Proposal of a taxonomic nomenclature for the *Bacillus cereus* group which reconciles genomic definitions of bacterial species with clinical and industrial phenotypes

Laura M. Carroll¹, Martin Wiedmann², Jasna Kovac³*

¹Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
²Department of Food Science, Cornell University, Ithaca, NY, USA
³Department of Food Science, The Pennsylvania State University, University Park, PA, USA

*Corresponding author: Jasna Kovac, jzk303@psu.edu
ABSTRACT

The Bacillus cereus group comprises numerous closely related species, including bioterrorism agent B. anthracis, foodborne pathogen B. cereus, and biopescticide B. thuringiensis. Differentiating organisms capable of causing illness or death from those used in industry is essential for risk assessment and outbreak preparedness. However, current species definitions facilitate species-phenotype incongruencies, particularly when horizontally acquired genes are responsible for a phenotype. Using all publicly available B. cereus group genomes (n = 2,231), we show that current genomospecies definitions lead to overlapping species clusters, and that an average nucleotide identity (ANI) genomospecies threshold of ≈92.5 reflects a natural gap in core genome similarity. We propose a taxonomy for the B. cereus group which accounts for (i) genomospecies using separable species clusters formed at a threshold of ≈92.5 ANI, and (ii) phenotypes relevant to public health and industry. We anticipate that the proposed nomenclature will remain interpretable to clinicians, without sacrificing genomic species definitions, which can in turn aid in pathogen surveillance, early detection of emerging, high-risk genotypes, and outbreak preparedness. Furthermore, the nomenclatural framework outlined here serves as a model for genomics-based bacterial taxonomy which moves beyond arbitrarily set genomospecies thresholds, while maintaining congruence with phenotypes and historically important species names.
INTRODUCTION

The *Bacillus cereus* group species complex, also known as *B. cereus sensu lato* (s.l.), is a subgroup of closely related species belonging to the genus *Bacillus*. Group members are Gram-positive, spore-forming, and widely distributed throughout the environment.\(^1\) While closely related from an evolutionary perspective, members of this group vary in their ability to cause disease in humans. Notable members which are considered to be pathogenic include anthrax-causing *B. anthracis*, which has been responsible for outbreaks and bioterrorism attacks around the world,\(^2-5\) and *B. cereus sensu stricto* (s.s.), which is commonly regarded as a foodborne pathogen, but has also been associated with anthrax-like symptoms and other severe infections.\(^1,6\) Interspersed among species which are widely regarded as pathogenic are those which have found important roles in agriculture and industry, the most notable of which is biopesticide *B. thuringiensis*.\(^7,8\)

Prior to 2013, the *B. cereus* group was composed of six closely related species (i.e., *B. anthracis, B. cereus s.s., B. mycoides, B. pseudomycoideal*sytes, *B. thuringiensis*, and *B. weihenstephanensis*), which had been delineated using various methods, including phenotypic characterization (e.g., production of insecticidal crystal proteins [*B. thuringiensis*], rhizoidal colony morphology [*B. mycoides* and *pseudomycoideal*sytes], psychrotolerance and an inability to grow at 43°C [*B. weihenstephanensis*]), 16S rDNA sequencing, and/or DNA-DNA hybridization.\(^9-11\) However, as whole-genome sequencing (WGS) has become more affordable and accessible, the gold standard for prokaryotic species delineation has migrated to high-throughput, *in silico* average nucleotide identity (ANI)-based methods,\(^12\) for which two genomes are said to belong to the same genospecies if they share an ANI value above a threshold. While numerous genospecies thresholds have been proposed over the years (e.g., 94,
proposed by Konstantinidis and Tiedje in 2005,13 95-96 ANI, proposed by Richter and Rosselló-Móra12 and later supported by Kim, et al.14), a recent survey of pairwise ANI values between 90,000 prokaryotic genomes (including some members of the \textit{B. cereus} group) concluded that a genomospecies threshold of 95 ANI should be adequate for most bacterial species.15

ANI-based genomospecies assignment for members of the \textit{B. cereus} group has relied on calculating the pairwise ANI values shared between a genome of interest and the genomes of all published \textit{B. cereus} group type strains, a practice that was used to describe \textit{B. cytotoxicus} and \textit{B. toyonensis} (published in 2013), and \textit{B. wiedmannii} (published in 2016) as novel species.16-18 This practice was further employed in 2017, when nine novel \textit{B. cereus} group species (\textit{B. albus}, \textit{B. luti}, \textit{B. mobilis}, \textit{B. nitratireducens}, \textit{B. pacificus}, \textit{B. paramykoides}, \textit{B. paranthracs}, \textit{B. proteolyticus}, and \textit{B. tropicus}) were published,19 effectively doubling the number of published \textit{B. cereus} group species from nine to 18.

However, the practice of assigning \textit{B. cereus} group genomes to a genomospecies using \textit{B. cereus} group type strain genomes is problematic due to the fact that (i) type strain genomes do not necessarily (or even likely) represent the medoid of a genomospecies cluster, meaning that it is possible for a genome to share an ANI value greater than the genomospecies threshold with multiple type strain genomes (i.e., a genome could potentially belong to more than one \textit{B. cereus} group genomospecies), and (ii) novel \textit{B. cereus} group species have been published using different genomospecies thresholds (e.g., \textit{B. toyonensis}, \textit{B. wiedmannii}, and the nine species published in 2017 used ANI genomospecies thresholds of 92, 95, and 96, respectively).17 Further confusion arises when the type strains of “novel” species encompass well-established, previously described clinically and industrially relevant \textit{B. cereus} group lineages within their genomospecies thresholds. For example, since the publication of \textit{B. paranthracs} as a novel
species in 2017, the well-researched foodborne pathogen referred to as emetic “B. cereus”
technically belongs to the B. paranthracis genospecies cluster based on a conventional ANI
threshold of 95. This is problematic, as this taxonomic assignment likely bears little meaning
to anyone not well-versed and up-to-date with B. cereus group taxonomy, including clinicians.
Current definitions of B. cereus group species are further proven to be outdated as the amount of
publicly available genomic data grows and continues to reveal increasing genomic and
phenotypic diversity within the group. Between April 2017 and March 2018, the number of
assembled B. cereus group genomes available in the National Center for Biotechnology
Information’s (NCBI’s) RefSeq database more than tripled, implying that there are likely
unexplored portions of the B. cereus group phylogeny.

Genomic and taxonomic semantics aside, phenotypic characteristics used for species
assignment (e.g., motility, hemolysis, emetic toxin production) are known to vary within and
among species. This is particularly problematic in cases where the genomic determinants
responsible for a clinically or industrially relevant phenotype are plasmid-mediated, such as
synthesis of anthrax toxin/capsular proteins, bioinsecticidal crystal proteins, or cereulide
(emetic toxin) synthetase proteins. These traits can be lost or gained, heterogeneous in their
presence within a species, or present across multiple species.

Current species definitions do not account for species-phenotype incongruencies, which
can lead to potentially high-consequence misclassifications of an isolate’s virulence potential.
For example, strains exhibiting phenotypic characteristics associated with “B. cereus”, such as
motility, can cause anthrax in humans and animals, while B. anthracis which lack the genes
required for anthrax toxin and capsule formation have attenuated virulence. The problem at
hand requires the construction of an ontological framework which is accurate in terms of its
adherence to widely accepted genomic and taxonomic definitions of bacterial genospecies, while still being informative, intuitive, and actionable to those in public health and industry. Differentiating organisms capable of causing illness or death in humans and animals from those which have far-reaching agricultural and industrial applications is essential for a proper assessment of the risk posed by a particular strain. Here, we leverage all publicly available assembled \textit{B. cereus} group genomes ($n = 2,231$) to construct a phylogenomically informed taxonomic framework with the flexibility to account for phenotypes of interest to those in public health and industry.

\textbf{METHODS}

\textbf{Acquisition and initial in silico characterization of \textit{Bacillus cereus} group genomes.} All genomes in the NCBI RefSeq Assembly database25 which were submitted as a published \textit{B. cereus} group species (\textit{B. albus, anthracis, cereus, cytotoxicus, luti, mobilis, mycoides, nitratireducens, pacificus, paramyoides, paranthracis, proteolyticus, pseudomyoides, thuringiensis, toyonensis, tropicus, weihenstephanensis, or wiedmannii}) were downloaded (Supplementary Tables S1 and S2), along with the type strain genomes of three proposed effective \textit{B. cereus} group species (i.e., “\textit{B. bingmayongensis}”, “\textit{B. gaemokensis}”, and “\textit{B. manliponensis}”) ($n = 2,231$, accessed November 19, 2018; Supplementary Tables S1 and S2). QUAST version 4.042 was used to assess the quality of each assembled genome, and BTyper version 2.3.224 was used to detect \textit{B. cereus} group virulence genes in each genome, using default minimum amino acid sequence identity and coverage thresholds (50 and 70\%, respectively), which have been shown to correlate with PCR-based detection of virulence genes in \textit{B. cereus} group isolates (Supplementary Table S1).24,43 Prokka version 1.1244 was used to annotate each of the 2,231 \textit{B. cereus} group genomes, and the resulting coding sequences (CDS) were used as
input for the command-line implementation BtToxin_scanner version 1.0
(BtToxin_scanner2.pl),45 which was used to identify insecticidal toxin genes associated with \textit{B. thuringiensis} (Bt toxins) in each genome using the default settings.

Calculation of pairwise average nucleotide identity values, hierarchical clustering, and identification of medoid genomes. FastANI version 1.015 was used to calculate pairwise average nucleotide identity (ANI) values between each of the 2,231 genomes (4,977,361 total comparisons). To ensure that the breakpoints and shape of the distribution of pairwise ANI calculations were robust to genome ambiguity, all pairwise ANI values were calculated a second time, with ambiguous nucleotides (i.e., those not belonging to the set \{\textit{A, C, G, T}\}) removed from each genome (Supplementary Figure S1). Robustness was further assessed by removing genomes (i) falling below various N50 thresholds (i.e., \leq 10 Kbp, 20 Kbp, 50 Kbp, and 100 Kbp), and/or (ii) containing any contigs classified in domains other than Bacteria, phyla other than Firmicutes, and/or genera other than \textit{Bacillus} using Kraken version 2.0.8-beta46,47 and the complete standard Kraken database (accessed August 6, 2019; Supplementary Figure S1). For each data set, a histogram of all pairwise ANI values was plotted in R version 3.6.0,48 using the ggplot2 package (Supplementary Figure S1).49 For the identification of a final set of medoid genomes at various thresholds (described below), all genomes with an N50 > 20 Kbp in the original set of 2,231 NCBI RefSeq genomes were used in all subsequent steps (\(n = 2,218\); Supplementary Table S1 and Supplementary Figure S1).

For each data set, the resulting pairwise ANI values were used to construct a similarity matrix, \(S_{\text{ANI}}\), using R version 3.6.0 and the reshape2 package50 as follows, where \(n = 2,218\):
Let g_1, g_2, \ldots, g_n be a set of n genomes, denoted by G ($G = \{g_1, g_2, \ldots, g_n\}$). Similarity function $ANI(g_i, g_j)$ denotes the ANI value shared by query and reference genomes g_i and g_j, respectively, where

$$ANI: G \times G \rightarrow [0,100]$$

Similarity matrix S_{ANI} can be defined as

$$S_{ANI} = (s_{ij});$$

$$s_{ij} = ANI_{ij} = ANI(g_i, g_j)$$

Similarity matrix S_{ANI} was converted to a dissimilarity matrix, D_{ANI}, as follows, where \mathbf{J} denotes an $n \times n$ matrix where each element is equal to 1:

$$D_{ANI} = 100 \mathbf{J} - S_{ANI}$$

ANI as a similarity function is not symmetric (i.e., for all g_i, g_j, $ANI(g_i, g_j) \neq ANI(g_j, g_i)$), as minor differences between corresponding values in the upper and lower triangles of D_{ANI} existed: $\max(d(g_i, g_j), d(g_j, g_i)) = 0.504$, $\min(d(g_i, g_j), d(g_j, g_i)) = 0$, $\text{mean}(d(g_i, g_j), d(g_j, g_i)) = 0.056$, and $\text{median}(d(g_i, g_j), d(g_j, g_i)) = 0.046$. As such, D_{ANI} is not a symmetric matrix (i.e., $D_{ANI} \neq D_{ANI}^T$). To coerce D_{ANI} to a symmetric matrix, D_{ANI}^{sym}, the following transformation was applied:

$$D_{ANI}^{sym} = 0.5(D_{ANI} + D_{ANI}^T)$$

The hclust function in R’s stats package was then used to perform average linkage hierarchical clustering, using D_{ANI}^{sym} as the dissimilarity structure, and the resulting dendrogram was annotated using the ggplot2, dendextend, and viridis packages. Dendrogram clusters formed at various species thresholds (denoted here by T_d, where $T_d = \{4,5,6,7.5\}$, corresponding to ANI values of 96, 95, 94, and 92.5, respectively) were obtained by treating genome lineages which coalesced
prior to T_d as members of the same cluster (i.e., genomicspecies), and those which did not as
members of different clusters. Medoid genomes were then identified within each cluster at each
threshold, using the pam function in R’s cluster package53 and $D^\text{sym}_{\text{ANI}}$ as a dissimilarity structure,
where the medoid genome is defined as

\[
g_{\text{medoid}} = \arg \min_{y \in \{g_1, g_2, \ldots, g_n\}} \sum_{i=1}^{n} d(y, g_i)
\]

where $d(g_i, g_j) = 100 - \text{ANI}(g_i, g_j)$.

To construct a graph with each of the final set of 2,218 \textit{B. cereus} group genomes
represented as nodes and ANI values represented as weighted edges, $D^\text{sym}_{\text{ANI}}$ was converted to a
symmetric similarity matrix, $S^\text{sym}_{\text{ANI}}$, as follows:

$$S^\text{sym}_{\text{ANI}} = -1(D^\text{sym}_{\text{ANI}} - 100 \mathbf{1})$$

The igraph54 package in R version 3.6.0 was used to construct each graph, with $S^\text{sym}_{\text{ANI}}$ treated as
an adjacency matrix, and edges with weights (i.e., ANI values) less than a similarity threshold T_s
(i.e., $T_s = \{92.5, 95\}$) removed.

\textbf{Phylogeny construction using single-copy core orthologous clusters identified in 2,231 \textit{B. cereus} group genomes.} FASTA files containing amino acid sequences of protein-coding
features (.faa files) produced by Prokka version 1.1244 were used as input for OrthoFinder
version 2.3.355 Single-copy orthologous clusters present in all 2,231 genomes (i.e., single copy
core orthologous clusters) were identified using an iterative approach, in which OrthoFinder was
used to identify single-copy orthologous clusters core to n of the 2,231 \textit{B. cereus} group genomes,
sampled randomly without replacement (where $n = 30$ or $n = 11$ for 74 and 1 [the remainder]
iteration[s], respectively). The union of single-copy orthologous clusters present in all n genomes
in each random sample of \textit{B. cereus} group genomes was then queried again using OrthoFinder,
which identified a total of 79 single-copy orthologous clusters core to all 2,231 *B. cereus* group genomes. Nucleotide sequences of each of the 79 single-copy core orthologous clusters present in all 2,231 genomes were aligned using PRANK v.170427. The resulting alignments were concatenated, and snp-sites version 2.4.0 was used to produce an alignment of variant sites, excluding gaps and ambiguous characters. IQ-TREE version 1.6.10 was used to construct a maximum likelihood phylogeny, using the alignment of core SNPs detected in all 2,231 *B. cereus* group genomes. The GTR+G+ASC nucleotide substitution model implemented in IQ-TREE (i.e., General Time Reversible model with a Gamma parameter to allow rate heterogeneity among sites and an ascertainment bias correction) was used, along with 1,000 replicates of the Ultrafast bootstrap approximation. Taxa excluded from the final medoid set of genomes (i.e., those with N50 < 20 Kbp) were removed using the drop.tip function in the ape package for R version 3.6.0, and the resulting phylogeny was annotated in R using the following packages: ggplot2, ape, phytools, phylobase, ggtree, and phangorn.

RESULTS

Current species definitions do not reliably differentiate *B. anthracis* from neighboring lineages. The currently employed practice of calculating pairwise ANI values between a genome of interest and the genomes of known *B. cereus* group species type strains (Supplementary Table S2) and using the widely accepted threshold of 95 ANI as a hard genomospecies cutoff produced non-overlapping, separable genomospecies clusters for *B. albus* (*n* = 11), “*B. bingmayongensis*” (*n* = 1), *B. cytotoxicus* (*n* = 14), “*B. gaemokensis*” (*n* = 1), *B. luti* (*n* = 3), “*B. manliponensis*” (*n* = 1), *B. nitratireducens* (*n* = 70), *B. paramyroides* (*n* = 6), *B. proteolyticus* (*n* = 7), *B. pseudomycoides* (*n* = 111), and *B. toyonensis* (*n* = 230). None of the genomes assigned...
to these genospecies clusters shared ≥95 ANI with any genomes assigned to a different

...
overlapping genomospecies clusters (i.e., *B. cereus* s.s. and *B. thuringiensis*; *B. mycoides* and *B. weihenstephanensis*; *B. mobilis* and *B. wiedmannii*; *B. anthracis*, *B. pacificus*, *B. paranthracis*, and *B. tropicus*) continued to produce ambiguous genomospecies assignments, although with more than 3.6 times fewer total multi-species classifications at ≥ 95 ANI compared to assignment based on species type strains; 405 genomes were assigned to 2 or more medoid-based genomospecies clusters [18.2%], compared to 1,478 genomes assigned to 2 or more type strain genomospecies clusters [66.2%] (Figure 2A).

Genomic elements responsible for anthrax, emetic, and insecticidal toxin production

exhibit heterogeneous presence in multiple *B. cereus* group species using current genomospecies definitions. Additional nomenclatural discrepancies arise when a trait of interest is plasmid-encoded, as these traits are expected to be lost or gained more frequently than those of chromosomal origin. Such is the case of the plasmid-mediated anthrax toxin genes often associated with *B. anthracis* (edema factor-encoding *cya*, lethal factor-encoding *lef* and protective antigen-encoding *pagA*):70 93 of 241 (38.6%) genomes most closely resembling the *B. anthracis* reference genome at ≥95 ANI did not possess anthrax toxin genes *cya*, *lef*, and *pagA* (Figures 3A and 3B and Supplementary Table S5). Notably, isolates which most closely resemble *B. anthracis* by current species definitions (i.e., ≥95 ANI), despite lacking the genes necessary to produce anthrax toxin, do not appear to be particularly uncommon; such strains have been isolated from a diverse array of environments (e.g., soil, animal feed, milk, spices, egg whites, baby wipes), from six continents, as well as the International Space Station (Supplementary Table S5). The classification of these isolates as *B. anthracis* could lead to incorrect assumptions about the anthrax-causing capability of strains belonging to these lineages.
Additionally, genes required for the production of anthrax toxin have been described in not only *B. anthracis*, but in isolates which share phenotypic characteristics often associated with “*B. cereus*” (e.g., motility, gamma bacteriophage resistance) as well.10,24,37-40 Despite the common assertion that *B. anthracis* is a clonal species with low diversity,71-73 the species cluster formed by *B. anthracis* at 95 ANI encompasses several lineages which fall outside of the highly similar one most commonly associated with anthrax illness (Figures 3A and 3B). Furthermore, even at the widely accepted genospecies threshold of 95 ANI, nearly all (145 of 149; 97.3%) genomes possessing the anthrax toxin encoding genes (i.e., *cya*, *lef*, and *pagA*) were found to belong to the *B. anthracis* reference genome genospecies cluster, including three of the seven genomes submitted to NCBI’s RefSeq database as anthrax-causing “*B. cereus*” (Figures 3A and 3B and Supplementary Table S6). These three genomes most closely resembled the *B. anthracis* reference genome, but also shared ≥95 ANI with the *B. paranthracis* type strain genome (Supplementary Table S6). The remaining four genomes derived from other anthrax-causing “*B. cereus*” strains most closely resembled the *B. tropicus* type strain, shared ≥95 ANI with the *B. paranthracis* type strain, and shared between 94 and 95 ANI with the *B. anthracis* species reference genome (Supplementary Table S6). This separation of anthrax-causing *B. cereus* group genomes into two genospecies clusters at 95 ANI was maintained when medoid genomes were used in lieu of type/reference genomes as well (Figure 2A2 and Supplementary Table S6). As such, several anthrax-causing “*B. cereus*” strains are technically still *B. anthracis*, even by the current genospecies definitions (i.e., ≥95 ANI relative to the *B. anthracis* species reference genome; Figures 3A and 3B) and despite having a mosaic of phenotypic characteristics attributed to *B. cereus* s.s. and *B. anthracis*.
Heterologous presentation within the genospecies or lineage with which it is associated, as well as presence in additional genospecies, is not reserved for anthrax toxin production. Emetic “B. cereus” has been designated as such by its ability to produce cereulide, a highly heat- and pH-resistant toxin responsible for a foodborne illness characterized by symptoms of vomiting.¹,²,²⁴ At a genospecies threshold of ≥95 ANI, all 30 emetic “B. cereus” genomes most closely resembled the B. paranthracis type strain. All emetic “B. cereus” genomes were confined to a single genospecies cluster when medoid genomes were used, and were interspersed among genomes which lacked cesABCD and are hence likely incapable of producing emetic toxin (Figures 3A and 3C and Supplementary Table S1). cesABCD were detected in five genomes representing two additional medoid-based genospecies clusters at ≥95 ANI as well (Figures 3A and 3C and Supplementary Table S1). One of these genospecies clusters contained the type strains of B. weihenstephanensis and B. mycoides, which is unsurprising considering cereulide-producing B. weihenstephanensis has been isolated in rare cases.⁷⁵,⁷⁶ However, two genomes categorized previously as emetic “B. weihenstephanensis” belonged to a completely separate genospecies cluster at a 95 ANI threshold (Figures 3A and 3C and Supplementary Table S1).

The Cry and Cyt insecticidal proteins associated with popular biocontrol agent B. thuringiensis (i.e., Bt toxins), which can be plasmid-mediated, are plagued by similar issues, as B. thuringiensis has historically been differentiated from B. cereus s.s. by its ability to produce insecticidal toxins (e.g., Cry and Cyt toxins).⁷⁷ However, genes known to encode these insecticidal toxins were detected in nine of the 21 B. cereus group type strain genospecies clusters at the widely used genospecies threshold of 95 ANI (B. albus, B. anthracis, B. cereus s.s., B. mycoides, B. paranthracis, B. thuringiensis, B. toyonensis, B. tropicus, and B.
wiedmannii; Figures 3A and 3D). These results are consistent with previous findings, as Bt toxin production has been previously attributed to numerous B. cereus group lineages.69,77,78 ANI-based comparisons to medoid genomes using a lowered genomospecies threshold of \textasciitilde92.5 eliminate the species overlap problem for B. anthracis and its neighboring lineages. Numerous bacterial lineages have showcased a breakpoint in core genome similarity which is close to a threshold 95 ANI. As such, the 95 ANI cutoff has been proposed to serve as an adequate metric of delineation for many bacterial species.15 However, pairwise ANI values for a significant proportion of B. cereus group genomes, particularly B. anthracis and neighboring lineages, fall within the 93-95 ANI range, with a breakpoint in core genome similarity occurring close to 92.5 ANI (Figure 4 and Supplementary Figure S2). These characteristics, including lack of a natural breakpoint in core genome similarity at 95 ANI and a breakpoint at \textasciitilde92.5 ANI, were maintained when genomes were removed at quality and contamination filtering thresholds of varying stringency (Supplementary Figure S1). Using a 92.5 ANI breakpoint for genomospecies assignment, rather than 95, nearly eliminates the species overlap problem: only six of 2,231 genomes (0.269\%) were assigned to 2 or more medoid-based genomospecies clusters at a hard threshold of 92.5 ANI (Figure 2 B2 and Supplementary Table S7). This can be compared to 18.2\% and 66.2\% of genomes assigned to multiple genomospecies clusters at 95 ANI when medoid genomes and species type strain/reference genomes were used, respectively (Figure 2 and Supplementary Tables S3 and S4).

Additionally, at 92.5 ANI, the total number of B. cereus group genomospecies clusters is reduced to 18, compared to 36 genomospecies clusters formed using medoid genomes at 95 ANI (Figures 3A and 5 and Supplementary Tables S4 and S7). At a threshold of 92.5 ANI, all genomes in which anthrax toxin-encoding genes were detected were confined to a single
genospecies cluster (referred to here as *B. mosaicus*; see Discussion section). Cereulide synthetase genes *cesABCD* were confined to two genospecies clusters (*B. mosaicus* and *B. mycoides*; see Discussion section), while known Cry and Cyt genes commonly associated with *B. thuringiensis* were detected in four genospecies clusters (*B. cereus s.s.*, *B. mosaicus*, *B. mycoides*, and *B. toyonensis*; see Discussion section).

Notably, even at a lowered threshold of 92.5 ANI, seven genospecies clusters did not possess type strains or reference genomes of any published species (Supplementary Table S7), indicating that putative novel *B. cereus* group genospecies may be present among publicly available genomes. One of these genospecies clusters has recently been proposed as novel *B. cereus* group species "*B. clarus*". The remaining six genospecies, which are composed of environmental *B. cereus* group strains from soil and agricultural environments, have not previously been proposed as novel species (Supplementary Table S8).

DISCUSSION

When applied to bacteria, the taxonomic concept of “species” is notoriously ambiguous, particularly in cases where taxonomy is intertwined with a mobilizable (e.g., plasmid-encoded) phenotype, and even more so when that phenotype is a well-established component of the medical or industrial lexicon. Taxonomic definitions based solely on phenotype lack nuance in the omics era, as they ignore potential underpinning genomic diversity which could be leveraged to provide a higher-resolution assessment of an isolate’s pathogenic potential or industrial utility. A notable example outside of the *B. cereus* group can be seen in botulinum neurotoxin [BoNT]-producing bacterial species, to which the *Clostridium botulinum* species label has historically been applied, despite the fact that multiple genospecies are capable of BoNT production. Furthermore, taxonomy based on phenotype can be ambiguous—and even misleading—when a
trait is lost, gained, or not widespread throughout a lineage. For example, it is currently unclear if
emetic “B. cereus” can still be labeled as such if it loses plasmid-encoded genes responsible for
cereulide production. Additionally, emetic symptoms are not exclusive to cereulide
intoxication.81 The development of a taxonomic nomenclature just for the sake of taxonomic
rigor, however, can be equally problematic when a particular bacterial lineage has deep roots in
medicine or industry. For example, some \textit{Escherichia coli} lineages and \textit{Shigella} spp., which do
not represent distinct genera at a genomic level,15,82 may be identified and treated differently in a
clinical setting.82 As such, their current taxonomic designations are readily interpretable and
actionable in the medical and public health communities, despite genomic inconsistencies
reflected in their nomenclature.

An ideal taxonomic nomenclature for the \textit{B. cereus} group should be easily interpretable
by clinicians and public health officials, without sacrificing the resolution provided by WGS and
other contemporary technologies. Several previous publications describing \textit{B. cereus} group
members which exhibit genotype-phenotype incongruencies have appended the term “biovar” to
species names to denote phenotypes of interest (e.g., anthrax-causing “\textit{B. cereus}” as \textit{B. cereus}
biovar anthracis; Cry-producing \textit{B. wiedmannii} as \textit{B. wiedmannii} biovar thuringiensis).38,78 A
taxonomic nomenclature for the \textit{B. cereus} group is thus proposed, consisting of the following
components: (i) an amended collection of genomospecies names, corresponding to the resolvable
genomospecies clusters obtained at the \textit{B. cereus} group core genome breakpoint of \textasciitilde92.5 \textit{ANI}
shown here; (ii) a formal collection of subspecies names, which can be used to account for well-
established lineages of medical importance; and (iii) a formalized and extended collection of
biovar terms, which can account for phenotype heterogeneity (Figure 6; note that a recently
proposed “genomovar” framework for \textit{B. cereus s.s.} and genomes classified as \textit{B. thuringiensis}
using the species type strain genome is not adopted here, due to the lack of a genospecies boundary for *B. cereus s.s.* and *B. thuringiensis* [shown here and elsewhere, including the paper proposing the genomovar framework, as well as the lack of a standardized species definition for *B. thuringiensis* [i.e., some studies have defined *B. thuringiensis* as any *B. cereus* group species capable of producing insecticidal toxins, while others have defined it based on similarity to the species type strain genome]].

A formal proposal of a novel taxonomic nomenclature for the *B. cereus* group.

A. Genospecies.

The *B. cereus* group currently consists of eight genospecies clusters (denoted I – VIII) which encompass published *B. cereus* group species, four genospecies (denoted ix – xii) which encompass putative *B. cereus* group species that have already been proposed in the literature, and six genospecies (denoted xiii – xviii) which may represent unknown putative genospecies that have yet to be proposed (Figure 5). A genome belongs to a genospecies if it shares ≥ 92.5 ANI with the genospecies medoid genome (Supplementary Table S7). Due to the resolvability of genospecies clusters at this threshold, it follows that (i) a genome does not belong to a genospecies if it shares ≤ 92.5 with the genospecies medoid genome; (ii) two genomes belong to the same genospecies if they share ≥ 92.5 ANI with each other; (iii) two genomes belong to different genospecies if they share ≤ 92.5 ANI with each other (i.e., in practice, one does not need to use a genospecies medoid genome for genospecies assignment, but rather any genome of known genospecies; see Supplementary Tables S1 [genospecies assignments for all publicly available *B. cereus* group genomes] and S7 [genospecies...
assignments of *B. cereus* group type strain genomes]). When written, genomospecies names immediately follow the genus name (*Bacillus* or *B.*) and are italicized and lower-case.

Published genomospecies

I. *Bacillus pseudomycoides*. The *B. pseudomycoides* genomospecies cluster contained 111 genomes, including the genome of species type strain *B. pseudomycoides* str. DSM 12442. All genomes previously classified as *B. pseudomycoides* relative to the type strain at a threshold of 95 ANI remain in this genomospecies, and no additional genomes belong to the genomospecies. As such, this genomospecies remains consistent with its previous classification, and its previous name remains unchanged.

II. *Bacillus paramycoides*. The *B. paramycoides* genomospecies cluster contained six genomes, including the genome of species type strain *B. paramycoides* str. NH24A2. All genomes previously classified as *B. paramycoides* relative to the type strain at a threshold of 95 ANI remain in this genomospecies, and no additional genomes belong to the genomospecies. As such, this genomospecies remains consistent with its previous classification, and its previous name remains unchanged.

III. *Bacillus mosaicus*. The *B. mosaicus* genomospecies contained 722 genomes, including type strains and reference genomes of species formerly known as *B. albus* (now *B. mosaicus* str. N35-10-2), *B. anthracis* (now *B. mosaicus* subsp. *anthracis* str. Ames; see sections “Subspecies” and “Biovars” below), *B. mobilis* (now *B. mosaicus* str. 0711P9-1), *B. pacificus* (now *B. mosaicus* EB422), *B. paranthracis* (now *B. mosaicus* str. MN5), *B. tropicus* (now *B. mosaicus* N24), and *B. wiedmannii* (now *B. mosaicus* FSL W8-0169). Additionally, all members of the lineage formerly known as emetic “*B. cereus*” belong to *B. mosaicus* (see sections “Subspecies” and “Biovars” below). While the species formerly known as *B.*
anthracis is the oldest described former species in this group, it is not proposed as the
genomospecies name, as doing so could lead to incorrect assumptions of an isolate’s anthrax-
causing potential. As such, the proposed genomospecies name (mosaicus) is chosen to reflect
the diversity of lineages and phenotypes present among members of this genomospecies. All
genomes previously assigned to the aforementioned former species using their respective
type strain or reference genomes at a threshold of 95 ANI belong to B. mosaicus.

IV. Bacillus cereus sensu stricto (s.s.). The B. cereus s.s. genomospecies contained 949
genomes, including those of type strains B. cereus s.s. (B. cereus s.s. str. ATCC 14579) and
former species B. thuringiensis (now B. cereus s.s. serovar berliner biovar Thuringiensis str.
ATCC 10792; see section “Biovars” below). B. cereus s.s. was chosen as the genomospecies
name, with Thuringiensis proposed as a biovar to account for phenotypic heterogeneity
within B. cereus s.s., as well as the presence of insecticidal toxins in other genomospecies
(see section “Biovars” below). All genomes previously assigned to the species B. cereus s.s.
and former species B. thuringiensis at a 95 ANI threshold using these type strains belong to
the B. cereus s.s. genomospecies.

V. Bacillus toyonensis. The B. toyonensis genomospecies contained 230 genomes, including
the type strain of B. toyonensis (B. toyonensis str. BCT-7112). All genomes previously
classified as B. toyonensis relative to the type strain at a threshold of 95 ANI remain in this
genomospecies, and no additional genomes belong to the genomospecies. As such, this
genomospecies remains consistent with its previous classification, and its previous name
remains unchanged.

VI. Bacillus mycoides. The B. mycoides genomospecies contained 164 genomes, including
the type strain of B. mycoides (B. mycoides str. DSM 2048), former species B.
nitratireducens (now *B. mycoides* str. 4049), former species *B. proteolyticus* (now *B. mycoides* str. TD42), and former species *B. weihenstephanensis* (now *B. mycoides* str. WSBC 10204). Additionally, all members of the lineages formerly known as emetic *B. weihenstephanensis* belong to *B. mycoides* (see section “Biovars” below). *B. mycoides* was selected as the genomospecies name, as it is the oldest of published former species described in this cluster (and remains consistent with taxonomic changes recently proposed by others). All genomes previously assigned to the aforementioned species using their respective type strain or reference genomes and a threshold of 95 ANI belong to *B. mycoides*.

VII. Bacillus cytotoxicus. The *B. cytotoxicus* genomospecies contained 14 genomes, including the type strain of *B. cytotoxicus* (*B. cytotoxicus* str. NVH 391-98). All genomes previously classified as *B. cytotoxicus* relative to the type strain at a threshold of 95 ANI remain in this genomospecies, and no additional genomes belong to the genomospecies. As such, this genomospecies remains consistent with its previous classification, and its previous name remains unchanged.

VIII. Bacillus luti. The *B. luti* genomospecies contains nine genomes, including the type strain of *B. luti* (*B. luti* str. TD41). All genomes previously classified as *B. luti* relative to the type strain at a threshold of 95 ANI remain in this genomospecies, and no additional genomes belong to the genomospecies. As such, this genomospecies remains consistent with its previous classification, and its previous name remains unchanged.

Previously proposed putative species

The following four putative *B. cereus* group genomospecies which have been proposed previously remain unchanged:

ix. “B. bingmayongensis” (including type strain “*B. bingmayongensis*” str. FJAT-13831)
x. “B. gaemokensis” (including type strain “B. gaemokensis” str. KCTC 13318)

xi. “B. manliponensis” (including type strain “B. manliponensis” str. JCM 15802)

xii. “B. clarus” (including type strain “B. clarus” str. ATCC 21929)

Putative novel species

The six putative genomspecies clusters xiii-xviii listed in Supplementary Table S8 have not
been proposed as novel species in the literature, and thus may eventually be adopted as novel
species following rigorous genotypic and phenotypic characterization and peer-reviewed
publication. Future proposed novel B. cereus group species should (i) share < 92.5 ANI with
all B. cereus group genomes, and (ii) share ≥ 97% 16S rDNA similarity with known B.
cereus group species (a definition used in previous studies). 19

B. Subspecies. We propose the adoption of the following two subspecies terms to ensure that
the medically important lineages formerly known as B. anthracis and emetic “B. cereus” are
still interpretable outside of a strictly taxonomic context. When written, subspecies names are
italicized, lower-case, and can optionally (i) be appended to the species name, after the non-
italicized delimiter “subspecies” or “subsp.”, prior to a serotype designation (if applicable);
or (ii) follow the genus name (Bacillus or B.) directly, with the species name omitted, prior to
a serotype designation (if applicable).

a. B. mosaicus subspecies anthracis (can also be written as B. mosaicus subsp.
anthracis; B. anthracis): refers to the comparatively clonal lineage of former species
B. anthracis commonly associated with anthrax illness. Isolates which are assigned to
this subspecies should (i) exhibit distinguishing phenotypic characteristics (e.g., lack
of motility, lack of hemolysis on Sheep RBC agar) associated with the classical
definition of B. anthracis as outlined in the Bacteriological Analytical Manual (BAM)

chapter on *B. cereus*,10 and/or (ii) share ≥ 99.9 ANI with former species reference genome *B. anthracis* str. Ames (now *B. mosaicus* subsp. *anthracis*; NCBI RefSeq Accession GCF_000007845.1), as Jain, et al.15 identified this as a threshold for this closely related lineage, a result which we replicated here. The use of the term “subspecies *anthracis*” does not indicate whether an isolate produces anthrax toxin or possesses the machinery required for the synthesis of anthrax toxin or not (see “biovar Anthracis” below for further clarification).

b. *B. mosaicus* subspecies *cereus* (can also be written as *B. mosaicus* subsp. *cereus*; *B. cereus*): refers to the lineage formerly known as emetic “*B. cereus*”. All genomes possessing cereulide synthetase genes (*cesABCD*) which did not belong to the *B. mycoides* species cluster (see “Species” section above) shared ≥ 97.5 ANI with the emetic reference strain formerly known as *B. cereus* str. AH187 (now *B. mosaicus* subsp. *cereus* biovar Emeticus; NCBI RefSeq Accession GCF_000021225.1). As such, isolates which are assigned to this subspecies (i) produce cereulide and belong to the species *B. mosaicus*, (ii) possess the cereulide synthetase biosynthetic gene cluster and belong to the species *B. mosaicus*, and/or (iii) share ≥ 97.5 ANI with emetic reference genome *B. cereus* str. AH187 (now *B. mosaicus* subsp. *cereus* biovar Emeticus; NCBI RefSeq Accession GCF_000021225.1). The use of the term “subspecies *cereus*” does not indicate whether an isolate produces cereulide or possesses the machinery required for the synthesis of cereulide or not (see “Biovar Emeticus” below for further clarification).

C. **Biovars.** To account for phenotypes of clinical and industrial importance which can be distributed across species and heterogeneous in their appearance in individual lineages, we
propose the biovars listed below. While phenotypic evidence of a trait assigned to a biovar is
ideal, biovars can also be predicted at the genomic level. When written, (i) the first letter of
the biovar is capitalized; (ii) the biovar name is not italicized; (iii) the biovar is appended to
the end of a species, subspecies (if applicable), or serotype name (if applicable), following
the non-italicized delimiter “biovar”; (iv) if applicable, multiple biovars follow the non-italicized, plural delimiter “biovars”, are listed in alphabetical order, and are each separated
by a comma and a single space; (v) biovar(s) may follow the genus name (Bacillus or B.)
directly, with the species, subspecies (if applicable), and serotype (if applicable) names
omitted.

a. **biovar Anthracis**: can be applied to an isolate (i) known to produce anthrax toxin
(preferred), and/or (ii) possess anthrax toxin encoding genes *cya, lef*, and *pagA*.

Capsular genes (e.g., *cap, has, bps*)\(^{30,31,84}\) are deliberately excluded from the
definition of the Anthracis biovar as a conservative measure. This is to avoid cases in
which an isolate might possess anthrax toxin genes but no known capsule synthesis
genes, despite the ability to synthesize a capsule via novel capsule synthesis
mechanisms. Published examples of this biovar are: *B. mosaicus* subsp. *anthracis*
biovar Anthracis (i.e., anthrax-causing members of the classical “clonal” lineage
often associated with anthrax disease; can also be written as *B. anthracis* biovar
Anthracis or *B. Anthracis*); *B. mosaicus* biovar Anthracis (i.e., anthrax-causing
lineages formerly known as “anthrax-causing *B. cereus*”; can also be written as *B.
Anthracis*).

b. **biovar Emeticus**: can be applied to an isolate known to produce cereulide (preferred)
and/or possess genes encoding cereulide synthetase (*cesABCD*). Published examples
of this biovar are: *B. mosaicus* subsp. *cereus* biovar Emeticus (i.e., cereulide-
producing lineages formerly known as emetic “*B. cereus*”; can also be written as *B.
cereus* biovar Emeticus or *B. Emeticus*); *B. mycoides* biovar Emeticus (i.e., cereulide-
producing lineages formerly known as “emetic *B. weihenstephanensis*”; can also be
written as *B. Emeticus*).

c. **biovar Thuringiensis:** can be applied to an isolate known to produce one or more
insecticidal/Bt toxins (preferred) and/or possess genes known to encode insecticidal
toxins (e.g., genes encoding Cry, Cyt, or Vip toxins). Examples of this biovar include
B. mosaicus biovar Thuringiensis and *B. cereus s.s.* biovar Thuringiensis (both of
which can be written as *B. Thuringiensis*).

CONCLUSION

The nomenclature proposed here offers numerous advantages over previous taxonomic
conventions. Most importantly, it is consistent; it provides an explicit, standardized framework
for naming and classifying members of the *B. cereus* group using genomic and/or phenotypic
methods, and it resolves previous ambiguities in the scientific community (e.g., whether *B.
cereus* group isolates outside of the “clonal” lineage often associated with anthrax disease but
still within commonly employed genomospecies thresholds, including those capable of causing
anthrax,\(^{40,85,86}\) are *B. anthracis*; whether “*B. thuringiensis*” refers to any *B. cereus* group member
which carries genes encoding insecticidal toxins,\(^{69}\) or to members of the *B. cereus* group which
most closely resemble the *B. thuringiensis* species type strain;\(^{83}\) whether emetic “*B. cereus*”
should be referred to as such, or as “*B. paranthracis*”\(^{23}\)). Furthermore, genomes can now only be
assigned to a single genomospecies (i.e., the species-overlap problem is eliminated), and a single,
genomically informed ANI threshold for the proposal of novel genomospecies is proposed.
A second advantage of the proposed taxonomy is its backwards-compatibility with previous medical and industrial definitions of *B. cereus* group species; for example, with the taxonomy proposed here, any *B. cereus* group isolate capable of producing insecticidal crystal proteins can be referred to as *B. Thuringiensis*, which is in line with the traditional definition of the species. Specific lineages, however, can be accounted for through the incorporation of species and/or serovar names (e.g., *B. cereus* s.s. serovar berliner biovar Thuringiensis). Additionally all isolates capable of producing anthrax toxin can be referred to as *B. Anthracis*, while members of the “clonal” anthrax lineage can continue to be referred to as *B. anthracis* (the subspecies short-form of *B. mosaicus* subsp. *anthracis*). We anticipate that these minor nomenclatural changes will remain interpretable and actionable to those in medicine, public health, and industry, while still remaining true to genomic definitions of bacterial species.

Finally, the proposed taxonomy is advantageous for its flexibility. The framework proposed here can be easily expanded to account for additional important lineages or phenotypes through the adoption of novel subspecies or biovars, respectively. For example, future biovars (i.e., biovar Cereus) can be proposed to describe *B. cereus* group members capable of causing diarrheal foodborne disease, as this form of disease involves multiple toxins and is not yet fully understood. The biovar nomenclature proposed here, along with revised genomospecies definitions and the proposal of novel subspecies, provides a standardized framework for *B. cereus* group classification, accounting for both phylogenomic diversity and phenotypic heterogeneity. An open-source, freely available command-line tool for characterizing *B. cereus* group genomes *in silico* using the framework proposed here can be found at:

REFERENCES

Mikesell, P., Ivins, B. E., Ristroph, J. D. & Dreier, T. M. Evidence for plasmid-mediated

Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for
(2013).

Kovac, J. *et al.* Production of hemolysin BL by *Bacillus cereus* group isolates of dairy
origin is associated with whole-genome phylogenetic clade. *BMC Genomics* **17**, 581,

Seemann, T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* **30**, 2068-

Ye, W. *et al.* Mining new crystal protein genes from *Bacillus thuringiensis* on the basis of
mixed plasmid-enriched genome sequencing and a computational pipeline. *Appl Environ

Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification

R Core Team. *R*: A language and environment for statistical computing. (Vienna,
Austria, 2018).

Wickham, H. Reshaping Data with the reshape Package. *2007 21*, 20,

cluster: Cluster Analysis Basics and Extensions. v. 2.0.6 (2017).

ACKNOWLEDGMENTS

This material is based on work supported by the National Science Foundation Graduate Research Fellowship Program under grant no. DGE-1650441 and USDA National Institute of Food and Agriculture Hatch Appropriations under Project #PEN04646 and Accession #1015787.

AUTHOR CONTRIBUTIONS

LMC performed all computational analyses. JK, LMC, and MW conceived the study and wrote the manuscript.

COMPETING INTERESTS

The authors declare no competing interests.
FIGURE LEGENDS

Figure 1. Dendrogram constructed using symmetric pairwise average nucleotide identity (ANI) dissimilarities calculated between 2,218 \(B.\) cereus group genomes from NCBI’s RefSeq database with N50 > 20 Kbp (i.e., \(D_{\text{ANI}}^{\text{sym}} \) in the “Methods” section) and the average linkage hierarchical clustering method implemented in the hclust function in R. Blue tip labels denote the location of species type strain/reference genomes in the dendrogram, while tree height corresponds to ANI dissimilarity. Branch colors correspond to branch height within the tree. Dashed vertical lines appear at dissimilarities of 7.5, 6, 5, and 4, which correspond to ANI thresholds of 92.5, 94, 95, and 96, respectively (from left to right in order of appearance along the X-axis).

Figure 2. Weighted undirected graphs constructed using symmetric pairwise average nucleotide identity (ANI) values calculated between 2,218 \(B.\) cereus group genomes from NCBI’s RefSeq database with N50 > 20 Kbp (i.e., \(S_{\text{ANI}}^{\text{sym}} \) in the “Methods” section). Nodes represent individual genomes, while weighted edges connect each pair of genomes with a mean ANI value (A) \(\geq \) 95, and (B) \(\geq \) 92.5, where edge weight corresponds to the mean ANI value of the pair. Nodes (i.e., genomes) are colored by (1) closest matching type strain genome, or (2) closest matching medoid genome of clusters formed at the respective ANI value. Graphs were constructed using the graphout layout algorithm implemented in R’s igraph package, using 500 iterations and a charge of 0.02.

Figure 3. Maximum likelihood phylogenies of 2,218 \(B.\) cereus group genomes with N50 > 20 Kbp. Tip and branch labels are colored by (A) genomospecies assignment using medoid genomes of genomospecies clusters formed at the widely used genomospecies threshold of 95 ANI (clusters are arbitrarily numbered), and presence (pink) and absence (gray) of (B) anthrax toxin genes \(\text{cya}, \text{lef}, \) and \(\text{pagA}, \) (C) cereulide synthetase encoding \(\text{cesABCD}, \) and (D) one or more
previously described Cry or Cyt insecticidal toxin-encoding genes. Phylogenies were constructed using core SNPs identified in 79 single-copy orthologous gene clusters present in 2,231 *B. cereus* group genomes. The type strain of “*B. manliponensis*” (i.e., the most distantly related member of the group) was treated as an outgroup on which each phylogeny was rooted. Virulence genes (*cya*, *lef*, and *pagA*; *cesABCD*) were detected using BTyper version 2.3.2 (default thresholds), while insecticidal toxin-encoding genes were detected using BtToxin_scanner version 1.0 (default settings; presence and absence of high-confidence, previously known Cry- and Cyt-encoding genes are shown, with predicted putative novel insecticidal toxin-encoding genes excluded).

Figure 4. Histogram of pairwise average nucleotide identity (ANI) values calculated between 2,231 *B. cereus* group genomes downloaded from NCBI’s RefSeq database. FastANI version 1.0 was used to calculate all pairwise ANI values. For histograms of pairwise ANI values calculated between genomes meeting additional quality thresholds, or colored according to closest species type strain/reference genome at a traditional ≥95 ANI threshold, see Supplementary Figures S1 and S2, respectively.

Figure 5. Maximum likelihood phylogeny of 2,218 *B. cereus* group genomes with N50 > 20 Kb. Tip and branch labels are colored by genospecies assignment using medoid genomes of genospecies clusters formed at proposed genospecies threshold 92.5 ANI. Phylogeny was constructed using core SNPs identified in 79 single-copy orthologous gene clusters present in 2,231 *B. cereus* group genomes. The type strain of “*B. manliponensis*” (i.e., the most distantly related member of the group) was treated as an outgroup on which the phylogeny was rooted.

Figure 6. Taxonomic hierarchy for the proposed *B. cereus* group nomenclature. Taxonomic levels are listed in the left margin, with levels which are optional/not applicable to all organisms
denoted as such. Rounded boxes shaded in light green correspond to possible taxonomic
designations at their respective level, while blue boxes correspond to requirements an isolate
and/or its genome must meet to be assigned that designation. Possible forms which the final
taxonomic assignment can take can be found in the gray box at the bottom of the chart.
Figure 1. Dendrogram constructed using symmetric pairwise average nucleotide identity (ANI) dissimilarities calculated between 2,218 *B. cereus* group genomes from NCBI’s RefSeq database with N50 > 20 Kbp (i.e., D_{ANI} in the “Methods” section) and the average linkage hierarchical clustering method implemented in the `hclust` function in R. Blue tip labels denote the location of species type strain/reference genomes in the dendrogram, while tree height corresponds to ANI dissimilarity. Branch colors correspond to branch height within the tree. Dashed vertical lines appear at dissimilarities of 7.5, 6, 5, and 4, which correspond to ANI thresholds of 92.5, 94, 95, and 96, respectively (from left to right in order of appearance along the X-axis).
Figure 2. Weighted undirected graphs constructed using symmetric pairwise average nucleotide identity (ANI) values calculated between 2,218 *B. cereus* group genomes from NCBI’s RefSeq database with N50 > 20 Kbp (i.e., $S_{\text{ANI}}^{\text{sym}}$ in the “Methods” section). Nodes represent individual genomes, while weighted edges connect each pair of genomes with a mean ANI value (A) ≥ 95, and (B) ≥ 92.5, where edge weight corresponds to the mean ANI value of the pair. Nodes (i.e., genomes) are colored by (1) closest matching type strain genome, or (2) closest matching medoid genome of clusters formed at the respective ANI value. Graphs were constructed using the graphout layout algorithm implemented in R’s igraph package, using 500 iterations and a charge of 0.02.
Figure 3. Maximum likelihood phylogenies of 2,218 B. cereus group genomes with N50 > 20 Kbp. Tip and branch labels are colored by (A) genomospecies assignment using medoid genomes of genomospecies clusters formed at the widely used genomospecies threshold of 95 ANI (clusters are arbitrarily numbered), and presence (pink) and absence (gray) of (B) anthrax toxin genes cya, lef, and pagA, (C) cereulide synthetase encoding cesABCD, and (D) one or more previously described Cry or Cyt insecticidal toxin-encoding genes. Phylogenies were constructed using core SNPs identified in 79 single-copy orthologous gene clusters present in 2,231 B. cereus group genomes. The type strain of "B. manliponensis" (i.e., the most distantly related member of the group) was treated as an outgroup on which each phylogeny was rooted. Virulence genes (cya, lef, and pagA; cesABCD) were detected using BTyper version 2.3.2 (default thresholds), while insecticidal toxin encoding genes were detected using BtToxin_scanner version 1.0 (default settings; presence and absence of high-confidence, previously known Cry- and Cyt-encoding genes are shown, with predicted putative novel insecticidal toxin-encoding genes excluded).
Figure 4. Histogram of pairwise average nucleotide identity (ANI) values calculated between 2,231 *B. cereus* group genomes downloaded from NCBI’s RefSeq database. FastANI version 1.0 was used to calculate all pairwise ANI values. For histograms of pairwise ANI values calculated between genomes meeting additional quality thresholds, or colored according to closest species type strain/reference genome at a traditional ≥95 ANI threshold, see Supplementary Figures S1 and S2, respectively.
Figure 5. Maximum likelihood phylogeny of 2,218 *B. cereus* group genomes with N50 > 20 Kb. Tip and branch labels are colored by genomospecies assignment using medoid genomes of genomospecies clusters formed at proposed genomospecies threshold 92.5 ANI. Phylogeny was constructed using core SNPs identified in 79 single-copy orthologous gene clusters present in 2,231 *B. cereus* group genomes. The type strain of "*B. manliponensis*" (i.e., the most distantly related member of the group) was treated as an outgroup on which the phylogeny was rooted.
Figure 6. Taxonomic hierarchy for the proposed *B. cereus* group nomenclature. Taxonomic levels are listed in the left margin, with levels which are optional/not applicable to all organisms denoted as such. Rounded boxes shaded in light green correspond to possible taxonomic designations at their respective level, while blue boxes correspond to requirements an isolate and/or its genome must meet to be assigned that designation. Possible forms which the final taxonomic assignment can take can be found in the gray box at the bottom of the chart.