have maintained high geographic differentiation to ensure parasite adaptation to the local vector 352 

species. Although adaptations of these genes are likely to temporally stable, the resolution of these loci 353 

may be constrained by the distributions of host Anopheles vector species.  354 

In 2017, up to 100% of all confirmed malaria cases in 17 malaria-endemic countries in the Asia-Pacific 355 

region, the Middle East and the Americas, where P. vivax infections predominate, were reported as 356 

being infections 
1
. Malaria control programs in these countries can utilize the information derived from 357 
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the molecular tools provided from our analysis to assess the efficacy of ongoing interventions in 358 

reducing local transmission, and to determine the major routes of infection importation.  The tools have 359 

potential to reduce ambiguity for certificating malaria elimination by the World Health Organization, 360 

where one of the key requirements is the demonstration that all malaria cases detected in-country over 361 

at least three consecutive years were imported. For this purpose, countries approaching elimination will 362 

need to maintain archival samples for future molecular comparisons against putatively imported cases. 363 

The molecular P. vivax geographic classification tools presented are designed to empower users in 364 

malaria-endemic countries to analyze and interpret locally produced genotyping data with comparison 365 

to globally available datasets.  Amplicon-based sequencing of the full 65-SNP barcode is being developed 366 

and will be combined with other surveillance markers at central laboratories in endemic partner 367 

countries of the Asia Pacific Malaria Elimination Network (www.apmen.org). The data generated from 368 

these centers will inform researchers, National Malaria Control Programs and other key stakeholders on 369 

the incidence, epidemiology and key reservoirs of imported malaria, and, in doing so, help to target 370 

resources to where they are needed most.  371 

 372 

References 373 

1. WHO. World Malaria Report 2018. World Health Organization; Geneva 2018. (2018). 374 

2. White, N.J. & Imwong, M. Relapse. Adv Parasitol 80, 113-50 (2012). 375 

3. Tripura, R. et al. Persistent Plasmodium falciparum and Plasmodium vivax infections in a 376 

western Cambodian population: implications for prevention, treatment and elimination 377 

strategies. Malar J 15, 181 (2016). 378 

4. Sattabongkot, J., Tsuboi, T., Zollner, G.E., Sirichaisinthop, J. & Cui, L. Plasmodium vivax 379 

transmission: chances for control? Trends Parasitol 20, 192-8 (2004). 380 

5. Iwagami, M. et al. Geographical origin of Plasmodium vivax in the Republic of Korea: haplotype 381 

network analysis based on the parasite's mitochondrial genome. Malar J 9, 184 (2010). 382 

6. Rodrigues, P.T. et al. Using mitochondrial genome sequences to track the origin of imported 383 

Plasmodium vivax infections diagnosed in the United States. Am J Trop Med Hyg 90, 1102-8 384 

(2014). 385 

7. Diez Benavente, E. et al. Genomic variation in Plasmodium vivax malaria reveals regions under 386 

selective pressure. PLoS One 12, e0177134 (2017). 387 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 24, 2019. ; https://doi.org/10.1101/776781doi: bioRxiv preprint 

https://doi.org/10.1101/776781


17 

8. Baniecki, M.L. et al. Development of a single nucleotide polymorphism barcode to genotype 388 

Plasmodium vivax infections. PLoS Negl Trop Dis 9, e0003539 (2015). 389 

9. Trimarsanto, H. et al. VivaxGEN: An open access platform for comparative analysis of short 390 

tandem repeat genotyping data in Plasmodium vivax Populations. PLoS Negl Trop Dis 11, 391 

e0005465 (2017). 392 

10. Jurman, G., Riccadonna, S. & Furlanello, C. A comparison of MCC and CEN error measures in 393 

multi-class prediction. PLoS One 7, e41882 (2012). 394 

11. Auburn, S. et al. Genomic analysis of a pre-elimination Malaysian Plasmodium vivax population 395 

reveals selective pressures and changing transmission dynamics. Nat Commun 9, 2585 (2018). 396 

12. Auburn, S. et al. Genomic analysis of Plasmodium vivax in southern Ethiopia reveals selective 397 

pressures in multiple parasite mechanisms. J Infect Dis (2019). 398 

13. Hupalo, D.N. et al. Population genomics studies identify signatures of global dispersal and drug 399 

resistance in Plasmodium vivax. Nat Genet 48, 953-8 (2016). 400 

14. Pearson, R.D. et al. Genomic analysis of local variation and recent evolution in Plasmodium 401 

vivax. Nat Genet 48, 959-64 (2016). 402 

15. Parobek, C.M. et al. Selective sweep suggests transcriptional regulation may underlie 403 

Plasmodium vivax resilience to malaria control measures in Cambodia. Proc Natl Acad Sci U S A 404 

113, E8096-E8105 (2016). 405 

16. Wangchuk, S. et al. Where chloroquine still works: the genetic make-up and susceptibility of 406 

Plasmodium vivax to chloroquine plus primaquine in Bhutan. Malar J 15, 277 (2016). 407 

17. Ley, B. et al. G6PD Deficiency and Antimalarial Efficacy for Uncomplicated Malaria in 408 

Bangladesh: A Prospective Observational Study. PLoS One 11, e0154015 (2016). 409 

18. Hamedi, Y. et al. Molecular Epidemiology of P. vivax in Iran: High Diversity and Complex Sub-410 

Structure Using Neutral Markers, but No Evidence of Y976F Mutation at pvmdr1. PLoS One 11, 411 

e0166124 (2016). 412 

19. Getachew, S. et al. Variation in Complexity of Infection and Transmission Stability between 413 

Neighbouring Populations of Plasmodium vivax in Southern Ethiopia. PLoS One 10, e0140780 414 

(2015). 415 

20. Taylor, W.R.J. et al. Short-course primaquine for the radical cure of Plasmodium vivax malaria: a 416 

multicentre, randomised, placebo-controlled non-inferiority trial. Lancet (2019). 417 

21. Malaria Genomic Epidemiology, N. A global network for investigating the genomic epidemiology 418 

of malaria. Nature 456, 732-7 (2008). 419 

22. Taylor, A.R., Jacob, P.E., Neafsey, D.E. & Buckee, C.O. Estimating Relatedness Between Malaria 420 

Parasites. Genetics 212, 1337-1351 (2019). 421 

23. Ratcliff, A. et al. Therapeutic response of multidrug-resistant Plasmodium falciparum and P. 422 

vivax to chloroquine and sulfadoxine-pyrimethamine in southern Papua, Indonesia. Trans R Soc 423 

Trop Med Hyg 101, 351-9 (2007). 424 

24. Price, R.N. et al. Global extent of chloroquine-resistant Plasmodium vivax: a systematic review 425 

and meta-analysis. Lancet Infect Dis 14, 982-91 (2014). 426 

25. Douradinha, B. et al. Plasmodium Cysteine Repeat Modular Proteins 3 and 4 are essential for 427 

malaria parasite transmission from the mosquito to the host. Malar J 10, 71 (2011). 428 

26. Battle, K.E. et al. Mapping the global endemicity and clinical burden of Plasmodium vivax, 2000-429 

17: a spatial and temporal modelling study. Lancet 394, 332-343 (2019). 430 

 431 

Acknowledgements 432 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 24, 2019. ; https://doi.org/10.1101/776781doi: bioRxiv preprint 

https://doi.org/10.1101/776781


18 

We would like to thank the patients who contributed their samples to the study, local health facilities, 433 

and the health workers and field teams who assisted with the sample collections. We also thank the 434 

staff of the Wellcome Sanger Institute Sample Logistics, Sequencing, and Informatics facilities for their 435 

contributions.  436 

 437 

Financial Support 438 

Financial support for the study was provided by the Wellcome Trust (Senior Fellowship in Clinical 439 

Science awarded to R.N.P., 200909), the Australian Department of Foreign Affairs and Trade (TDCRRI 440 

72904), the Australian National Health and Medical Research Council (NHMRC) (‘Improving Health 441 

Outcomes in the Tropical North: A multidisciplinary collaboration ‘HOT North’ Career Development 442 

Fellowship awarded to S.A.), and the Bill and Melinda Gates Foundation (OPP1164105). D.F.E received 443 

financial support from Colciencias -Colombia, call 656-2014 “Es Tiempo de Volver” award FP44842-503-444 

2014. The patient sampling and metadata collection was funded by the Asia-Pacific Malaria Elimination 445 

Network (108-07), the Malaysian Ministry of Health (BP00500420), and the NHMRC (1037304 and 446 

1045156; Fellowships to N.M.A. [1042072 and 1135820], B.E.B. [1088738] and M.J.G. [1074795]). M.J.G 447 

was also supported by a ‘Hot North’ Earth Career Fellowship (1131932). M.U.F is supported by a senior 448 

researcher scholarship from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), 449 

Brazil. The whole genome sequencing component of the study was supported by grants from the 450 

Medical Research Council and UK Department for International Development (M006212) and the 451 

Wellcome Trust (206194, 204911) awarded to D.P.K. This work was supported by the Australian 452 

Centre for Research Excellence on Malaria Elimination (ACREME), funded by the NHMRC (APP 453 

1134989). 454 

  455 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 24, 2019. ; https://doi.org/10.1101/776781doi: bioRxiv preprint 

https://doi.org/10.1101/776781


19 

Figures 456 

Figure 1. Overview of the marker selection approaches 457 

Flow diagrams illustrating the datasets, selector models and classification approaches used to identify 458 

and evaluate independent SNP panels (A) and single gene regions (B). Decision Tree (DT), HFST-0.90 459 

(HFST and DT with FST threshold of 0.90), HFST-0.95 (HFST and DT with FST threshold of 0.95) and HFST-460 

0.75 (HFST and DT with FST threshold of 0.75) represent the SNP selector models. The DT, HFST-0.9 and 461 

HFST-0.95 SNP selector models were run in 500 repeats for SNP selection (A), and the HFST-0.75 model 462 

was run in 5 repeats for gene selection (B). For SNP selection (A), the top-25 SNP sets were selected 463 

from each model for a further 100 repeats of stratified cross-validation from which one SNP set was 464 

selected from each of the DT, HFST-0.9 and HFST-0.95 SNP selector models. 465 

 466 

Figure 2. Comparison between the 37-SNP Broad barcode, new marker panels and combined SNP sets   467 

The Broad-37 SNP set reflects 37 of the 42 Broad SNPs represented amongst the 294K high-quality SNPs. 468 

The SNP-28 SNP set reflects 28 high-performance SNPs derived from the HFST selector with FST 469 

threshold of 0.9. The SNP-28+Broad SNP set reflects the combined Broad-37 and SNP-28 SNP sets for a 470 

total of 65 SNPs. The SNP-50 set reflects the 50 SNPs selected by the Decision Tree selector. The SNP-51 471 

set reflects 51 high-performance SNPs from the HFST selector with threshold FST of 0.95. The boxplots 472 

present the MCC scores from 500 repeats with stratified 10-fold cross validation for each SNP set. 473 

Country labels are provided on the y-axis; MEDIAN, MEAN, Q1 (1st percentile) and MIN reflect the 474 

respective summary statistics for the pooled MCC scores across all countries. 475 

 476 

Figure 3. Simulation of missing data in the 28-SNP, 65-SNP, 50-SNP and 51-SNP panels 477 
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Result of 200 repeats, 25 samples per country simulation of missing data (genotype fails) of 10%, 20% 478 

and 30% against the 37-SNP Broad barcode, 28-SNP set, 65-SNP set (28-SNP + Broad panel), 51-SNP and 479 

50-SNP set. The 65-SNP set demonstrated marginally better performance relative to the 28-SNP set with 480 

missing data. However, both the 50-SNP and 51-SNP panels outperformed the 65-SNP panel with 481 

missing data. 482 

 483 

Supplementary Figure 1. P. vivax prevalence map pinpointing the countries included in the study 484 

P. vivax prevalence map from the Malaria Atlas Project (Plasmodium vivax parasite rate in all ages 485 

globally (1-99) from (2000-2017)
26

, with counties included in dataset 2 demarked by stars. 486 

 487 

Supplementary Figure 2. Overview of the datasets 488 

 489 

Supplementary Figure 3. Output from the data quality simulation 490 

The upper panel shows the number of complete SNPs (green), complete informative SNPs with minor 491 

allele count (MAC) = 1 (orange) and complete informative SNPs with MAC = 2 (red) against the number 492 

of samples. The lower panel shows the number of differences in SNPs between consecutive number of 493 

samples, with informative SNPs with MAC = 1 (blue) and informative SNPs with MAC = 2 (orange). The 494 

maximum of both MAC=1 and MAC=2 were 958 samples. 495 

 496 

Supplementary Figure 4. Neighbour-joining tree of the global dataset 497 

The tree was constructed using genotyping data from 854 samples at 294K SNPs.  498 
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Tables 

Table 1. Summary of MCC and F-scores from the consensus results of 500 repeats of the stratified 10-fold cross-validation of the SNP panels 

Population 37-SNP (Broad) 28-SNP   65-SNP    50-SNP   51-SNP   

  MCC  F MCC F MCC F MCC F MCC F 

Afghanistan 0.852 0.857 0.987 0.988 1 1 0.974 0.975 0.987 0.988 

Bangladesh 0.796 0.778 0.881 0.875 1 1 1 1 1 1 

Bhutan 0.665 0.615 1 1 1 1 0.894 0.889 1 1 

Brazil 0.815 0.8 1 1 1 1 1 1 1 1 

Cambodia 0.456 0.518 0.78 0.809 0.813 0.837 0.893 0.907 0.898 0.911 

China 0.912 0.909 1 1 1 1 1 1 1 1 

Colombia 0.895 0.903 1 1 1 1 1 1 1 1 

Ethiopia 0.929 0.931 1 1 1 1 1 1 1 1 

India 0.714 0.706 1 1 1 1 0.935 0.933 0.925 0.923 

Indonesia 0.819 0.857 0.971 0.978 0.984 0.988 0.987 0.99 0.99 0.993 

Iran 0.865 0.857 0.925 0.923 1 1 1 1 1 1 

Madagascar 0.894 0.889 1 1 1 1 1 1 1 1 

Malaysia 0.614 0.627 0.923 0.927 0.949 0.95 0.962 0.963 0.962 0.963 

Mexico 0.92 0.919 1 1 0.92 0.919 1 1 1 1 

Myanmar 0.529 0.48 0.835 0.824 0.881 0.875 0.935 0.933 1 1 

Papua  New Guinea 0.616 0.6 0.888 0.889 0.934 0.933 0.976 0.977 0.975 0.976 

Peru 0.839 0.846 1 1 0.961 0.962 1 1 1 1 

Sudan 1 1 1 1 1 1 1 1 1 1 

Thailand 0.681 0.725 0.971 0.975 0.985 0.988 0.99 0.992 0.985 0.987 

Vietnam 0.389 0.446 0.714 0.74 0.733 0.757 0.861 0.872 0.866 0.876 

Mean 0.76 0.763 0.944 0.946 0.958 0.96 0.97 0.972 0.979 0.981 

Median 0.817 0.823 0.994 0.994 1 1 0.995 0.996 1 1 

Q1 0.653 0.624 0.914 0.915 0.945 0.946 0.955 0.956 0.983 0.984 

Min 0.389 0.446 0.714 0.74 0.733 0.757 0.861 0.872 0.866 0.876 
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