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Abstract 9 

Neurons in the primary visual cortex (V1) are often classified as simple or complex cells, but it is debated 10 

whether they are discrete hierarchical classes of neurons developing sequentially, or if they represent a 11 

continuum of variation within a single class of cells developing simultaneously. Herein, we show that simple 12 

and complex cells may arise simultaneously from the universal process of retinal development. From 13 

analysis of the cortical receptive fields in cats, we show evidence that simple and complex cells originate 14 

from the periodic variation of ON-OFF segregation in the feedforward projection of retinal mosaics, by which 15 

they organize into periodic clusters in V1. Our key prediction that clusters of simple and complex cells 16 

correlate topographically with orientation maps was confirmed by data in cats. Our results suggest that 17 

simple and complex cells are not two distinct neural populations but arise from common retinal afferents, 18 

simultaneous with orientation tuning. 19 

 20 

 21 

Highlights 22 

 Simple and complex cells arise simultaneously from retinal afferents. 23 

 Simple/complex cells are organized into periodic clusters across visual cortex. 24 

 Simple/complex clusters are topographically correlated with orientation maps. 25 

 Development of clustered cells in V1 is explained by the Paik-Ringach model. 26 
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Introduction 27 

Neurons in the primary visual cortex (V1) are often classified as simple or complex cells1 by their 28 

characteristic organization of spatial receptive fields and the temporal dynamics of their response to stimuli. 29 

In traditional classifications, simple cells have segregated ON/OFF sub-regions of receptive fields and 30 

generate highly modulated sinusoidal response (F1/F0 > 1) to drifting gratings stimuli, while complex cells 31 

have largely overlapping ON/OFF sub-regions and generate weak modulation of response (F1/F0 < 1, Fig. 32 

1a)1–7. As suggested in the pioneering study of Hubel and Wiesel, simple and complex cells have often 33 

been considered to imply a hierarchically distinct functional architecture for visual processing1,8–11, so that 34 

simple cells pool thalamic inputs12,13, while complex cells then pool inputs from the simple cells (Fig. 1b)14,15. 35 

 Although the conventional hierarchical model predicts that neurons in the early layer are mostly 36 

simple cells1,10 (Fig. 1c, top), it was observed that complex cells coexist with simple cells in layer 4 of 37 

monkey V116, the earliest cortical stage that receives direct feedforward inputs from the thalamus (Fig. 1c, 38 

bottom; see Supplementary Fig. 2 for cats9 and tree shrews17), implying that simple and complex cells may 39 

arise simultaneously from a common origin. It was also reported that simple- and complex-like receptive 40 

fields can arise together in the primary auditory cortex, when retinal afferents are rewired to give inputs to 41 

the auditory thalamus18. This result suggests that feedforward afferents can induce both simple and 42 

complex cells from common retinal afferents.  43 

Furthermore, subsequent studies have raised the possibility that simple and complex neurons are 44 

not clearly distinct populations but might be variations within a continuous spectrum19–21. Experimental 45 

evidence supporting this notion has been reported—conventional criteria for distinguishing simple and 46 

complex cells are susceptible to stimulus modulation22–24 and nonlinearity of the spike threshold might be 47 

a prime determinant for simple and complex classes25. Thus, these results raise questions on the origin of 48 

simple and complex cells: Might simple and complex cells arise from non-distinctive neural circuits? If so, 49 

then what possible mechanism is there for the development of such a functional variation? 50 

Recent studies on the retinal origin of cortical tunings provide clues regarding the wiring of simple 51 

and complex tunings in the early layer of visual cortex26–28. A number of studies have reported evidence to 52 
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strengthen the role of ON/OFF retinal afferents in developing diverse functional tuning of neurons in V1. 53 

For example, the orientation preference of a cortical column can be predicted by the local arrangement of 54 

ON/OFF afferents29,30 and other functional tunings such as direction selectivity31, ON/OFF polarity, and 55 

ocular dominance32 are observed to develop from the integration of thalamic inputs. Considering that local 56 

thalamic receptive fields preserve those of retinal ganglion cells (RGC), all these results support the notion 57 

that the spatial distribution of ON/OFF receptive fields in retinal mosaics determine the formation of 58 

orientation tuning and their topographic organization26,27,33–35. 59 

Here, we propose that the simple and complex tuning of V1 neurons arises from the periodic 60 

variation of a common retinal mosaics structure, topographically correlated with the orientation tuning of 61 

underlying neurons. From the analysis of data in cats32, we show evidence that neuronal variation from 62 

simple to complex cells can be predicted from the segregation between local ON and OFF feedforward 63 

afferents. Importantly, systematic formation of distinct clusters of simple and of complex cells was observed 64 

across V1, the spatial period of which was matched to that of underlying orientation maps. We also show 65 

that the Paik-Ringach model26,27 provides a plausible developmental mechanism for the observed results, 66 

implying that simple/complex tuning and orientation selectivity may have a common origin. Our further 67 

prediction that pinwheels on the orientation map and clusters of simple/complex tuning are topographically 68 

correlated, was validated by the analysis of cat data. 69 

Overall, our findings suggest that simple and complex cells in V1 develop simultaneously from 70 

structured inputs from the retina, which enables a parallel architecture of the simple and complex tuning in 71 

V1 that is tightly correlated with the topography of other functional maps. 72 

 73 

Results 74 

Simple and complex cells from the spatial arrangement of ON/OFF retinal afferents 75 

Based on the theory that functional tuning in the visual cortex originates from the afferent of ON and OFF 76 

RGC mosaics26,27,33–35, we hypothesized that both simple and complex cells in V1 are initially seeded by 77 

the local projection of feedforward afferents, and that the variation of cell types in development is dependent 78 
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on the spatial distribution of ON and OFF receptive fields imprinted in RGC mosaics (Fig. 2a). We 79 

introduced our model idea by investigating the profile of retinal mosaics data of ON-center and OFF-center 80 

receptive fields (RFs, Fig. 2b)36. As previously reported36,37, the nearest neighbor distance between different 81 

types of RF centers (dON-OFF) appeared smaller than that between the same type (average of dON-ON = 116 82 

μm and dOFF-OFF = 106 μm), thus the nearest neighbor of an ON cell appears to be an OFF cell, and vice 83 

versa. The profile of this ON-OFF distance (dON-OFF) measured from RGC mosaics data36 showed a wide 84 

variation, well fitted to a Gaussian distribution (mean = 56.4 μm, standard deviation = 14.3 μm, R2 = 0.91) 85 

(Fig. 2b, bottom histogram). 86 

Our main hypothesis is that this spatial organization of ON and OFF RGC can constrain the tuning 87 

of the connected V1 neurons as either simple or complex cells, via statistical wiring from the retina to 88 

V126,27,33–35. When the distance between ON and OFF RGC is large (Fig. 2c, green circle, dON-OFF = 87 μm, 89 

top 12%), a V1 neuron that receives retinal afferents from these local ON and OFF RGCs has a receptive 90 

field of weakly overlapping ON and OFF sub-regions. This results in a high simpleness index (SI, 0.42, see 91 

Methods), representing simple cell-like segregation between ON/OFF subregions. In contrast, when the 92 

distance between ON and OFF RGCs is small (Fig. 2c, purple circle, dON-OFF = 23 μm, bottom 5%), the 93 

inputs to V1 generate the receptive field of highly overlapping ON and OFF sub-regions with low SI (0.15), 94 

like a complex cell. In this scenario, the simple/complex tuning in V1 is simply destined from variation of the 95 

local arrangement of ON and OFF RGC mosaics. 96 

Our model showed that variation of the response modulation ratio can be determined by the 97 

distance between ON and OFF subregions of RF. This involves F1/F0, the ratio of the first harmonic 98 

component to the mean elevation of the neuronal response to a drifting sinusoidal grating stimulus, another 99 

indicator of simple (F1/F0 > 1) or complex (F1/F0 < 1) cells. Based on the spike rectification model20,25, a 100 

nonlinear sigmoidal transfer function between the ON-OFF distance of RF and the F1/F0 of neural response 101 

was obtained analytically (Fig. 2d, see Supplementary Information and Supplementary Fig. 1 for details). 102 

From this result, we confirmed that the unimodal distribution of the ON-OFF distance shown in Fig. 2b can 103 

generate bimodal segregation of F1/F0 observed in the data (Fig. 2e). 104 
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 105 

Periodic spatial organization of simple/complex cells 106 

One important prediction arises from the result above: the spatial organization of simple and complex cells 107 

across a cortical layer would reflect the spatial layout of the dON-OFF in the RGC mosaic, organization into 108 

topographical clusters. As shown in Fig. 2f, the spatial distribution of dON-OFF is clustered across the RGC 109 

mosaics (Fig. 2f, top), generating local regions of large or small dON-OFF values. According to our model, it is 110 

predicted that simple and complex cells in V1 must appear as an organization of clusters across the cortical 111 

surface (Fig. 2f, bottom). 112 

To test this idea, spatial organization of simple and complex cells in V1 was examined using 113 

published receptive field data32 obtained by multielectrode recording in cats (Fig. 3a). From the observed 114 

ON and OFF receptive fields, the simple/complex tuning index (SI) and the distance between ON/OFF 115 

center of mass (dON-OFF) of each recording site were measured (Fig. 3b). The recording data contained both 116 

simple- and complex-like receptive fields, which showed segregated (left) or overlapped (right) ON and 117 

OFF sub-regions respectively. As reported32, the distribution of orientation preference varied periodically 118 

(Fig. 3c, top). Interestingly, both the spatial variation of dON-OFF and SI in V1 appeared periodically clustered 119 

along the cortical penetrations. The distribution of dON-OFF (Fig. 3c, 3rd row) was well-fitted to a sinusoidal 120 

function of ∼1.1 mm period. Comparable to this, the distribution of SI (Fig. 3c, bottom) was also fitted to a 121 

sinusoidal function of nearly identical spatial period (∼1.0 mm) and phase (phase difference ∼17°). We found 122 

that the value of the observed SI and dON-OFF was tightly correlated as predicted by the model (n = 52 data 123 

points from 2 penetrations, Pearson correlation coefficient, r = 0.66, p = 1.2×10-7). 124 

More interestingly, the spatial organization of dON-OFF and SI were correlated with orientation 125 

preference, and had a common period identical to that of the orientation tuning. For direct comparison, 126 

orientation preference (θ) was transformed into cos(2θ+Φ) (Fig. 3c, 2nd row), and was shifted to find the 127 

maximum correlation (Supplementary Fig. 3). As shown in Figure 3d, the values of dON-OFF (or SI) and the 128 

cosine of orientation preference were correlated across cortical surface (Fig. 3d, n = 46 data points from 2 129 

penetrations). Furthermore, the remarkably similar clustering period among the three organizations was 130 
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manifested in the average absolute pairwise difference for each measure (orientation, dON-OFF, and SI) 131 

plotted as a function of cortical distance (Fig. 3e, averaged over the 2-penetration data sets, where each 132 

mean value includes more than 20 pairwise comparisons). The calculated mean period values (orientation 133 

1.1 mm, dON-OFF 1.0 mm, SI 1.1 mm) were not only similar to each other, but also matched the previously 134 

reported values of period of orientation maps in cats38 (Fig. 3f). 135 

 136 

Periodic clustering of simple/complex neurons from RGC mosaics 137 

The observed periodic organization of simple/complex neurons, and their consistent period with the 138 

orientation preference, suggest that a common organizing principle may exist for tiling of both simple and 139 

complex tuning of neurons and their orientation tuning. Previously, theoretical studies suggested that 140 

topographic organization of various neural tunings may arise commonly from the spatial organization of 141 

RGC mosaics26,28,33–35 and recent observations reported that cortical orientation preference can be 142 

predicted by the spatial arrangement of ON and OFF afferents30,32, providing evidence for retinal origin of 143 

the cortical tunings. In addition to these findings, here we show that the observed clustering of 144 

simple/complex tuning is predicted and explained by the retinal development model proposed by Paik and 145 

Ringach26,27. In this model, two noisy hexagonal lattices of ON and OFF RGC mosaics generate a periodic 146 

interference pattern of a local ON-OFF dipole-like arrangement, called a moiré interference pattern (Fig. 4a, 147 

top). In this interference pattern, the ON-OFF distance and ON-OFF dipole angle changes periodically 148 

across the mosaics, with their spatial period denoted as λm. As suggested in previous model studies34,35, we 149 

assumed that the response of a local V1 neuron is constrained by the structure of ON/OFF afferents from 150 

the RGC mosaics (Fig. 4a, bottom). In this scenario, orientation tuning is determined by the alignment angle 151 

of the ON and OFF RGCs, and the SI of a V1 neuron is determined by the segregation between ON and 152 

OFF RGCs of corresponding afferents. 153 

The model predicts that the preferred orientation, dON-OFF, and SI, of V1 neurons are organized into 154 

a spatial cluster of the same period, λm, and our model simulation results support this prediction (Fig. 4b, 155 
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see methods for details). All three of the simulated maps showed clear periodic clustering of tuning across 156 

the cortical surface, matching the periodic organization of the RGC interference pattern. As in the data, 157 

cortical profiles of dON-OFF and SI in the model showed strong correlation with the cosine of the orientation 158 

preference (Fig. 4c). Furthermore, the period of each map, calculated from average pairwise difference as 159 

a function of pairwise distance, was identical to the predicted period λm of the retinal moiré interference 160 

(Supplementary Fig. 4). The distribution of the obtained period values of orientation, dON-OFF, and SI from 161 

different locations of the model map were statistically indistinguishable from each other (Fig. 4d). These 162 

results imply that our retinal development model could explain the origin of correlated clustering of 163 

orientation preference and simple/complex tuning in V1.  164 

 165 

Prediction of local simple/complex tuning from information on local orientation tuning 166 

Extension of the previous analysis of a correlated organization of simple/complex and orientation tuning 167 

motivated us to ask whether information on the local structure of an orientation map could predict the local 168 

simple/complex tuning of neurons in the corresponding local area. From the simulated maps of orientation 169 

and simple/complex tuning from a set of retinal mosaics, our model predicted that the locations of pinwheels 170 

are likely to be either maxima or minima of local simple/complex tuning, or SI (Fig. 5a). A previous study27 171 

reported that two types of pinwheels of opposite polarity are generated from two distinct types of singularity 172 

of retinal interference patterns (see Fig. 1 in Paik and Ringach, 2012, for details). According to our model, 173 

these two singularities match the locations where ON-OFF RGC distance is either maximal or minimal, 174 

respectively. Thus, the model predicts spatial overlap of pinwheels of orientation maps and clusters of 175 

simple/complex cells: that is; the SI measured at each pinwheel location must be significantly higher or 176 

lower than that measured at other random locations. 177 

To quantify this model prediction, we measured pinwheel locations on the simulated orientation 178 

maps, using the local homogeneity index (LHI, see Methods) minimized near pinwheels39,40. Then, SI values 179 

were measured near the center of each type of pinwheel (circular area within 1/8 map period). Those 180 
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averaged SI values at each type of pinwheel were significantly higher or lower than the average SI at other 181 

random locations (Fig. 5b, *p < 0.0001, Wilcoxon rank-sum test). Thus, the model predicts “simple 182 

pinwheels” and “complex pinwheels” where SI values are local maxima or minima, respectively.  183 

As the model predicted, we found evidence in the data that SI values are either maxima or minima 184 

at pinwheel locations. Similar to the model analysis above, 1-D LHI profiles were obtained from the 185 

orientation preference of recording data (Fig. 5c, from 2 penetrations). Although identification of the 186 

pinwheel polarity was not possible in this dataset due to the dimensions of the recordings, we found that 187 

the data contained three cortical locations where LHI values were locally minimized, implying that the 188 

recording passed near pinwheels. We identified these three locations of minimal LHI as tentative pinwheel 189 

locations (black arrows, PW1, PW2, and PW3) and found that the detected local maxima or minima of SI 190 

(triangles) were located close (within 100 μm) to the three tentative pinwheel locations. To quantify further 191 

this correlated architecture, we calculated average SI values of neighboring electrodes (within 100 μm) at 192 

each LHI minimum. The local SI values near pinwheels (LHI minima) were significantly higher (PW1, PW2) 193 

or lower (PW3) than those at other recording sites (Fig. 5d, red bars, *p = 0.0065, 0.027, and 0.016 for 194 

PW1, PW2, and PW3, Wilcoxon rank-sum test). This result suggests that our model can exploit the 195 

information of orientation map topography to predict the local simple/complex tunings, further supporting 196 

the validity of the model. 197 

 198 

Discussion 199 

Our findings suggest that simple and complex tuning in V1 can commonly originate from spatial 200 

arrangement of the local projection of retinal afferents. Analysis of multielectrode recording data from cats 201 

revealed that simple and complex cells are periodically clustered in V1. This is the first report that simple 202 

and complex tunings are topographically organized in V1. Moreover, the observed periodic organization 203 

has a period consistent with the orientation preference, implying the common origin of the simple/complex 204 

cells and the orientation tuning in V1. The Paik-Ringach model predicts and explains the essential features 205 
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of the observed periodicity from the periodic projection of retinal afferents imprinted in retinal mosaics. We 206 

further demonstrated that local orientation map topography and the local simple/complex tuning properties 207 

are correlated in a manner consistent with the model prediction.  208 

 In addition to afferent circuits, intracortical circuits can also contribute to the modulation in the 209 

simple/complex tuning within V1 as suggested in previous studies19,21,22. Indeed, our results do not rule out 210 

the possible role of intracortical activities after the initial tuning is constrained by the afferent inputs. However, 211 

from the observation that several experimental actions, such as silencing intracortical activity, did not 212 

change the orientation selectivity of V1 neurons due to thalamic inputs41–43, and that the arrangement of 213 

thalamic inputs can predict diverse tuning properties30,32, it is reasonable to suggest that the effect of 214 

intracortical inputs would be less influential to the initial development of simple and complex tuning than the 215 

effect of afferent inputs. Moreover, our results regarding the periodic spatial organization of simple and 216 

complex cells were predicted by the retinal afferent model26, which strengthens the view that major tuning 217 

properties of V1 neurons are anchored by retinal afferents, and that intracortical circuits refine or diversify 218 

a degree of tuning that the afferent circuits cannot solely develop43. The correlated architecture of 219 

simple/complex properties and the orientation map suggests further systematic combination of 220 

simple/complex tuning and other functional tunings in the thalamo-recipient layer of V1. Our model 221 

simulation and data analysis revealed that variation of simple/complex tuning is systematically tiled in 222 

relation to the underlying geometry of the orientation tuning, implying that the various feature selectivities 223 

in V1 are efficiently combined via systematic rules between functional maps39,44–47. 224 

One might argue that the ratio between simple and complex cells in layer 4 is not consistent but 225 

instead is fairly different across species. For example, layer 4 of cat V1 is more dominated by simple cells9, 226 

while more complex cells are observed than simple cells in monkey V116. Because a simple/complex tuning 227 

index could be modulated by intracortical activity22 or cortical nonlinearity25, difference of such parameters 228 

across species could elicit shifting of the distribution. More importantly, however, the tendency that both 229 

simple and complex cells develop simultaneously in the earliest hierarchy of visual cortex is commonly 230 

observed, which is consistent with our model prediction of retinal origin of simple and complex cells in V1. 231 
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The results of several studies suggest that simple cells are mostly observed in the earliest layer of V148,49, 232 

and that the proportion of complex cells becomes greater as the layers get deeper9. These observations 233 

are not different from our model prediction, because projection from an input layer of V1, especially layer 4, 234 

will converge into a superficial layer, such as layer 2/3, to generate more complex receptive fields. Rather, 235 

our finding suggests that the architecture of V1 is not only hierarchical but also parallel, and this parallel 236 

architecture refines the classical notion of visual cortex. That is, the role of simple/complex cells in visual 237 

information processing is not restricted to distinguishing different stages of the cortical microcircuits, but 238 

can be regarded as an element of functional diversity in the same cortical layer.  239 

To sum up, the observed periodic spatial organization of simple and complex cells provides a 240 

population-level clue regarding how simple and complex receptive fields are generated and leads to the 241 

view that the distance between ON and OFF retinal afferents provides the source of the simple/complex 242 

spectrum. Complementary to the classical notion that simple and complex cells are hierarchically distinct, 243 

the observed periodic spatial organization of simple/complex cells shows systematic variation in the earliest 244 

layer in V1 that receives thalamic inputs. That the period is consistent with that of the orientation preference 245 

encourages the view that structured retinal afferents designed by interference between ON and OFF RGC 246 

mosaics provide the common source of both orientation preference and the simple/complex-property of the 247 

connected V1 neurons. These results support the theory that the diverse functional tunings of V1 are 248 

determined by the arrangement of ON/OFF afferent inputs of retinal origin. 249 

250 
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Methods 251 

Simpleness index (SI)   To quantify the simple/complex tuning of the receptive field, we calculated the 252 

simpleness index (SI), which represents the degree of segregation between ON/OFF subregions5,17,30,50. 253 

The SI is defined as follows: 254 

𝑆𝑆𝑆𝑆 =
∑ |𝑅𝑅𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑅𝑅𝑅𝑅𝑂𝑂𝑂𝑂|
∑ |𝑅𝑅𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂 + 𝑅𝑅𝑅𝑅𝑂𝑂𝑂𝑂|

 255 

Where RFOFF and RFON represent 2-d matrices of ON and OFF receptive field subregions, respectively, and 256 

the summation is over all matrix elements.  257 

 258 

Analysis of RGC mosaics   The ON-OFF dipole was defined as a line connecting the nearest ON cell 259 

from each OFF cell in the mosaic. The map of dON-OFF in Fig. 2f was obtained as,  260 

𝑑𝑑𝑂𝑂𝑂𝑂−𝑂𝑂𝑂𝑂𝑂𝑂  (𝒓𝒓) =  ∑ 𝑑𝑑𝑂𝑂𝑂𝑂−𝑂𝑂𝑂𝑂𝑂𝑂 ,𝑖𝑖 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒 (− �𝒓𝒓−𝒓𝒓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑑𝑑�
2

2𝜎𝜎𝑟𝑟2
)𝑖𝑖 , 261 

where rdipole,i and dON-OFF,i are the center and size of the ith dipole, respectively (σr = 116 μm, average nearest 262 

distance between OFF cells). After the above calculation, the map was linearly rescaled to match the 263 

minimum and maximum value of the original dON-OFF values. The SI values in Figure 2 were calculated by 264 

assuming that a model V1 neuron receives inputs from one ON-center RGC and one OFF-center RGC of 265 

equal strength. The receptive field of ON- and OFF-center RGCs were modeled as the difference of a 266 

Gaussian (σsurround = 3σcenter, σcenter, ON/OFF = half of the average ON-ON/OFF-OFF distance, respectively). The 267 

map of SI in Fig. 2f was obtained as the same formula for dON-OFF. 268 

 269 

Receptive field data   Spatial organization of simple/complex cells in V1 was analyzed using published 270 

receptive field data obtained by multielectrode recording in Layer 4 of cat V1. This was provided by Jose-271 

Manuel Alonso via data presented in Figure 2 of a previous study32. The detailed experimental procedures 272 

for mapping receptive fields are described in the reference.  273 

We defined the size of the receptive field (r) for each recording as the average radius of receptive 274 

fields within each penetration (assuming circular receptive fields). The distance between the center of mass 275 
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of ON and OFF subfields were normalized by dividing that distance by r. The period of each distribution (SI, 276 

dON-OFF, and orientation preference) was calculated as the distance at which the pairwise difference value 277 

(Fig. 3f) reaches its minimum among local minima of the curves, following the process to calculate the 278 

period of orientation preference in the reference32. 279 

 280 

Analysis of homogeneity of the organization of orientation preference   To quantify the degree of 281 

homogeneity of the organization of orientation preference at a specific location xi, we calculated the local 282 

homogeneity index (LHI) with window size σ (170 μm) as follows40: 283 

𝐿𝐿𝐿𝐿𝑆𝑆(𝑒𝑒𝑖𝑖) = |
1
𝑘𝑘
∗�𝑒𝑒𝑒𝑒𝑒𝑒 �−

�𝑒𝑒𝑖𝑖 − 𝑒𝑒𝑗𝑗�
2

2𝜎𝜎2
� ∗ 𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖 ∗ 2𝜃𝜃𝑗𝑗)|

𝑗𝑗

 284 

where j represents each site in the penetration, k is a normalization constant that makes the theoretical 285 

maximum value of LHI = 1, and θj is the preferred orientation of the jth site. To avoid the edge effect in 286 

calculating the LHI, two sites at either end of the recordings were not represented. To obtain the LHI of the 287 

model orientation map, the same formula with the same window size (the sizes of model and data were 288 

normalized to match the period) was applied to two-dimensional space39. The location of pinwheels was 289 

identified as local minima of LHI that were smaller than the quartile. 290 

 291 

Map simulation   The simulations were conducted based on the statistical wiring model published 292 

earlier26,34,35. Here, we summarize the algorithm and parameters that were used to produce the results. 293 

 294 

Generation of retinal ganglion cell mosaics   The ON and OFF RGC mosaics used in the simulation 295 

were generated by adding random spatial noise to each node of the hexagonal lattices that represent the 296 

position of the center of ON-center and OFF-center receptive fields, respectively. The position vectors of 297 

the centers of the receptive fields were defined as 298 

𝒙𝒙𝑖𝑖𝑗𝑗,𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑑𝑑 ∗ 𝑯𝑯𝑖𝑖𝑗𝑗 + 𝜼𝜼𝑖𝑖𝑗𝑗  299 

𝒙𝒙𝑖𝑖𝑗𝑗,𝑂𝑂𝑂𝑂 = (1 + 𝛼𝛼)𝑑𝑑 ∗ 𝑯𝑯𝑖𝑖𝑗𝑗 + 𝜼𝜼𝑖𝑖𝑗𝑗 300 
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where d represents the lattice constant of the OFF mosaic, (1+α)d represents the lattice constant of the ON 301 

mosaic (α = 1/7), ηij represents the 2-D additive Gaussian noise with a standard deviation σ (= 0.05d), and 302 

Hij represents the vectors of the nodes of a unit hexagonal lattice spanned by two basis vectors. 303 

𝑯𝑯𝑖𝑖𝑗𝑗 =
1
2
� 1 1
√3 √3

� �𝑖𝑖𝑗𝑗�        𝑖𝑖, 𝑗𝑗 ∈ ℤ 304 

The characteristic period of the hexagonal moiré interference pattern, λm, is given by51 305 

𝜆𝜆𝑚𝑚 =
(1 + 𝛼𝛼)

𝛼𝛼
𝑑𝑑 306 

when the directions of the two principle axes of the lattices match. 307 

The main results of the model simulation and comparison with the data is nearly identical to the various 308 

choices of the parameter of the moiré interference. 309 

 310 

Statistical connectivity and receptive field computation   The mean receptive field at each cortical 311 

site can be computed by the weighted sum of the afferent LGN input (it relays the afferent RGC input). 312 

𝛹𝛹(𝑒𝑒,𝑦𝑦;𝒙𝒙) = �𝑒𝑒𝑒𝑒𝑒𝑒 (−(𝒙𝒙 − 𝒙𝒙𝒊𝒊)2/2𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐2 )
𝑖𝑖

𝛹𝛹𝑖𝑖,𝐿𝐿𝐿𝐿𝑂𝑂 313 

where x is the cortical site at which we calculate the mean receptive field, xi is the location of the ith LGN 314 

afferent, ψi,LGN is the receptive field of the LGN afferent, and σcon (= 0.28d) is the parameter that determines 315 

the spatial extent of the synaptic weight distribution, which is assumed to be a form of Gaussian35. 316 

 317 

Measurements of cortical maps   Simulated cortical maps were obtained from the computed receptive 318 

fields at each cortical position. The SI of the V1 neurons was calculated in the same way as the SI of the 319 

data. The preferred orientation of each receptive field was calculated as the angle orthogonal to the line 320 

connecting the center of ON and OFF subregions. If either an ON or OFF subregion dominated (so called 321 

“monocontrast” cells, which respond to only one particular sign of contrast), so that the sum of all the 322 

weights of ON afferents were larger than two times the sum of all the weights of OFF afferents and vice 323 

versa, the neurons were excluded from the map measurement. After obtaining the SI and orientation 324 

preference of each cortical site, we smoothened the map with a 2-D Gaussian kernel with standard 325 
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deviation 0.16 λm. The filtered map of SI and dON-OFF were linearly rescaled to recover the minimum and 326 

maximum values of the raw cortical maps. 327 

 To compare the data and model, we obtained pixel-values from cross-sections of each simulated 328 

map along line segments that had the same length as the data segments, but with random penetration 329 

direction. The length of the data and model was normalized to match the period of orientation preference 330 

of the data (1.1 mm) and that of model (λm). As in the data, 27 sites with equal spacing were sampled for 331 

each cross-section (10,000 cross-sections) and pairwise difference curves were calculated. Two pairwise 332 

difference curves were randomly sampled and the mean and standard deviation of the mean of the two 333 

curves were calculated for 100,000 iterations. For pairwise differences of SI and dON-OFF, the scale of 334 

variation was normalized by dividing the maximum value of the mean model curve and multiplying by the 335 

maximum value of the data curve. 336 

 337 
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Figure 1. Parallel development of simple and complex cells in the primary visual cortex 458 

(a) Illustration of simple (left) and complex (right) cells. Receptive fields and response profiles to a drifting 459 

sinusoidal grating stimulus are described. Red area (+): ON subregion. Blue area (-): OFF subregion. Purple 460 

area (+&-): both ON and OFF subregion. F1/F0: ratio of 1st harmonic amplitude to mean elevation of firing 461 

rate. (b) Schematic of the classical hierarchical model. (c) Bimodal histograms of F1/F0 in Layer 4 of adult 462 

monkeys (red bar, adapted from reference16) and prediction of hierarchical model (gray bar, adapted from 463 

reference10).  464 
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Figure 2. Retinal-origin model of simple and complex cells. 465 

(a) Schematic of retinal-origin model. ON- and OFF- center RGC receptive fields are represented as red 466 

and blue circles (dots represent the center of mass). (b) ON and OFF-center RGC receptive field mosaic 467 

data from monkeys36. Scale bar: 0.2 mm. ON-OFF dipoles (N = 116) were defined as a line from each OFF 468 

cell to the nearest ON cell, and dON-OFF denotes the size of the dipole. Bottom histogram represents the 469 

distribution of dON-OFF, fitted to a Gaussian (Red curve). (c) Example receptive fields of local ON and OFF 470 

RGC afferents (from green and purple circles in b). Simpleness index (SI) measures the spatial segregation 471 

between ON and OFF receptive field sub-regions. (d) A nonlinear transformation between F1/F0 and ON-472 

OFF distance obtained by an analytic model (see Supplementary Information). Shaded area represents 473 

standard deviation. (e) Resulting bimodal distribution of F1/F0 predicted by the model (gray, Hartigan’s dip 474 

test, p < 10-5) is compared with the histogram of F1/F0 in Figure 1(b) (red). (f) Spatial map and example 1-D 475 

profile (along black arrows) of dON-OFF obtained from mosaic data in (a) (Top) and those of SI (Bottom). 476 
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Figure 3. Periodic spatial organization of simple/complex cells and the common period with 477 

orientation preference in cat V1.  478 

(a) Illustration of multielectrode recording from Kremkow, 201632. The contour of ON and OFF receptive 479 

fields (measured with light and dark stimuli, respectively) is defined as a level of z-score = 1.5 for each 480 

ON/OFF receptive field. Scale bar: average radius (r) of the ON/OFF receptive field for each penetration. 481 
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Polar plots represent a normalized response to drifting bars. (b) Example calculation of dON-OFF (distance 482 

between center of mass of ON/OFF sub-regions), SI, and preferred orientation. (c) Periodic spatial 483 

clustering of orientation preference (green, and its phase-adjusted cosine values, Supplementary Figure 3), 484 

dON-OFF (blue), and SI (red). The Black dashed lines are sine fits for dON-OFF and SI. The dON-OFF fit: 0.47 + 485 

0.22 × sin(2πx/λ - 1.92), λ = 1.1 mm (R2 = 0.41, p = 3×10-4). The SI fit: 0.4 + 0.13 × sin(2πx/λ - 2.19), λ = 1.0 486 

mm (R2 = 0.52, p = 2×10-5). Phase difference between two fits: 17°. (d) Correlation between cosine of 487 

orientation (cos(2θ+Φ)) and dON-OFF (top), and SI (bottom) (2 penetrations, N = 52 sites). (e) Average pairwise 488 

difference as a function of pairwise distance (averaged over 2 penetrations, averaged pairwise sample > 489 

20 for each pairwise distance). Dashed vertical lines represent the period of each curve (~1.1 mm). (f) 490 

Comparison of the observed period of SI, dON-OFF, and orientation with reported values of the orientation 491 

map periods38.  492 
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Figure 4. Moiré interference of retinal mosaics predicts the periodic spatial organization of SI, dON-493 

OFF, and orientation preference in V1. 494 

(a) ON (red) and OFF-center (blue) retinal ganglion cell receptive field mosaics are described as two noisy 495 

hexagonal lattices with different periodicity and the same angle. The resulting hexagonal moiré interference 496 

pattern has a characteristic period λm, and can be described by local ON-OFF dipoles. Five example ON-497 

OFF dipoles for ideal hexagonal moiré interference patterns occur in the region highlighted within a box 498 

(middle). Constructed receptive fields SI, dON-OFF, and orientation preference of cortical neurons are 499 

represented (bottom) (b) Pseudo color representation of the synthetic map of preferred orientation, dON-OFF, 500 

and SI (with example 1-D profiles along black arrow). σOFF represents the RF size of model OFF RGCs. (c) 501 

Correlation between cosine of orientation (cos(2θ+Φ)) and dON-OFF (top), and SI (bottom) obtained from 502 

diverse cortical penetrations on model maps (N = 100 penetrations). The data was rescaled to match the 503 

mean and standard deviation of the model for comparison. (f) Consistent periods obtained from three maps 504 

(one period value for each penetration for each map, N = 100 penetrations). ns: not significant (Wilcoxon 505 

rank-sum test, p = 0.25, 0.83, 0.13, for SI - orientation, SI - dON-OFF, dON-OFF - orientation, respectively). 506 

507 
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Figure 5. Inferring local simple/complex properties with local information of orientation map 508 

topography. 509 

(a) Comparison of topography of orientation map and SI map. (Left) Example pinwheels of the model 510 

orientation map with opposite winding polarity, counterclockwise (CCW, marked as 1) and clockwise (CW, 511 

marked as 2). (Right) Example SI of the model SI map at the corresponding locations (1 and 2). (b) Average 512 

SI over circular area within 1/8 map period from the center of simple and complex pinwheels (n = 179 simple 513 

pinwheels, n = 214 complex pinwheels) are significantly higher/lower than average SI over non-pinwheel 514 

areas (Wilcoxon rank-sum test, *p < 0.0001). (c) Orientation (green), LHI (blue) and SI (red, Gaussian-515 

smoothed) in cat V1 recording data in Fig. 3 (2 penetrations). Three local minima of LHI (dashed black lines, 516 

putative pinwheels) and SI values near corresponding locations (red area) were identified. (d) Local SI near 517 

pinwheel locations in (c). Average SI were calculated for 100 µm range for each LHI minima. (Wilcoxon 518 

rank-sum test, *p = 0.0065, p = 0.027, p = 0.016 for PW1, PW2, and PW3, respectively).  519 
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Supplementary Information 520 

 521 

Model of the relationship between the membrane voltage and F1/F0 ratio 522 

Following previous modeling studies20,25, the membrane voltage response of a V1 neuron to the drifting 523 

grating stimulus can be expressed as a sinusoidal function: 524 

𝑉𝑉(𝑡𝑡) =  𝑉𝑉0 + 𝑉𝑉1 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝜋𝜋𝑡𝑡 + 𝜙𝜙) 525 

where V0 represents the mean elevation of the membrane voltage and V1 represents the amplitude of the 526 

modulation, f is the temporal frequency of the drifting grating, and 𝜙𝜙 is a constant phase term.   527 

The relationship between the membrane voltage fluctuation and F1/F0 was formulated using the 528 

following 3-parameter model: 529 

𝑅𝑅(𝑉𝑉) = 𝑔𝑔[(𝑉𝑉 − 𝑉𝑉𝑡𝑡ℎ)]+
𝑝𝑝  530 

where F is spike rate, p is an exponent and g is a gain factor. For the simplest case, p = 1, the analytic 531 

expression of F1/F0 as a function of a variable 𝜒𝜒 = (𝑉𝑉𝑡𝑡ℎ − 𝑉𝑉0)/𝑉𝑉1 can be obtained as follows20. 532 

𝑅𝑅1
𝑅𝑅0

=
−𝜒𝜒�1 − 𝜒𝜒2 + 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝜒𝜒)

�1 − 𝜒𝜒2 − 𝜒𝜒 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝜒𝜒)
     𝑤𝑤ℎ𝑒𝑒𝑒𝑒 − 1 ≤ 𝜒𝜒 ≤ 1 533 

𝑅𝑅1
𝑅𝑅0

=
1
𝜒𝜒

    𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝜒𝜒 < −1     534 

(𝑒𝑒𝑒𝑒. 1) 535 

For a fixed value of Vth, F1/F0 can be described as a function of variable V1/V0. 536 

The work of Mechler and Ringach20 suggests that such a nonlinear relationship can induce the 537 

bimodal distribution of F1/F0 even if the underlying distribution of 𝜒𝜒 (or V1/V0) is unimodal. Thus, simple 538 

(F1/F0 > 1) and complex (F1/F0 < 0) cells can be considered as a common type of cells. However, what factor 539 

in visual circuit can make the spectrum of such variables was not fully understood. 540 

 541 

Relationship between ON-OFF RGC afferent distance and F1/F0 of V1 neuron 542 

Here, we advance the notion of the previous studies by suggesting that the distance between ON and OFF 543 

RGC afferents can give the source of the spectrum of F1/F0. An analytically tractable model that expresses 544 

F1/F0 as a function of the distance between ON and OFF RGC afferents are demonstrated in this section. 545 
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A previous electrophysiological study showed that the response measured by firing of retinal 546 

ganglion cells varies sinusoidally with the matched temporal frequency of the drifting grating stimulus with 547 

optimal spatial frequency52. Thus, we start by writing a firing rate of an RGC to the drifting grating stimulus 548 

as a sinusoidal function, which is denoted as r(t).  549 

𝑎𝑎(𝑡𝑡) = 𝑎𝑎0 + 𝑎𝑎1 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝜋𝜋𝑡𝑡 + 𝜙𝜙) , (𝑎𝑎0 > 𝑎𝑎1 𝜋𝜋𝑐𝑐𝑎𝑎 𝑎𝑎(𝑡𝑡) > 0) 550 

where f is the temporal frequency of the drifting grating stimulus and 𝜙𝜙 is the phase determined by the 551 

location of the RGC receptive field (𝑒𝑒). 552 

Note that for a suitable choice of reference, one can write the phase as a variable of spatial position divided 553 

by the spatial frequency (𝜆𝜆) of the drifting grating. 554 

𝜙𝜙 = 2𝜋𝜋 ∗ 𝑒𝑒/𝜆𝜆 555 

Here, the value of λ was determined to produce the maximum response for each RGC, where the RGC 556 

receptive field was modeled as in the main text and the response was calculated with a conventional linear 557 

nonlinear model53. 558 

Summation of the response of ON and OFF RGCs at different positions (and thus different phases) yields 559 

the equation for the summed response, 𝑎𝑎𝑠𝑠𝑠𝑠𝑚𝑚(𝑡𝑡) (Supplementary Fig. 1a, 1st column). 560 

𝑎𝑎𝑠𝑠𝑠𝑠𝑚𝑚(𝑡𝑡) = 𝑎𝑎𝑐𝑐𝑐𝑐 + 𝑎𝑎𝑐𝑐𝑜𝑜𝑜𝑜 = 𝑎𝑎0,𝑐𝑐𝑐𝑐 + 𝑎𝑎1,𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝜋𝜋𝑡𝑡 + 𝜙𝜙𝑐𝑐𝑐𝑐) + 𝑎𝑎0,𝑐𝑐𝑜𝑜𝑜𝑜 + 𝑎𝑎1,𝑐𝑐𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐�2𝜋𝜋𝜋𝜋𝑡𝑡 + 𝜋𝜋 + 𝜙𝜙𝑐𝑐𝑜𝑜𝑜𝑜� 561 

The addition of 𝜋𝜋 phase arises from the opposite polarity of ON/OFF response. By letting 𝑎𝑎0,𝑐𝑐𝑐𝑐 = 𝑎𝑎0,𝑐𝑐𝑜𝑜𝑜𝑜 =562 

𝑎𝑎0, 𝑎𝑎1,𝑐𝑐𝑐𝑐 = 𝑎𝑎1,𝑐𝑐𝑜𝑜𝑜𝑜 = 𝑎𝑎1, and applying the trigonometric identity yields the simplified expression of the summed 563 

response. 564 

𝑎𝑎𝑠𝑠𝑠𝑠𝑚𝑚(𝑡𝑡) = 2𝑎𝑎0 + 2𝑎𝑎1 𝑐𝑐𝑐𝑐𝑐𝑐 �
𝜙𝜙𝑐𝑐𝑐𝑐

2
−
𝜙𝜙𝑐𝑐𝑜𝑜𝑜𝑜

2
−
𝜋𝜋
2
� 𝑐𝑐𝑐𝑐𝑐𝑐 �2𝜋𝜋𝜋𝜋𝑡𝑡 +

𝜙𝜙𝑐𝑐𝑐𝑐
2

+
𝜙𝜙𝑐𝑐𝑜𝑜𝑜𝑜

2
+
𝜋𝜋
2
� 565 

The interpretation of the above equation is as follows. The first term, 2𝑎𝑎0, is independent of the 566 

phase difference between ON and OFF RGCs. The amplitude of the second term, however, is dependent 567 

on the phase difference between ON and OFF RGCs (𝜙𝜙𝑐𝑐𝑐𝑐 − 𝜙𝜙𝑐𝑐𝑜𝑜𝑜𝑜). When 𝜙𝜙𝑐𝑐𝑐𝑐 = 𝜙𝜙𝑐𝑐𝑜𝑜𝑜𝑜, namely when ON 568 

and OFF receptive fields are completely overlapped, the amplitude of sinusoidal modulation becomes zero 569 

due to the 𝑐𝑐𝑐𝑐𝑐𝑐(0 + 𝜋𝜋
2

) term. As 𝜙𝜙𝑐𝑐𝑐𝑐 − 𝜙𝜙𝑐𝑐𝑜𝑜𝑜𝑜 increases, the amplitude of sinusoidal modulation increases 570 

and becomes maximum when 𝜙𝜙𝑐𝑐𝑐𝑐 − 𝜙𝜙𝑐𝑐𝑜𝑜𝑜𝑜 = 𝜋𝜋.  571 

Next, the expression of the membrane voltage fluctuation suggested by Mechler and Ringach was 572 

linked with the above expression of 𝑎𝑎𝑠𝑠𝑠𝑠𝑚𝑚(𝑡𝑡) as follows (Supplementary Fig. 1a, second column). 573 
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𝑉𝑉0 ~ 𝑚𝑚𝑒𝑒𝑎𝑎𝑒𝑒�𝑎𝑎𝑠𝑠𝑠𝑠𝑚𝑚(𝑡𝑡)� = 𝐴𝐴 ∗ 2𝑎𝑎0 574 

𝑉𝑉1 ~ |1𝑐𝑐𝑡𝑡 ℎ𝑎𝑎𝑎𝑎𝑚𝑚𝑐𝑐𝑒𝑒𝑖𝑖𝑐𝑐 𝑐𝑐𝑐𝑐𝑚𝑚𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡 𝑐𝑐𝜋𝜋 𝑎𝑎𝑠𝑠𝑠𝑠𝑚𝑚(𝑡𝑡)|𝑘𝑘 = 𝐵𝐵 ∗ �2𝑎𝑎1 𝑐𝑐𝑐𝑐𝑐𝑐 �
𝜙𝜙𝑐𝑐𝑐𝑐

2
−
𝜙𝜙𝑐𝑐𝑜𝑜𝑜𝑜

2
−
𝜋𝜋
2
��

𝑘𝑘

 575 

where the exponent k was applied for the expansive relationship between input and membrane voltage 576 

modulation that arises from nonlinear integration in dendrites54. This nonlinear relationship can generate a 577 

skewed distribution of V1/V0 as observed in cat25 from a Gaussian-like distribution of ON-OFF distance 578 

(Supplementary Figs. 1b, c).  579 

This sinusoidal membrane voltage fluctuation is rectified to generate spike response modulation 580 

(Supplementary Fig. 1a, third column). The expression that links the distance between ON/OFF afferent 581 

and 𝜒𝜒, which determines the modulation ratio F1/F0 becomes, 582 

𝜒𝜒 =
𝑉𝑉𝑡𝑡ℎ − 𝑉𝑉0

𝑉𝑉1
=

𝑉𝑉𝑡𝑡ℎ − 2𝐴𝐴𝑎𝑎0

𝐵𝐵 �2𝑎𝑎1 𝑐𝑐𝑐𝑐𝑐𝑐 �𝜙𝜙𝑐𝑐𝑐𝑐 − 𝜙𝜙𝑐𝑐𝑜𝑜𝑜𝑜 −
𝜋𝜋
2��

𝑘𝑘 = 𝑐𝑐1 �𝑐𝑐𝑐𝑐𝑐𝑐 �𝜙𝜙𝑐𝑐𝑐𝑐 − 𝜙𝜙𝑐𝑐𝑜𝑜𝑜𝑜 −
𝜋𝜋
2
��

−𝑘𝑘
585 

= 𝑐𝑐1 �𝑐𝑐𝑐𝑐𝑐𝑐 �
2𝜋𝜋
𝜆𝜆

(𝑒𝑒𝑂𝑂𝑂𝑂 − 𝑒𝑒𝑂𝑂𝑂𝑂𝑂𝑂) −
𝜋𝜋
2
��

−𝑘𝑘

 586 

where 𝑐𝑐1 = 𝑉𝑉𝑡𝑡ℎ−2𝐴𝐴𝐴𝐴0
𝐵𝐵(2𝐴𝐴1)𝑘𝑘

 is a constant. Substituting the 𝜒𝜒 into eq. 1 and expressing the ON-OFF distance as 583 

𝑒𝑒𝑂𝑂𝑂𝑂 − 𝑒𝑒𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑑𝑑, yields the analytic expression of F1/F0 in terms of 𝑑𝑑. 584 

 587 

𝑅𝑅1
𝑅𝑅0

=
𝑅𝑅1
𝑅𝑅0

(𝑑𝑑) 588 

=
−𝑐𝑐1 �𝑐𝑐𝑐𝑐𝑐𝑐 �

2𝜋𝜋
𝜆𝜆 𝑑𝑑 − 𝜋𝜋

2��
−𝑘𝑘
�1 − 𝑐𝑐12 �𝑐𝑐𝑐𝑐𝑐𝑐 �

2𝜋𝜋
𝜆𝜆 𝑑𝑑 − 𝜋𝜋

2��
−2𝑘𝑘

+ 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �−𝑐𝑐1 �𝑐𝑐𝑐𝑐𝑐𝑐 �
2𝜋𝜋
𝜆𝜆 𝑑𝑑 − 𝜋𝜋

2��
−𝑘𝑘
�

�1 − 𝑐𝑐12 �𝑐𝑐𝑐𝑐𝑐𝑐 �
2𝜋𝜋
𝜆𝜆 𝑑𝑑 − 𝜋𝜋

2��
−2𝑘𝑘

+ 𝑐𝑐1 �𝑐𝑐𝑐𝑐𝑐𝑐 �
2𝜋𝜋
𝜆𝜆 𝑑𝑑 − 𝜋𝜋

2��
−𝑘𝑘
𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �−𝑐𝑐1 �𝑐𝑐𝑐𝑐𝑐𝑐 �
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𝜆𝜆 𝑑𝑑 − 𝜋𝜋
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−𝑘𝑘
�

      589 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒 − 1 ≤ 𝜒𝜒 ≤ 1, 590 

=
1

−𝑐𝑐1 �𝑐𝑐𝑐𝑐𝑐𝑐 �
2𝜋𝜋
𝜆𝜆 𝑑𝑑 − 𝜋𝜋

2��
−𝑘𝑘     𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝜒𝜒 < −1     591 

From this expression, the distribution of F1/F0 can be calculated as in the Fig. 2d of the main text. In our 592 

demonstration, k = 3, c1 ~ N (μ, σ2) = N (-0.04, 0.082) were used (N represents the normal distribution).  593 

 594 
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Supplementary Figure 1. Relationship between dON-OFF and response modulation of V1 neuron to drifting 595 

grating. 596 

(a) Illustration of responses of RGCs and V1 neurons to the drifting grating stimulus following the model 597 

described in Supplementary Information. Dashed black line (Vth) represents spike threshold. Dashed red 598 

line represents mean response. (b) Distribution of dON-OFF shown in main text (top) and model relationship 599 

between V1/V0 and dON-OFF (bottom). (c) Skewed distribution of V1/V0 in both top (adapted from Priebe, 200425) 600 

and model (bottom, B (2r1)k / 2 Ar0 = 7: constant that linearly controls the scale of V1/V0).  601 
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Supplementary Figure 2. Distribution of simple and complex cells in monkeys16, cats9, and tree 602 

shrews17. 603 

Simple and complex cells coexist in the earliest stage of visual cortex, layer 4, in monkeys, cats, and tree 604 

shrews. F1/F0 and 2[F1/(F0+F1)] represent the degree of response modulation to sinusoidal drifting 605 

gratings, and the overlap index measures the degree of overlap between ON and OFF subregions of the 606 

receptive fields.  607 
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Supplementary Figure 3. Quantifying correlation between orientation and SI (or dON-OFF). 608 

(a) Spatial profiles of orientation preference (θ). (b) Transformed and distance-shifted profiles of cos(2θ+Φ). 609 

(c) Shifted profiles of dON-OFF and SI. The values of Φ (0–360º) and shifting lag (-0.5–0.5 mm) were 610 

determined to maximize the correlation between (b) and (d). In position-shuffled control (shuffle position 611 

information of SI), the probability of obtaining as high a correlation value as in the data was significantly low 612 

(p = 0.005). 613 

  614 
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Supplementary Figure 4. Common periods for orientation, dON-OFF, and SI in model and data. 615 

Pairwise differences of (a) Orientation (b) dON-OFF, and (c) SI for the simulated model maps. The common 616 

period λm is denoted as a purple dashed line. Shaded gray areas represent the standard deviation obtained 617 

from different cortical penetrations. For (b) and (c), the curves for data and model were normalized to match 618 

the maximum value. 619 
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