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ABSTRACT 

 

Host plasma membrane protein SERINC5 is incorporated into budding retrovirus particles where 

it blocks subsequent entry into susceptible target cells. Three accessory proteins encoded by 

diverse retroviruses, HIV-1 Nef, EIAV S2, and MLV Glycogag, each independently disrupt 

SERINC5 antiviral activity, by redirecting SERINC5 from the site of virion assembly on the 

plasma membrane to an internal RAB7+ endosomal compartment. Pseudotyping retroviruses 

with particular glycoproteins, e.g., the vesicular stomatitis glycoprotein (VSV G), renders the 

infectivity of particles resistant to inhibition by virion-associated SERINC5. To better understand 

viral determinants for SERINC5-sensitivity, the effect of SERINC5 was assessed using HIV-1, 

MLV, and M-PMV virion cores, pseudotyped with glycoproteins from Arenavirus, Coronavirus, 

Filovirus, Rhabdovirus, Paramyxovirus, and Orthomyxovirus genera. Infectivity of particles, 

pseudotyped with HIV-1, amphotropic-MLV, or influenza virus glycoproteins, was decreased by 

SERINC5, whether the core was provided by HIV-1, MLV, or M-PMV. Particles generated by 

all three cores, and pseudotyped with glycoproteins from either avian leukosis virus-A, human 

endogenous retrovirus K (HERV-K), ecotropic-MLV, HTLV-1, Measles morbillivirus, 

lymphocytic choriomeningitis mammarenavirus (LCMV), Marburg virus, Ebola virus, severe 

acute respiratory syndrome-related coronavirus (SARS-CoV), or VSV, were insensitive to 

SERINC5. In contrast, particles pseudotyped with M-PMV, RD114, or rabies virus (RABV) 

glycoproteins were sensitive to SERINC5, but only with particular retroviral cores. Resistance to 

SERINC5 by particular glycoproteins did not correlate with reduced SERINC5 incorporation 

into particles or with the route of viral entry. These findings indicate that some non-retroviruses 

may be sensitive to SERINC5 and that, in addition to the viral glycoprotein, the retroviral core 

influences sensitivity to SERINC5. 
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IMPORTANCE 

 

The importance of SERINC5 for inhibition of retroviruses is underscored by convergent 

evolution among three non-monophyletic retroviruses, each of which encodes a structurally 

unrelated SERINC5 inhibitor. One of these retroviruses causes tumors in mice, a second anemia 

in horses, and a third causes AIDS. SERINC5 is incorporated into retrovirus particles where it 

blocks entry into target cells, via a mechanism that is dependent on the viral glycoprotein. Here 

we demonstrate that retroviruses pseudotyped with glycoproteins from several non-retroviruses 

are also inhibited by SERINC5, suggesting that enveloped viruses other than retroviruses may 

also be inhibited by SERINC5. Additionally, we found that sensitivity to SERINC5 is 

determined by the retrovirus core, as well as by the glycoprotein. By better understanding how 

SERINC5 inhibits viruses we hope to extend fundamental understanding of virus replication and 

of the native role of SERINC5 in cells, and perhaps to advance the development of new antiviral 

strategies.  
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INTRODUCTION 

 

HIV-1 Nef is important for maximal HIV-1 replication in vivo and for progression to 

AIDS (1–3). Nef is a multifunctional accessory protein that downregulates CD4, MHC, and TCR 

from the cell surface (4–8). Nef also enhances HIV-1 infectivity in single-round infection 

experiments (9–16) by overcoming the antiviral effects of SERINC5 and SERINC3 (17, 18), 

though, of the two, SERINC5 is the more potent restriction factor. SERINC5 is incorporated into 

budding virions where it inhibits subsequent fusion of the virion membrane with target cell 

membranes. Nef counteracts SERINC5 by removing it from the cell surface so that it is not 

incorporated into nascent virions (17–20). 

HIV-1 is not the only virus inhibited by SERINC5. SIVs lacking nef are also inhibited by 

SERINC5 and SIV nefs counteract this inhibition (17) with a potency that is  proportional to the 

prevalence of SIV in wild primate populations (21). Two examples of convergent evolution of 

anti-SERINC function by virally encoded proteins are found outside of primate 

immunodeficiency viruses. Murine leukemia virus (MLV) Glycogag and equine infectious 

anemia virus (EIAV) S2 are viral antagonists of SERINC5 activity, and neither share sequence 

or structural homology with Nef, nor to each other (17, 22–24). 

The mechanism by which virion-associated SERINC5 inhibits HIV-1 entry is unknown. 

The block is manifest after virion attachment to target cells, apparently at the stage of fusion pore 

expansion; virion contents mix with target cell cytoplasm but virion core transfer to the 

cytoplasm is inhibited (17, 19). Otherwise isogenic virions pseudotyped with HIV-1 Env 

glycoproteins from different HIV-1 isolates exhibit a range of dependency on Nef and of 

sensitivity to SERINC5 (25, 26). SERINC5 increases HIV-1 sensitivity to antibodies and 

peptides targeting the membrane-proximal external region of gp41, suggesting that it somehow 

alters the conformation of the HIV-1 glycoprotein near the virion membrane (19, 25). 

Importantly, HIV-1 particles pseudotyped with vesicular stomatitis virus (VSV) G or Ebola virus 

glycoprotein are resistant to SERINC5 antiviral activity (17, 18, 24). These initial observations 

suggest a correlation between the location of viral fusion and sensitivity to SERINC5 activity, 

with glycoproteins that mediate fusion at the cell surface (Env from HIV-1 and amphotropic 

MLV [A-MLV]) being sensitive and those that mediate fusion in endo-lysosomal compartments 
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(VSV-G and Ebola GP) being resistant (17, 24). Taken together these results indicate that the 

virion glycoprotein is a viral determinant of sensitivity to SERINC5. 

SERINC5 is a multipass transmembrane that localizes almost exclusively to the plasma 

membrane  (17, 18).  As such, in the absence of counter-measures, all enveloped viruses would 

be expected to encounter SERINC5 during viral egress, and to potentially be subject to its 

antiviral effects. We sought to address the breadth of SERINC5 antiviral activity and assess 

whether the route of entry impacts the sensitivity of viral glycoproteins to the antiviral effects of 

SERINC5. To do so, we investigated whether the co-expression of SERINC5 during viral 

production could inhibit a variety of glycoprotein pseudotypes of HIV, MLV, or M-PMV cores. 

Using this system, we tested the sensitivity of a number of retroviral Envs as well as 

representative glycoproteins from the Arenavirus, Coronavirus, Filovirus, Rhabdovirus, 

Paramyxovirus, and Orthomyxovirus genera. Consistent with previous findings, we observed 

that glycoprotein is a major determinant of SERINC5 sensitivity. While many glycoproteins 

were universally insensitive to the antiviral effects of SERINC5, the glycoproteins from NL4.3, 

A-MLV, and influenza were inhibited by SERINC5 in all viral core pseudotypes tested. No 

correlation was observed between SERINC5 sensitivity and the route of viral entry mediated by 

the viral glycoprotein. Unexpectedly, we also observed that sensitivity to SERINC5 antiviral 

activity for M-PMV, RD114, and rabies virus (RABV) glycoproteins depended on the retroviral 

core onto which they were pseudotyped. Our findings reveal that an interplay between virion 

core and glycoprotein determines the sensitivity to SERINC5 antiviral activity. 
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RESULTS 

 

To determine which viral glycoproteins are sensitive to the antiviral activity of SERINC5 

we assessed infectivity of pseudotyped GFP-expressing lentiviral vectors produced in the 

presence or absence of SERINC5. Included in this panel was a diverse selection of retroviral Env 

glycoproteins, including those from human immunodeficiency virus-1 (HIV-1), avian leukosis 

virus A (ALV-A), human endogenous retrovirus K (HERV-K), feline endogenous retrovirus 

RD114, Mason-Pfizer monkey virus (M-PMV), ecotropic MLV (EcoMLV), amphotropic murine 

leukemia virus (A-MLV), and human T-cell lymphoma virus-1 (HTLV-1). We also tested the 

glycoproteins from an assortment of RNA viruses including influenza (H7/N1), parainfluenza 5 

(PIV5), measles, rabies virus (RABV), lymphocytic choriomeningitis virus (LCMV), Marburg 

virus (MARV), Ebola virus Zaire [Mayinga] (EBOV), severe acute respiratory virus coronavirus 

(SARS CoV), and vesicular stomatitis virus (VSV). For these experiments we considered 

glycoprotein pseudotypes to be sensitive to SERINC5 restriction if viral titer was reduced at least 

10-fold in the presence of SERINC5. 

Similar to the findings of others (17, 18, 24), we observed that SERINC5 causes a greater 

than 100-fold reduction in viral infectivity for HIV-1 and A-MLV pseudotypes, while no 

significant reduction was observed for EBOV and VSV pseudotypes (Fig. 1A and Table 1). 

Interestingly, we observed >10-fold reduction of infectivity of H7/N1 influenza and RABV 

pseudotypes. No other pseudotypes displayed >10-fold reduced infectivity with SERINC5. 

These observations indicate that restriction by SERINC5 is not dictated by how the viral 

glycoprotein mediates fusion, as fusion mediated by influenza (27) or by RABV (28) occurs in a 

pH-dependent fashion in the endo-lysosomal compartment, while HIV-1- (29, 30), A-MLV-, M-

PMV- and HTLV-1-mediated (31) fusion occurs in a pH-independent manner.  

Next we tested a panel of filoviral glycoproteins for sensitivity to SERINC5 restriction. 

All of these glycoproteins require proteolytic processing (32, 33) following internalization into 

the target cell and utilize the lysosomal protein NPC1 to initiate viral fusion (34, 35).  In addition 

to the EBOV and MARV glycoproteins tested in Fig 1A, this panel included glycoproteins from 

Bundibugyo (BDBV), Lloviu (LLOV), Reston (RESTV), Sudan (SUDV), Taï Forest (TAFV), 

and the 2014 Makona glycoprotein variant (A82) that initiated the 2013-2016  outbreak , along 

with an infectivity-enhancing derivative (GP-A82V) that arose during the outbreak (36, 37). As 
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shown in Fig. 1B, none of the filoviral glycoproteins were inhibited >10-fold in the presence of 

SERINC5. However, there may be modest differences in sensitivity to SERINC5 activity, 

specifically  RESTV and TAFV GP appear slightly more sensitive (4.3- and 2.9-fold, 

respectively) to SERINC5 inhibition compared to either Mayinga or Makona Ebola virus 

glycoproteins (1.65- and 1.2-fold, respectively). 

HIV-1 Nef, MLV glygoGag, and EIAV S2 counteract SERINC5 antiviral activity by 

removing SERINC5 protein from the cell surface and relocalizing it to an endosomal 

compartment (17, 18, 22). The ability of a viral glycoprotein to re-localize a normally plasma 

membrane localized antiviral protein has been previously shown for HIV-2 Env and human 

BST2 (38). Thus, we reasoned that viral glycoproteins may confer resistance to SERINC5 

activity by re-localizing SERINC5 to an internal membrane compartment. To test this, we 

compared SERINC5 incorporation into HIV-1 virus-like particles (VLPs) pseudotyped with the 

various glycoproteins shown in Fig 1A. We found that HIV-1 VLPs universally incorporated 

SERINC5 irrespective of the viral glycoprotein present (Figure 2). In replicate blotting, only 

HERV-K Env showed a consistently lower level of SERINC5 incorporation into viral particles 

(data not shown). However, this observation is likely to be caused by pleiotropic effects of cells 

transfected with this glycoprotein, as cell growth was significantly reduced compared to other 

transfections, and reduced levels of Gag and GFP were also observed (Fig. 2, data not shown). 

Regardless, no direct correlation between SERINC5 exclusion from virions and resistance to its 

antiviral effects was evident. 

A previous report indicated that MLV virions pseudotyped with RD114 Env are 

susceptible to the antiviral effects of SERINC5 (24). However, in the presence of SERINC5 we 

only observed a modest ~4.5-fold reduction in viral titer of RD114 pseudotyped HIV-1 virions 

(Fig. 1A). In response to this discrepancy, we sought to determine if the viral core modulates 

susceptibility to SERINC5 antiviral activity. Thus, we tested the same panel of glycoproteins for 

SERINC5 sensitivity when pseudotyped on different virion cores. First, we tested the SERINC5 

sensitivity of the same panel of glycoproteins as in Fig. 1A on MLV viral cores (Figure 3A and 

Table 1). We observed that the glycoproteins sensitive to SERINC5 restriction on HIV-1 cores 

(HIV-1, A-MLV, Flu, and Rabies) were also restricted when pseudotyped on MLV cores. 

Additionally, we observed that M-PMV Env was sensitive to SERINC restriction when 

pseudotyped onto MLV cores, whereas it was not when pseudotyped onto HIV-1 cores. 
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Returning to the initial impetus for exploring different cores, we observed a ~7.5-fold reduction 

of infectivity for RD114 pseudotyped MLV cores when produced in the presence of SERINC5, 

which is similar to the magnitude of the inhibitory effect reported by Ahi et al. (24). 

Due to observed differences in SERINC5 sensitivity with M-PMV pseudotypes of HIV-1 

and MLV cores, we next tested for SERINC5 antiviral activity against our panel of glycoproteins 

pseudotyped onto M-PMV cores (Figure 3B and Table 1). These experiments showed that the 

infectivity of M-PMV cores bearing M-PMV Env was significantly reduced in the presence of  

SERINC5. Furthermore, we observed that pseudotypes of M-PMV cores with HIV-1, A-MLV, 

and Flu glycoproteins were sensitive to SERINC5 restriction, similar to the observations with 

both HIV-1 and MLV cores. In contrast to observations with HIV-1 and MLV cores, the 

SERINC5-mediated reduction of infectivity for M-PMV cores pseudotyped with RD114 (~20-

fold) surpassed our 10-fold cutoff for significance. Conversely, rabies virus (RABV) 

glycoprotein pseudotypes of M-PMV were unaffected by the antiviral effects of SERINC5, in 

contrast to what was observed for RABV glycoprotein pseudotyped HIV-1 and MLV cores. 

Finally, SERINC5 reduced the infectivity of PIV5 pseudotyped M-PMV cores by ~9.5-fold, just 

under our 10-fold significance cutoff. 
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DISCUSSION 

 

Initial reports indicated that the viral glycoprotein is a determinant of sensitivity to 

SERINC5 antiviral activity (17, 18, 25, 26) and suggested that viral glycoproteins which mediate 

fusion via a pH-dependent, endocytic entry pathway are resistant to SERINC5 antiviral activity 

(17, 24). Here, to examine these issues further, pseudotypes using glycoproteins from diverse 

families of enveloped viruses were assessed for sensitivity to restriction by SERINC5. We 

observed that SERINC5 restricted virions pseudotyped with glycoproteins from several 

retroviruses (HIV-1, A-MLV, RD114, and M-PMV), influenza A (Orthomyxoviridae), and 

rabies (Rhabdoviridae). To our knowledge, this is the first time antiviral activity of SERINC5 

has been described for a non-retroviral glycoprotein. As the glycoproteins of these viruses were 

studied as retroviral pseudotypes, it remains to be established if the infectivity of authentic 

influenza or rabies viruses are affected by SERINC5, or other SERINC family members. 

Additionally, our observation with influenza A and rabies glycoproteins demonstrates that 

mediating entry via an endocytic route does not, in itself, protect from the antiviral effects of 

SERINC5.  

While Env glycoproteins from the retroviruses HIV-1, MLV, and RD114 have all 

previously been found to be inhibited by SERINC5 (17, 18), we now report that M-PMV 

glycoprotein is SERINC5-sensitive as well. Interestingly, we saw a ~100-fold reduction in 

infectivity of autologously pseudotyped M-PMV cores when produced in the presence of 

SERINC5. This observation was unexpected given that lenti- and gammaretroviruses encode 

accessory factors that counteract SERINC5 activity. And yet, functionally intact M-PMV (the 

only viral gene known to be missing from the GFP-expressing M-PMV vector is Env, which is 

complemented in trans during the transfection) was sensitive to the antiviral effects of human 

SERINC5. 

Surprisingly, we observed that particular glycoproteins displayed different sensitivity to 

the antiviral effects of SERINC5 depending on the viral core onto which they were pseudotyped. 

For instance, rabies virus glycoprotein was inhibited by SERINC5 when on HIV-1 or MLV 

cores, but insensitive to SERINC5 when on M-PMV cores. In contrast, M-PMV glycoprotein 

was sensitive to SERINC5 restriction when on MLV or M-PMV cores, but resistant when on 

HIV-1 cores. Additionally, a ~17-fold SERINC5-mediated inhibition was observed for M-PMV 
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cores pseudotyped with RD114 Env, while 7.5-fold and 4.3-fold inhibitions were observed for 

RD114 pseudotypes of MLV and HIV cores, respectively. A previous report demonstrated 

similar magnitude inhibition for RD114-pseudotyped MLV by endogenous SERINC activity 

(24). Regardless, RD114 showed little sensitivity to SERINC5 when pseudotyped onto HIV-1 

cores. Neutralization by monoclonal antibodies that target the membrane-proximal domain of 

HIV-1 glycoprotein is altered by the presence of SERINC5 (19, 25). Given that MA, the 

membrane proximal domain of gag makes contacts with the retroviral TM (40, 41), one can 

imagine that SERINC5 has the potential to influence interactions between MA and TM in the 

HIV-1 virion that are essential for infectivity. In similar fashion, SERINC5 might influence 

retroviral core interactions by the heterologous glycoproteins tested here, for which SERINC5 

restriction activity was core-dependent, i.e., the rabies virus, MPMV, and RD114 glycoproteins. 
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MATERIALS AND METHODS 

 

Plasmid DNA. Plasmids used in this study are described in Table 1, including Addgene or NIH 

AIDS Reagent Program code numbers (where applicable), where full plasmid sequences can be 

obtained. A pcDNA3.1 based vector bearing codon-optimized pNL4-3 env with a cytoplasmic 

tail truncation after residue 710 (HXB2 residue 712), similar to that previously described (42), 

was generated using standard cloning techniques and is available from Addgene. 

 

Cell culture. HEK293 cells were obtained from the ATCC. The HIV indicator cell line TZM-bl 

(Cat#8129) was obtained from the AIDS Research and Reference Reagent Program (Division of 

AIDS, NIAID, NIH) and were deposited by Drs. John C. Kappes and Xiaoyun Wu (43). Both 

cell lines were maintained in DMEM supplemented with 10% FBS and 10 mM HEPES. 

 

Virus production, and transductions. All viral stocks were generated by Mirus TransIT-LT1 

(Mirus Bio, Madison, WI) mediated transfection of HEK293 cells. 12 well plates were seeded 

with 3x105
 cells per well 24 hours prior to transfection. In the evening of the following day, 

3.375 μl LT1 reagent was used to transfect plasmids as follows: For the production of 

pseudotyped HIV-1 virions 625 ng pNL-EGFP/CMV/WPRE∆U3 (44) and 465 ng 

pCD/NL‑BH*∆∆∆ (45) were co-transfected with 155 ng glycoprotein expression vector. For the 

production of pseudotyped MLV virions 625 ng pLXIN-GFP (46) and 465 ng pCS2+mGP (47) 

were co-transfected with 155 ng glycoprotein expression vector. For the production of 

pseudotyped M-PMV virions, 1090 ng pSARM-EGFP (48) was co-transfected with 155 ng 

glycoprotein expression vector. In all cases, either 100ng pcDNA-SERINC5 (17) or 110 ng 

empty pcDNA3.1 (Thermo Fisher Scientific, Waltham, MA) vector was included in these 

transfections. The morning following transfection medium was replaced with fresh DMEM and 

virus containing supernatant was harvested 48 hours after media change. This supernatant was 

spun for 10 minutes at 2,500 x g to remove cellular debris and stored at 4°C until used for 

transduction. 

HEK293 or TZMbl cells were seeded at 1x105 or 5x105, respectively, in 12-well plates 24 

hours prior to transduction. For experiments involving ecotropic MLV or avian leukosis virus A, 
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HEK293 cells were transfected in 6-well plates with 2.5 μg of pBABE-puro-mCAT or pCMMP-

TVA800 using TransIT-LT1  and the subsequent day these transfected cells were split and plated 

for transductions. For transductions, culture supernatant was replaced with three dilutions of 

virus containing supernatant and incubated overnight at 37°C. Virus containing medium was 

replaced and cells were incubated for an additional 48 hours, following which they were 

trypsinized and assessed for GFP expression via fluorescent activated cell sorting using the 

Accuri C6 (BD Biosciences, San Jose, CA). Analysis was performed using FlowJo Macintosh 

v10.1 (FlowJo, LLC, Ashland, OR).  

 

Virion purification and western blotting. Viral pseudotypes were produced as above, except 

transfections were performed in 6-well plates so the number of cells plated and DNA introduced 

were doubled. The resulting virus-containing supernatant was overlayed on 20% sucrose in TNE 

buffer (50 mM TRIS, 100 mM NaCl, 0.1 mM EDTA, pH7.4) and viruses were pelleted via 

ultracentrifugation for 2 hours at 125,000 x g at 4°C using an SW55-Ti rotor (Beckman Coulter, 

Indianapolis, IN). Following centrifugation, tubes were washed with 1 ml of ice cold PBS and 

viral pellets were directly lysed in 50 μl 2x Laemmli buffer containing 50 mM TCEP [Tris(2-

carboxyethyl)phosphine] incubated at room temp for 5 minutes. Cell lysates were prepared in 

parallel by washing transfected HEK293s once with 1 ml ice cold PBS, detaching from the plate 

by scraping, pelleting, and subsequently lysing for 20 minutes on ice in 150 μl SERINC lysis 

buffer (10 mM HEPES, pH 7.5, 100 mM NaCl, 1 mM TCEP [Tris(2-carboxyethyl)phosphine], 

1% DDM [n-Dodecyl-β-D-maltoside]) containing cOmplete mini protease inhibitor (Sigma-

Aldrich, St. Louis, MO). Lysates were clarified by centrifugation for 5 minutes at 10,000 x g and 

4°C, following which supernatants were transferred to a new centrifuge tube and protein content 

was quantified via Reducing Agent Compatible BCA Assay (Thermo Scientific, Waltham, MA) 

Volumes of lysate corresponding to equal protein content were combined 1:1 with 2x Laemmli 

buffer containing 50 mM TCEP and incubated at room temp for 5 minutes.  

One half of the denatured viral pellet and approximately 8 μg protein from cellular lysates 

were run on 4-15% gradient acrylamide gels, and transferred to nitrocellulose membranes. 

SERINC5 levels were assessed via C-terminal HA tag using the mouse monoclonal HA.11 

(Biolegend, San Diego, CA) at 1 μg/ml in Odyssey blocking buffer (LI-COR Biotechnology, 

Lincoln, NE). HIV-1 p24 was detected using human monoclonal antibody 241-D (49) at a 
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concentration of 1 μg/ml in Odyssey blocking buffer. MLV p30 was detected with rat 

monoclonal antibody R187 (50) from unpurified culture medium following five days of culturing 

the R187 hybridoma (ATCC, Manassas, VA). This medium was diluted 1:200 in Odyssey 

blocking buffer. Cellular actin was detected using mouse anti-actin monoclonal ACTN05 (C4) 

(Abcam, Cambridge, MA) at a concentration of 0.5 μg/ml in Odyssey blocking buffer. All blots 

were developed using 1:10,000 dilutions of 680RD or 800CW fluorescently tagged secondary 

antibodies (LI-COR Biotechnology, Lincoln, NE) in Odyssey blocking buffer. Imaging of blots 

was performed using an Odyssey CLx system (LI-Cor Biotechnology) at a resolution of 84 μm 

using the ‘high quality’ setting. Quantitation of bands was done using the box tool in the 

Odyssey software package with adjacent pixels to the box serving as reference background levels 

for background subtraction.  
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FIGURE LEGENDS 

 

Figure 1. Sensitivity of HIV-1 pseudotypes to SERINC5 antiviral activity. (A) Effect of 

SERINC5 on transduction efficiency by HIV-1 cores pseudotyped with a diverse panel of viral 

glycoproteins. With the exception of HIV-1 pseudotypes, transductions were conducted in 

HEK293 cells. For transductions involving ecotropic MLV or avian leukosis virus A 

pseudotypes, target HEK293 cells were transfected with viral receptor prior to transductions. 

TZMbl cells were used to evaluate infectivity of HIV-1 pseudotypes. (B) Sensitivity of filoviral 

glycoprotein pseudoviruses to SERINC5. Plotted is the difference in infectivity between virus 

produced in the absence versus the presence of SERINC5. Each condition shows results of 

vector production from at least three independent transfections. The red lines indicates 10-fold 

lower infectivity in the presence of SERINC5, our arbitrary cut off for SERINC sensitivity. HIV-

1: human immunodeficiency virus-1, ALV-A: avian leukosis virus A, HERV-K: human 

endogenous retrovirus K, RD114: feline endogenous retrovirus RD114, M-PMV: Mason-Pfizer 

monkey virus, EcoMLV: ecotropic MLV, AMLV: amphotropic MLV, HTLV-1: human T-cell 

lymphotropic virus-1, Flu: influenza type A, PIV5: parainfluenza virus 5, RABV: rabies virus, 

LCMV: Lymphocytic choriomeningitis virus, MARV: Marburg virus, EBOV: Mayinga isolate 

of Zaire ebolavirus, SARS CoV: severe acute respiratory syndrome coronavirus, VSV: vesicular 

stomatitis virus, LLOV: Lloviu virus, RESTV: Reston virus, SUDV: Sudan virus, BDBV: 

Bundibugyo virus, TAFV: Taï Forest virus, Mayinga: Mayinga isolate of Ebola virus, Makona: 

Makona isolate of Ebola virus. 

 

 

Figure 2. Incorporation of SERINC5 into HIV-1 pseudovirus does not correlate with sensitivity 

to its antiviral effects. (Top) Western blots of purified HIV-1 pseudovirions produced in the 

presence or absence of C-terminally HA-tagged SERINC5. Blots were probed with mouse 

monoclonal anti-HA and human anti-p24 monoclonal 241-D. (Bottom) Western blots of lysates 

from producer HEK293s of the pseudovirions shown above. Blots were probed with mouse anti-

actin in addition to anti-HA and anti-p24 used for purified pseudovirions. 
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Figure 3. Differential sensitivity of glycoproteins to SERINC5 antiviral activity based on the 

vial core onto which they are pseudotyped. Effects of SERINC5 on the HEK293 infectivity of a 

diverse panel of viral glycoproteins pseudotyped on (A) MLV or (B) M-PMV cores. Infectivity 

was assessed as described in Fig. 1. Plotted is the difference in infectivity between virus 

produced in the absence versus the presence of SERINC5 from at least three independent 

transfections. The red line indicates 10-fold lower infectivity in the presence of SERINC5, our 

arbitrary cut off for SERINC sensitivity. 
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Table 1. Magnitude restriction of the indicated pseudotypes by SERINC5  
 

 HIV Core MLV Core M-PMV Core 

  Fold 
Restriction 

SEM n Fold 
Restriction 

SEM n Fold 
Restriction 

SEM n 

HIV-1 132.9 35.6 3 23.5 10.5 3 360.1 181.1 3 

ALV-A 3.6 1.0 4 3.4 0.6 4 3.9 1.2 4 

HERV-
K 

1.2 0.3 3 3.2 1.4 5 1.2 0.2 4 

RD114 4.6 0.7 4 7.4 2.5 5 24.8 10.9 6 

M-PMV 1.5 0.2 3 46.3 18.6 6 104.2 31.8 8 

EcoML
V 

1.7 0.6 3 2.3 0.6 4 3.2 1.6 5 

A-MLV 123.8 22.7 12 61.7 33.7 7 315.8 87.9 12 

HTLV-1 1.2 0.4 3 2.1 0.8 5 1.1 0.2 4 

Flu (H7) 27.3 10.6 5 67.1 27.2 4 31.2 9.6 8 

PIV5 2.1 0.7 6 2.8 0.9 3 9.6 3.5 7 

Measles 2.0 0.2 4 1.5 1 3 1 0.1 4 

RABV 12.0 3.6 3 24.2 10.9 6 1.2 0.5 4 

LCMV 4.1 1.1 3 1.2 0.1 3 5.1 2.4 7 

MARV 1.9 0.5 3 2.6 0.4 3 3.2 0.8 4 
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EBOV 1.9 0.1 3 4.6 1.7 3 1.7 0.2 4 

SARS- 
CoV 

0.9 0.2 5 3.5 1.0 4 1 0.2 4 

VSV 3.1 0.6 11 1.1 0.2 6 1.0 0.1 11 

 
 
 
 
 
Table 2. List of expression plasmids used in this study 

Glycoprotein Plasmid Source Addgen
e # 

Reference 

ALV EnvA pCB6-EnvA Judith White (Univ. of 
Virginia) 

74420 (51) 

LCMV 
Arm53b 

pCMV WT GP Juan de la Torre (Scripps 
Research) 

N/A (52) 

C-term. 
truncated 
SARS CoV S 

pKS-SARS-
SΔ19 

Shuetsh Fukushi (National 
Institute of Infectious 
Diseases, Japan) 

N/A (53) 

M-PMV Env pTMT Eric Hunter (Emory Univ.) N/A (54) 

HTLV-1 Env pV1/HTLV Paul Bieniasz (Rockefeller 
Univ.) 

N/A (55) 

MLV Eco 
Env 

pHCMV-
EcoEnv 

Miguel Sena-Esteves (Univ. 
of Mass. Med. School) 

15802 (56) 

MLV Ampho 
Env 

pHCMV-
AmphoEnv 

Miguel Sena-Esteves (Univ. 
of Mass. Med. School) 

15799 (56) 

HERV-K Env pCAGGS-
HERV-K 

Sean Whelan (Harvard 
Univ.) 

N/A (57) 

PIV5 F pCAGGS-PIV5 
F 

Sean Whelan (Harvard 
Univ.) 

N/A (58) 

PIV5 HN pCAGGS-PIV5 
HN 

Sean Whelan (Harvard 
Univ.) 

N/A (58) 
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Flu HA 
(H7/Kp 
Rostock) 

pFPV-HA John Olsen (Univ. of North 
Carolina Chapel Hill 
[Emeritus]) 

N/A (59) 

Flu NA 
(H1N1; 
A/PR/8/34) 

pEF6-NA John Olsen (Univ. of North 
Carolina Chapel Hill 
[Emeritus]) 

N/A (60) 

Flu M2 pCB6-M2 John Olsen (Univ. of North 
Carolina Chapel Hill 
[Emeritus]) 

N/A (61) 

C-term. 
truncated 
Measles F 

pCG-FΔ30 Els Verhoyen (Ecole 
Normale Supérieure de 
Lyon) 

N/A (62) 

C-term. 
truncated 
Measles H 

pCG-HΔ24 Els Verhoyen (Ecole 
Normale Supérieure de 
Lyon) 

N/A (62) 

RD114A Env 
with Ampho 
MLV Env 
cytoplasmic 
tail 

phCMV-
RD114/TR 

François-Loïc Cosset (Ecole 
Normale Supérieure de 
Lyon) 

N/A (63) 

VSV G pMD2.G Didier Trono (Ecole 
Polytechnique Federale de 
Lausanne) 

12259  

Rabies virus 
G 

pLTR-RVG Jakob Reiser (US FDA) 17577 (64) 

Mayinga 
EBOV GP 

pCB6-Zaire 
EBOV 

Graham Simmons (Univ. of 
California, San Francisco) 

N/A (65) 

Sudan Ebola 
GP 

pCB6-Sudan 
EBOV 

Graham Simmons (Univ. of 
California, San Francisco) 

N/A (65) 

Reston Ebola 
GP 

pCB6-Reston 
EBOV 

Graham Simmons (Univ. of 
California, San Francisco) 

N/A (65) 

Ravn MARV 
GP 

pCAGGS-
MARV 

Graham Simmons (Univ. of 
California, San Francisco) 

N/A (66) 

Bundibugyo 
Ebola GP 

pCAGGS-
BDBV 

Graham Simmons (Univ. of 
California, San Francisco) 

N/A (67) 
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Taï Forest 
Ebola GP 

pcDNA6-TAFV Graham Simmons (Univ. of 
California, San Francisco) 

N/A (67) 

Lloviu Ebola 
GP 

pCAGGS-
LLOV 

Graham Simmons (Univ. of 
California, San Francisco) 

N/A (67) 

Makona 
EBOV GP 

pGL4.23 WT 
2014 EBOV 
ΔMuc 

N/A 86021 (36) 

A82V 
Makona 
EBOV GP 

pGL4.23 A82V 
2014 EBOV 
ΔMuc 

N/A 86022 (36) 

C-term. 
truncated 
NL4.3 Env 
(C/O) 

pcDNA-NL4.3 
Env ΔCT 

N/A Pending This Work 

GPI anchored 
TVA 

pCMMP-
TVA800 

Edward Callaway (Salk 
Institute) 

15778 (68) 

murine CAT1 pBABE-puro-
mCAT1 

Massimo Pizzato (Univ. of 
Trento) 

N/A (23) 
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Diehl et al, Figure 1
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Diehl et al, Figure 2
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Diehl et al, Figure 3
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