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Abstract	
Purpose: To develop a comprehensive analysis framework to identify pre-messenger RNA 
splicing mutations in the context of rare disease.   
 
Methods: We assessed ‘variants of uncertain significance’ through six in-silico prioritization 
strategies. Firstly, through comparison to functional analyses, we determined the precise 
effect on splicing of variants identified through clinical multi-disciplinary meetings. Next, we 
calculated the sensitivity of in-silico prioritization strategies to distinguish known splicing 
mutations from common variation (>2% in allele frequency in gnomAD) within relevant 
disease genes. These approaches defined an accurate in-silico strategy for variant 
prioritization, which we retrospectively applied to a large cohort of 2783 individuals who had 
previously received genomic testing for rare genomic disorders. We assessed the clinical 
impact of such prioritization strategies alongside routine diagnostic testing strategies.  
 
Results: We identified 21 variants that potentially impacted splicing, and used cell based 
splicing assays to identify those variants which disrupted normal splicing. These findings 
underpinned new molecular diagnoses for 14 individuals. This process established that the use 
of pre-defined thresholds from a machine learning splice prediction algorithm, SpliceAI, was 
the most efficient method for variant prioritization, with a positive predictive value of 86%. 
We analysed 1,346,744 variants identified through diagnostic testing for 2783 individuals and 
observed that splicing variant prioritization strategies would improve clarity in clinical analysis 
for 15% of the individuals surveyed. Prioritized variants could provide new molecular diagnoses 
or provide additional support for molecular diagnosis for up to 81 individuals within our cohort. 
 
Conclusion: We present an in-silico and functional analysis framework for the assessment of 
variants impacting pre-messenger RNA splicing which is applicable across monogenic disorders. 
Incorporation of these strategies improves clarity in diagnostic reporting, increases diagnostic 
yield and, with the advent of targeted treatment strategies, can directly alter patient clinical 
management.  
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Key	Highlights	
• We establish an in-silico and functional analysis framework for the incorporation of splice variant 

assessment into diagnostic testing that is applicable across monogenic disorders. 
 

• After assessment of six distinct variant prioritization strategies, we concluded that SpliceAI was the 
best method to accurately identify genomic variation disrupting normal pre-mRNA splicing. We 
determined this through (i) functional assessment of novel ‘variants of uncertain significance’ 
described in this study, and (ii) calculation of sensitivity and specificity for prioritization strategies to 
distinguish known splicing mutations from common variants in the general population. 
 

• We describe novel disease-causing variants with support from cell based functional assays which 
underpin autosomal recessive, autosomal dominant and X-linked Mendelian disorders. This includes 
variants which are deeply intronic, within the nearby splice region of canonical splice sites and variants 
which activate cryptic splice sites within the protein-coding regions of genes.  

 
• We integrated the best performing variant prioritization strategy alongside clinical diagnostic testing 

for 2783 individuals referred to a well-established targeted gene panel test available through the UK 
National Health Service. We show that integration of such strategies will increase accuracy and clarity 
of diagnostic reporting, including the identification of variants which could provide new diagnoses 
and new carrier findings for referred individuals. 

 
• Functional assessment is essential for accurate clinical assessment of variants disrupting pre-mRNA 

splicing. We show through cell based functional assessments that variants impacting splicing may 
have complex impacts on pre-mRNA splicing, which may cause multiple interpretable consequences 
according to ACMG guidelines. 
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Introduction	
Pinpointing disease-causing genomic variation informs diagnosis, treatment and management for a wide 
range of rare disorders. Molecular testing, in a healthcare setting, now frequently includes complete 
genomic and exome sequencing.1-3 Accurate interpretation and categorization of identified variants 
remains a key limiting factor despite the availability of guidelines for variant analysis.4,5  

With the advent of whole genome sequencing healthcare strategies,3,6-9 there is an opportunity for 
diagnostic services to routinely include the analysis of non-coding variation to increase diagnostic yields 
and improve patient care. Such analysis strategies may include consideration of variants within 
characterized regulatory elements,10-12 variants disrupting chromatin conformation13,14 and variants that 
disrupt vital processes during gene expression, e.g. pre-mRNA splicing.15,16 However, the capability to 
interpret variation within the non-coding genome is particularly challenging. Variant interpretation is 
hindered by the vast number of rare/novel non-coding variants identified in each individual,7,9 the 
depleted levels of evolutionary conservation within non-coding regions,17 and our current lack of 
understanding of the motifs and interactions that are required for appropriate control of gene expression 
and regulation.12,18   

Intragenic genomic variants have the potential to impact splicing,16 the ubiquitous process in eukaryotic 
cells of converting nascent pre-mRNA molecules into a mature messenger RNA (mRNA) which can be 
transported out of the nucleus to provide a template for protein synthesis. Genomic variation in protein-
coding, splice junction and intronic regions of genes can disrupt normal splicing mechanisms and underpin 
the onset of rare disease.19 Known mechanisms of splicing disruption include the introduction of cryptic 
splice sites, disruption of canonical splice acceptor and donor sites, and the disruption of motifs essential 
for splicing, e.g. branch points and the polypyrimidine tract.19 A number of computational tools have been 
developed to assist in the interpretation of genomic variation impacting splicing, and these tools have 
been expanded recently to include an array of machine learning tools that have been trained to prioritize 
splice disrupting variation through diverse means.20-24 While the initial reports of these tools have shown  
promising results there is yet to be a formal assessment of their integration, utilization and comparative 
performance in clinical environments.  

In this study we interrogate data derived from targeted gene panel sequencing and whole genome 
sequencing from individuals with a broad spectrum of rare disorders. We apply in-silico splicing tools to 
prioritize variants predicted to impact splicing and we assess variant pathogenicity using targeted cDNA 
amplification and cell based minigene assays. We establish methodologies to identify novel causes of 
autosomal recessive, autosomal dominant and X-linked genomic disorders and demonstrate a 
requirement for routine diagnostic services to assess the effect of protein-coding and non-coding variation 
on mRNA expression.  
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Methods	

Patient	Recruitment	&	Genomic	Variant	Dataset	Generation	
All individuals included in this study have provided consent for the analysis of relevant disease causing 
genes through tertiary healthcare centers within the UK. All individuals with whole genome sequencing 
datasets have consented through the Genomics England 100,000 Genomes Project.  

For real-time assessment of variant prioritization strategies, we identified individuals with ‘variants of 
uncertain significance’ according to ACMG guidelines for variant interpretation.4 In all cases we 
considered inheritance modes associated with monogenic disorders available in OMIM 
(https://omim.org/) or PanelApp (https://panelapp.genomicsengland.co.uk/), the zygosity of identified 
variants, additional variants identified to impact the same gene, phenotype-genotype correlations and 
scores determined by in-silico splicing tools (Figure 1). 

Whole	genome	sequencing	
Whole genome sequencing datasets were created through the UK 100,000 genomes project,3 using 
Illumina X10 sequencing chemistry. Sequencing reads were aligned to build GRCh37 of the human 
reference genome utilizing Issac. Small variants were identified through Starline (SNV and small indels ≤ 
50bp), and structural variants were identified utilizing Manta and Canvas (CNV Caller). Variants were 
annotated and analysed with the Ensembl variant effect predictor (v92), bcftools and bespoke perl scripts 
within the Genomics England secure research embassy.  

Gene	panel	sequencing	
Enrichments were performed on DNA extracted from peripheral blood using Agilent SureSelect Custom 
Design target-enrichment kits (Agilent, Santa Clara, CA, USA). Enrichment kits were designed to capture 
known pathogenic intronic variants and the protein-coding regions +/-50 nucleotides of selected NCBI 
RefSeq transcripts; conditions tested included inherited retinal disease (105 genes or 176 genes), 
ophthalmic disorders (114 genes), cardiac disorders (72 genes comprised of 10 sub-panels) and severe 
learning difficulties (82 genes). Genes tested and relevant testing strategies are available through the UK 
Genetic Testing Network (https://ukgtn.nhs.uk/). All samples included in the large cohort analysis were 
generated through a previously described methodology,25 and had been completed prior to August 2017. 
Briefly, samples were pooled and paired-end sequencing was performed using the manufacturer 
protocols for the Illumina HiSeq 2000/2500 platform (Illumina, Inc., San Diego, CA, USA). Sequencing reads 
were demultiplexed with CASAVA v.1.8.2. and aligned to the GRCh37 reference genome using Burrows-
Wheeler Aligner short read (BWA-short v0.6.2) software before duplicate reads were removed using 
samtools v0.1.18. The detection and clinical analysis of single nucleotide variants and small 
insertions/deletions was performed as described previously,25,26 and in accordance with ACMG guidelines 
for variant interpretation.4  

In-silico	splicing	prediction	scores	
Real-time	assessment	of	variant	prioritization	strategies	
In-silico splicing prediction scores were generated through the latest web server for the algorithm, 
through access to pre-computed scores, or through 3rd party software (Ensembl Variant Effect Predictor 
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or Alamut Visual Software). We utilized scores available from the following algorithms: CADD,27 SpliceAI,20 
SPIDEX,24 S-CAP22 and MaxEntScan.28 Where multiple scores were available for a variant from the in-silico 

tool, we selected the highest score for consideration. Where scores were unavailable we arbitrarily 
assigned the variant a score of 0. Pre-defined thresholds were applied to determine whether a variant 
was ‘disruptive’ or ‘undisruptive’ to splicing, as suggested by the authors of the original papers,20,24 by 
recent refinements of thresholds,22 or through nationally recommended guidelines. 

Assessment	of	variant	prioritization	strategies	for	known	disease	genes	
To determine the performance of three in-silico splicing tools (CADD, SPIDEX and SpliceAI) within genes 
known as a cause of inherited retinal disease, we identified sets of variants which could be considered 
true negatives (no expected impact on splicing) or true positives (expected impact of splicing). Our genes 
of interest are listed in Table S1. True negative (TN) variants were defined as variants available through 
the gnomAD web server with an allele frequency above 2%. True positive (TP) variants were defined as 
‘splicing’ variants available through HGMD professional. The TN and TP variant datasets were intersected 
and any overlapping variants were removed from subsequent analysis. For each of the in-silico tools, we 
analysed TN and TP variants using the ‘pROC’ R package to calculate the area under the curve (AUC) and 
to calculate tool-specific thresholds for the optimal separation of TN and TP variants.  

 

RNA	investigations	
Appropriate functional assays were selected after consideration of gene expression profiles in GTEX 
(https://gtexportal.org/home/), and the availability of relevant patient samples. 

RNA	investigations	from	patient	samples	–	LCLs	and	blood	
Lymphoblast cell cultures were established for control samples and probands. RNA was extracted using 
the RNeasy® Mini Kit (Qiagen, UK, Catalogue No. 74104) following the manufacturer's protocol. RNA was 
extracted from whole-cell blood using the PAXgene™ Blood RNA System Kit (Qiagen, UK. Catalogue No. 
762174), following the manufacturer’s protocol for control samples and probands. Extracted RNA was 
reverse transcribed using the High Capacity RNA to cDNA Kit (Applied Biosystems, UK. Catalogue No. 
4387406) following the manufacturer's protocol. Gene specific primers (available on request) amplified 
relevant regions of the genes being investigated. PCR products were visualized on an agarose gel using a 
BioRad Universal Hood II and the Agilent 2200 Tapestation. Visualized bands were cut out and prepared 
for capillary sequencing on an ABI 3730xl DNA Analyzer. 

RNA	investigations	using	cell	based	minigene	assays	
Assays were designed to amplify appropriate genomic regions from patient DNA templates. For variants 
nearby to wild-type exons, we amplified regions containing one or multiple exons along with flanking ~200 
intronic nucleotides. For deeply intronic variants we amplified regions containing at least 500bp of 
flanking intronic sequence. Primer sequences are available upon request. All regions were amplified from 
patient DNA templates. For homozygous variants, we also generated a minigene plasmid from a control 
DNA template. Amplified fragments were checked for size using gel electrophoresis, purified using the 
QIAquick Gel Extraction kit (Qiagen, UK, Catalogue No. 28706) and then cloned into a customized minigene 
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plasmid (a derivative of the pSpliceExpress vector)29 containing an RSV-promoter and two control exons 
(rat insulin exons 2 and 3) using the NEBuilderÒ HiFi DNA assembly (NEB, E2621). Amplified fragments 
were inserted between the two control exons. Plasmids were transformed into competent bacteria (XL-1 
blue) and incubated overnight at 37oC on LB plates containing Carbenicillin. Individual colonies were 
cultured overnight before isolation of plasmid DNA using the GenElute™ miniprep kit (Sigma-Aldrich, 
Catalogue No. PLN350). Purified plasmids were Sanger sequenced to confirm successful cloning, and 
identify plasmids containing the wild type and variant sequence. Plasmids were transiently transfected 
into HEK-293 cells using Lipofectamine, and incubated for up to 48h in Dulbecco’s Modified Eagle Medium 
(DMEM) supplemented with 10% foetal bovine serum at 37°C and 5% CO2. 

RNA was isolated using TRI Reagent® and further purified using the RNeasy Mini Kit (Qiagen, UK, Catalogue 
No. 74106) which included a DNase digestion step. cDNA was synthesized from up to 4μg of purified RNA 
using SuperScriptÔ reverse transcriptase (ThermoFisher Scientific, Catalogue No. 18091200) and 
subsequently amplified by Phusion high-fidelity polymerase (ThermoFisher Scientific, Catalogue No. F553) 
using primers designed to amplify all minigene transcripts.  PCR products were visualized by 
electrophoresis on a 1-2% agarose gel and purified using the QIAquick Gel Extraction kit. Purified PCR 
products were Sanger sequenced and aligned to the reference sequence for the minigene vector using 
the SnapGene software suite and assessed for differences in splicing between wild-type and variant 
minigene constructs. 
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Results	

Real-time	Assessment	of	Variant	Prioritization	Strategies		
Over a 6-month period (May 2018 – November 2018), we worked through clinical multidisciplinary 
meetings to identify individuals with ‘variants of uncertain significance’ that could be responsible for a 
presenting clinical phenotype if they impacted pre-mRNA splicing (Figure 1). We ascertained 21 individuals 
that fitted this criterion. The broad spectrum of clinical phenotypes for these individuals are described in 
Table 1, and included individuals undergoing both WGS and targeted gene panel NGS testing. 

We calculated in-silico splicing scores for each of the identified variants using a variety of algorithms, and 
arbitrarily assigned a value of 0 for all variants where in-silico scores were unavailable (Table 2). We 
predicted variants to be ‘disruptive’ or ‘undisruptive’ according to pre-defined thresholds from each of 
the in-silico splicing tools, resulting in dissimilar outcomes across tools (Table 2). None of the identified 
variants were consistently scored as ‘disruptive’ across all five in-silico splicing algorithms. Similarly, no 
variants were consistently assigned scores and defined as ‘undisruptive’ across all five in-silico splicing 
algorithms. Three deeply intronic variants were consistently scored as ‘undisruptive’, but these variants 
were outside of the regions of consideration for SPIDEX and S-CAP. We also applied an in-silico consensus 
approach, as suggested by ACMG guidelines (PP3),4 where variants were considered as ‘disruptive’ if they 
exceeded the pre-defined thresholds for 3/5 of the in-silico splicing tools. The 3/5 consensus approach 
prioritized 11 of the 21 variants (Table 2).  

Functional	Assessment	of	Prioritized	Variants	
To determine the accuracy of the in-silico splicing algorithms, we performed functional investigations to 
assess the exact impact of the investigated variant on splicing and predicted the effect on protein 
synthesis. Of the 21 variants functionally investigated, we found that 13 clearly resulted in aberrant 
splicing and could be reclassified as ‘likely pathogenic’ (Table 3). These findings provided new molecular 
diagnoses for 14 individuals.  

We determined positive predictive (PPV) and negative predictive values (NPV) for each in-silico splicing 
tool (Table 2). Of the assessed tools, SpliceAI outperformed the others with a PPV of 86% and a NPV of 
86% (Table 2). SpliceAI prioritized 12/13 variants shown to disrupt splicing through functional assays. 

We compared the use of defined thresholds from single in-silico splicing tools to a 3/5 consensus approach 
and observed that both SpliceAI and MaxEntScan outperformed the consensus approach with regards to 
both PPV and NPV (Table 2) for the 21 investigated variants. The consensus approach prioritized 9/13 
variants shown to disrupt splicing through functional assays. 

Cell	based	functional	analysis	enables	accurate	delineation	of	precise	consequences	of	
variants	on	the	protein	translation	reading	frame	
We identified a variety of consequences as a result of disruption to splicing (Table 3), including variants 
resulting in complete exon skipping (n=7), and cryptic splice site activation leading to partial exon 
truncation (n=3), intron inclusion (n=4) and pseudo exon inclusion (n=2; Box 1, Case Example). 
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Four variants were indicated through cell based assays to have complex impacts on splicing, resulting in 
multiple interpretable consequences as a result of splicing disruption (Table 3). For example, SCN2A 

c.2919+3A>G produced two transcripts expressed at equal levels (Figure 2a). The first resulted in a 
transcript with a truncated exon, NM_001040142.1:r.2563_2710del, and the second resulted in a 
complete exon skip, NM_001040142.1:r.2563_2919del. While we interpreted both events as ‘likely 
pathogenic’ it is noteworthy that these events were considered differently using ACMG criteria;4 the exon 
truncation event resulted in a frameshift and introduction of a premature stop codon (PVS1), whereas the 
complete exon skipping event resulted in the inframe removal of 119 amino acids from the transcript 
(PM4).  

We identified a single instance where a variant caused usage of two new cryptic splice sites, MERTK 

c.2486+6T>A (Figure 2b). This novel variant is present in two individuals with severe rod-cone dystrophy, 
and resulted in the simultaneous usage of a cryptic exonic splice acceptor site and a cryptic intronic splice 
donor site creating a novel exon (chr2: 112,779,939-112,780,082, GRCh37), and a premature stop codon 
in the penultimate exon, p.(Trp784Valfs*10). 

 

Variant	Prioritization	Within	a	Large	Cohort	of	Individuals	Referred	for	
Targeted	NGS	Gene	Panel	Testing	
To evaluate the utility of in-silico splicing tools in a clinical environment we assessed variants identified 
through a targeted gene panel diagnostic test for individuals with rare genomic conditions, specifically 
inherited retinal disorders. All 2783 individuals had received clinical testing for known disease genes 
(Table S1). Overall, we demonstrated that the integration of SpliceAI with standard diagnostic testing 
could improve clarity and/or accuracy of diagnostic testing for 15% of the individuals analyzed, resulting 
in new molecular diagnoses and new carrier findings. 

In-silico	splicing	tool	assessment	for	relevant	disease	genes	
We assessed the sensitivity and specificity of SpliceAI, SPIDEX and CADD to distinguish TN and TP variants 
within genes known as a cause of inherited retinal disease. For a communal pool of 2393 variants 
(TN=1068,TP=1325) which could be scored by all three prediction algorithms, we show that SpliceAI 
outperforms both SPIDEX and CADD, with an AUC of 0.98 and an optimal score threshold of 0.15 (Figure 
3c). We also show that SpliceAI outperforms CADD and SPIDEX when considering all variants with scores 
available for each tool (Figure 3a) and after arbitrarily defining missing variants with a score of 0 from 
each tool (Figure 3b). 

Clinical	impact	of	SpliceAI	integration	in	variant	assessment	
We calculated SpliceAI scores for 1,346,744 variants (20,617 unique variants) identified in 2783 
individuals. Variants exceeding a spliceAI value of 0.2 were considered alongside other variants identified 
as ‘pathogenic’ or ‘likely pathogenic’ after routine diagnostic testing strategies (Figure 1). We identified 
758 variants (528 unique variants) in 646 individuals that were hypothesized to impact splicing of known 
disease genes. These variants displayed an array of predicted molecular consequences and were present 
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in genes across disease inheritance types (Table 4; Figure 4). We defined variants prioritized through 
SpliceAI as:  

- New, variant not previously highlighted or reported through diagnostic testing; 
- Clarified, variant previously reported through diagnostic testing but pathogenicity or pathogenic 

mechanism was unclear; 
- Reported, variant already described or established as ‘pathogenic’ or ‘likely pathogenic’ through 

diagnostic testing.  

In this manner, we identified 379 new variants in 337 individuals, 87 clarified variants in 83 individuals and 
292 reported variants in 274 individuals (Table 4). Of the 758 variants with a SpliceAI score >0.2, 145 (19%) 
were present in HGMD and 613 (81%) were novel. We found most (n=697) variants to be in genes known 
as a recessive cause of inherited retinal disease, variants were also prioritized in genes known as a cause 
of autosomal dominant (22 variants in 22 individuals) and X-linked (39 variants in 39 individuals) disorders.  

Prioritized	variants	from	in-silico	splicing	tools	have	a	variety	of	molecular	consequences	
Variants with a SpliceAI score >0.2 were present in our dataset with 9 distinct predicted molecular 
consequences, including 185 canonical splice site variants, 100 intronic variants, 175 splice region variants, 
64 synonymous variants and 177 missense variants. We segregated variants into 3 overlapping groups 
based on their SpliceAI score (Table 4): above threshold, >0.2 (n=758); high, >0.5 (n=409); very high, >0.9 
(n=193).  

In general, canonical splice site mutations had high SpliceAI predictions, with 181/185 variants scoring 
high, and 142/185 scoring very high (Table 4; Figure 4). All canonical splice site mutations prioritized 
through SpliceAI had been previously reported as disease-causing or carrier findings from standard 
diagnostic testing (Table 4).  

We identified 64 synonymous, 175 splice region and 100 intronic variants above the 0.2 SpliceAI threshold. 
The scores for intronic, splice region and synonymous variants were wide-ranging (Table 4; Figure 4) but 
enabled identification of 248 potentially disease-causing or carrier mutations missed by standard testing 
strategies, 99 of which were identified with high SpliceAI scores. Of the 99 high scoring variants, 40 were 
present in individuals without a clear molecular diagnosis from diagnostic testing, and six were present in 
a disease-causing state. For example, we identified high scoring novel homozygous intronic variants in 
MYO7A, NM_000260.3:c.6559-9T>A (SpliceAI=0.9539), and in CERKL, NM_001030311.2:c.1238-10T>G 
(SpliceAI=0.8558), in individuals with Usher syndrome and retinitis pigmentosa and without clear 
molecular diagnoses, respectively. Ninety-three of the high scoring synonymous, splice region and intronic 
variants represented new potential carrier findings. 

We identified 177 missense variants with a SpliceAI score >0.2, only 13 of which had been reported 
through diagnostic testing as ‘pathogenic’ or ‘likely pathogenic’ due to known disruption to splicing (Table 
4). Thirty-seven of the prioritized missense variants had been clinically reported but analysis through 
SpliceAI highlighted or further supported that the pathogenic mechanism underpinning disease onset 
could be splicing disruption. 127 variants were newly prioritized missense variants, 66 of which were 
present in individuals without a clear molecular diagnosis after standard diagnostic testing, although only 
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16 of these variants had a high SpliceAI score. Forty-five missense variants with a score >0.2 were present 
in a disease-causing state, with a further 132 variants present as potential carrier findings. 

Identification	of	new	or	clarified	molecular	diagnoses	as	a	result	of	SpliceAI	integration	
We assessed the overall impact that the integration of SpliceAI would have in this large diagnostic cohort 
through the identification of new and clarified variants. In total we identified 466 variants in 407 
individuals which had not been previously highlighted as a splicing mutation. Of the 407 individuals with 
new or clarified variants, 227 (56%) had clear/potential molecular diagnoses identified from diagnostic 
testing and 180 (44%) had not received a molecular diagnosis.  

84 of the 466 new or clarified variants were present in a disease-causing state, including 9 in genes 
associated with X-linked disorders, 11 with dominant disorders and 64 with recessive disorders (16 
homozygous, 48 compound heterozygous). These variants were present in 81 individuals, including 20 
without a clear molecular diagnosis identified from diagnostic testing. In 64 individuals, the splicing variant 
was included on the clinical report as a potential but unconfirmed cause of disease, 29 of these variants 
were missense variants. 373 of the 466 variants were potential carrier findings in recessive genes, and 9 
were potential carrier findings in X-linked genes.  

Taken together, our analyses prioritized 758 variants in 646 individuals (23% of the cohort). 62% of the 
prioritized variants (466/758) were new or clarified variants, representing altered analysis of variants 
identified in 15% of the 2783 individuals. Such variants require functional investigation to establish precise 
effects on splicing and protein synthesis, but could account for new or refined molecular diagnoses in 81 
individuals. 
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Discussion	
Interpreting splicing variants has been an active area of genetics research for decades.16,30 As a result, a 
number of motifs essential for splicing are known,31,32 variants disrupting the normal splicing process are 
well documented,19,33 and targeted treatments are emerging.34,35 However, expanding splicing mutation 
analysis approaches to whole genome sequencing and NGS datasets in the context of routine clinical 
investigation remains significantly limited. The objective of this study was to develop a clinically applicable 
framework for the prioritization and functional assessment of variants impacting splicing in the context of 
monogenic disease. In this regard, we compared the performance of a number of in-silico splicing tools to 
establish methods to efficiently prioritize variants disrupting splicing, and we validated the use of a cell 
based methodology for variant functional interrogation within patient clinical pathways. To assess the 
potential impact of incorporating variant prioritization strategies into clinically accredited diagnostic 
genomic testing, we expanded our in-silico investigations to a large cohort of individuals with rare disease. 
Overall, we demonstrate that utilizing defined score thresholds for a machine learning splicing prediction 
algorithm, SpliceAI,20 enables the efficient identification of variants which disrupt splicing (86% PPV), and 
would improve clarity in the routine clinical analysis for 15% of individuals undergoing diagnostic testing. 
While our analyses underpin improvements to diagnostic services and the clinical management of 
individuals, we encountered a number of notable limitations. 

Complexity	defining	appropriate	test	variants	for	comparative	assessments	of	in-silico	
splicing	tools	
There are significant limitations associated with comparing in-silico variant prioritization approaches, 
including information leakage, a concept in machine learning where test datasets become contaminated 
with data from original training datasets. Information leakage inhibits the use of a pure and unbiased 
dataset to compare performance across tools. To overcome this obstacle we ascertained clinically relevant 
variants in real-time, most of which were absent from both mutation and population datasets (Table 1). 
While this dataset is relatively small, it enabled a fair and unbiased comparison across all of the in-silico 

tools assessed in this study. For three of the in-silico tools we also compared their performance for 
relevant disease genes, by assessing their capability to distinguish known splicing mutations from common 
variants. Significantly, we demonstrated that SpliceAI outperformed other in-silico splicing tools through 
both of these comparative analysis strategies, and that SpliceAI outperformed a consensus approach to 
variant prioritization (Table 2; Figure 3). 

Another limitation of comparative approaches for splicing variants is the capability to segregate 
performance assessments for different categories of splicing mutations. In theory, variants could be sub-
divided by their pathogenic mechanism, their effect on pre-mRNA splicing, by their predicted molecular 
consequence or by the location of the variant with respect to known splicing motifs. However, splicing 
mutations are often considered as a single class of variants and are therefore highly susceptible to the 
over-prioritization of in-silico tools to identify canonical splice site mutations, which represent the 
majority (~70%) of known splicing mutations.19,24,33 Recent studies have begun to categorize variants by 
location or expected effect and have demonstrated variable performances of in-silico splicing tools 
outside of the immediate splice region.20,22 In this study we show that while SpliceAI performs well for 
canonical splice site mutations (Table 4; Figure 4), we can also utilize SpliceAI as an analysis strategy to 
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effectively prioritize intronic, missense and synonymous variants, including variants which led to new 
molecular diagnoses (Table 3). Interestingly, we prioritized 177 missense mutations within our large 
diagnostic cohort as potentially ‘disruptive’ to splicing (Table 4), reemphasizing earlier observations that 
splicing disruption is a significant pathogenic mechanism associated with missense mutations.24,36-38 
Although we have been able to identify deeply intronic cryptic splice site mutations through the described 
techniques (Box 1, Case Example), an extensive assessment of whole genome sequencing datasets is 
required to comprehensively assess the success of SpliceAI and other in-silico splicing tools in this regard.  

Lessons	learnt	from	establishing	a	cell	based	framework	for	the	functional	investigation	of	
prioritized	variants	
We performed functional investigations to determine the precise impact of variants on splicing and 
predicted the impact on protein synthesis. In two cases we were able to directly extract RNA from patient 
samples. However, in the remaining 19 cases we were either unable to assess relevant RNA profiles from 
peripheral blood or LCLs, or unable to obtain additional samples for the referred patient. We therefore 
assessed the effects of prioritized variants within these regions through the utilization of minigene assays, 
a cell based technique which can be designed to insert bespoke genomic regions from patient DNA 
templates into a mammalian expression vector to assess differences in RNA transcripts produced from 
fragments containing wild-type and variant sequences, respectively. A limitation of minigene assays is the 
capability of such techniques to replicate in-vivo gene expression profiles. Indeed, splicing machinery may 
be influenced by cell-/tissue-specific factors or by genomic regions outside of the region inserted into the 
minigene vector, and variants may have pathogenic impacts on gene expression and/or regulation 
without any detrimental impact on splicing.10,17,39 Such factors are outside of the scope of the assays 
performed in this study, and therefore, whilst we calculate NPVs for each of the variant prioritization 
strategies, future investigations may uncover pathogenic roles for variants reported here. Despite these 
limitations, we have validated the use of a customizable minigene assay within real-time clinical 
investigations and successfully identified variants causing aberrant splicing. In the absence of appropriate 
patient samples for RNA investigation, this is a critical tool for clinical variant investigation.  

Significantly, we demonstrate a range of functional consequences on mRNA splicing as a result of 
disruption to canonical splice sites, including (i) exon skipping, (ii) intron inclusion, (iii) exon truncation 
(Figure 2a), (iv) displacement of the reading frame (Figure 2b), and (v) a combination of events (Table 3). 
These observations demonstrate that the precise effect of splicing variants is an important piece of 
evidence for consideration during clinical variant interpretation, and may in the future lead to refinements 
in the exact targeted treatment appropriate for these individuals.34,40 Hence, while we clearly 
demonstrate that in-silico splicing analyses can prioritize and guide the identification of new clinically-
relevant variants (Table 4), functional assessment of variant effect remains an important requirement to 
ensure clarity in clinical reporting and appropriate patient management.  

Significant	impact	of	incorporating	SpliceAI	scores	into	routine	clinical	analysis	
We were able to demonstrate that 13 variants caused aberrant splicing, and in so doing, provided new 
molecular diagnoses for 14 individuals (Table 3). Delineating the cause of disease through novel variant 
interpretation strategies can lead to altered clinical management.41 In this study, we elucidated that 
SCN2A c.2919+3A>G underpinned the molecular diagnosis for an individual with severe epilepsy and 
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learning difficulties (Figure 2), and as a result, modified the use of medication to control seizures in the 
referred individual.42  

To establish the impact of our variant prioritization strategies in everyday clinical practice, we analyzed 
variants identified in a large cohort of 2783 individuals with rare ophthalmic disease displaying significant 
genetic and clinical heterogeneity. Overall, we prioritized 379 variants which had evaded prioritization 
through standard diagnostic testing strategies and provided additional support for pathogenicity for 89 
variants. These findings reflected altered clinical analysis in 15% of individuals, and could lead to new or 
refined molecular diagnosis in up to 81 individuals. Whilst this represents a significant improvement to 
molecular diagnostic services, we expect that the true impact of such analysis strategies will be more 
pronounced. The targeted NGS approaches employed within this large cohort ignore deeply intronic 
regions of genes, and as shown here (Box 1, Case Example) and in other studies,43-47 variation within these 
regions can cause aberrant splicing through the production of novel cryptic exons. We expect, therefore, 
that extending variant prioritization approaches to large cohorts of individuals with whole genome 
sequencing datasets will enable the identification of clinically relevant deeply intronic variants.  

In summary, the recent availability of thousands of genomic datasets within healthcare amplifies the 
current limitations in interpreting variation within the non-coding genome. Our findings demonstrate the 
opportunity to expand bioinformatics analysis to the pre-mRNA regions of known disease genes and 
provide immediate increases to diagnostic yield. Moreover, we demonstrate a requirement to functionally 
assess variant impact on pre-mRNA splicing as the delineation of the precise effects may be important 
considerations for variant pathogenicity. Importantly, variants which impact mRNA expression are 
amenable to targeted therapy, e.g. antisense oligonucleotides,34 and have been proven to be effective in 
cell lines for some of the disorders investigated here.40,47 The prioritization and identification of 
pathogenic variants impacting splicing is therefore an important consideration for diagnostic services and 
for the development of new targeted treatments. Overall, we present an in-silico and functional analysis 
framework for the incorporation of splice variant assessment that is applicable across monogenic 
disorders. 
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Variant Gene Clinical Diagnosis Testing strategy 

NM_000350.2:c.5584+6T>C ABCA4 Macular dystrophy Gene panel 

NM_000180.3:c.3043+5G>A GUCY2D Leber Congenital Amaurosis Genome 

NM_000283.3:c.2130-15G>A PDE6B Retinitis Pigmentosa Genome 

NM_006343.2:c.2486+6T>A MERTK Severe rod cone dystrophy Gene panel 

NM_001040142.1:c.2919+3A>G SCN2A Severe Epilepsy Gene panel 

NM_015600.4:c.867+5G>A ABHD12 Usher Syndrome Gene panel 

NM_005208.4:c.213C>T CRYBA1 Bilateral lamellar cataracts Gene panel 

NM_001277115.1:c.6547-963G>A DNAH11 Primary Ciliary Dyskinesia Genome 

NM_000492.3:c.3874-4522A>G CFTR Cystic Fibrosis Genome 

NM_001034853.1:c.247G>T RPGR Retinitis Pigmentosa Gene panel 

NM_001034853.1:c.1754-3G>C RPGR Retinitis Pigmentosa Gene panel 

NM_000256.3:c.1224-21A>G MYBPC3 Hypertrophic Cardiomyopathy Gene panel 

NM_002420.5:c.899+29G>A TRPM1 Congenital Stationary Night Blindness Gene panel 

NM_002335.2:c.1413-7T>A LRP5 Familial Exudative Vitreoretinopathy Gene panel 

NM_015629.3:c.528-38C>T PRPF31 Rod-cone dystrophy Gene panel 

NM_024649.4:c.592-21A>T BBS1 Retinitis Pigmentosa Gene panel 

NM_206933.2:c.14343+36C>G USH2A Retinitis Pigmentosa Gene panel 

NM_001142800.1:c.6571+4558A>G EYS Retinitis Pigmentosa Genome 

NM_001098.2:c.526-642C>T ACO2 Syndromic, global developmental delay Genome 

NM_020366.3:c.491-386C>T RPGRIP1 Cone Dysfunction Syndrome Genome 

NM_006204.3:c.1072-11T>C PDE6C Cone Dysfunction Syndrome Genome 

Table 1. Clinical indications and testing strategies for individuals with ‘variants of uncertain significance’. All variants subsequently 

underwent in-silico and functional splicing analysis. 
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Variant Gene Functional Assessment spliceAI (0.2) SPIDEX (5) S-CAP ** CADD ** MaxEntScan 
(1 & 15%) 

Consensus 

NM_000350.2:c.5584+6T>C ABCA4 
disrupts-splicing 

0.4477 -0.23 
a 0.999999996 

a 1.759601 
-1.3 3/5 

NM_000180.3:c.3043+5G>A GUCY2D 
disrupts-splicing 

0.9357  -22.61 
a 0.34201625 

a 2.462535 
-7.6 4/5 

NM_000283.3:c.2130-15G>A PDE6B 
disrupts-splicing 

0.2578  -0.62 
b 0.44071906 

b 0.210132 
-1.8 / +2.1 4/5 

NM_006343.2:c.2486+6T>A MERTK 
disrupts-splicing 

0.6627 -5.72 
a 0.038804828 

a 1.843903 
-5.1 4/5 

NM_001040142.1:c.2919+3A>G SCN2A 
disrupts-splicing 

0.5729 -5.17 
a 0.018492794 

a 2.38938 
-4.0 4/5 

NM_015600.4:c.867+5G>A ABHD12 
disrupts-splicing 

0.7638 -2.28 
a 0.029735061 

a 1.405338 
0 2/5 

NM_005208.4:c.213C>T CRYBA1 
disrupts-splicing 

0.7194 -1.99 
a 0.002633554 

a 2.18328 
-0.8 / +6.5 2/5 

NM_001277115.1:c.6547-963G>A DNAH11 
disrupts-splicing 

0.6670 0 
0 

0.167332 +4.7 2/5 

NM_000492.3:c.3874-4522A>G CFTR 
disrupts-splicing 

0.03 0 
0 

-0.011601 +5.1 1/5 

NM_001034853.1:c.247G>T RPGR 
disrupts-splicing 

0.6845 
0 0 2.800572 -5.3 3/5 

NM_001034853.1:c.1754-3G>C RPGR 
disrupts-splicing 

0.4239 
0 0 1.059669 -4.2 3/5 

NM_000256.3:c.1224-21A>G MYBPC3 
disrupts-splicing 0.8994 0 b 0.024229643 b 0.131004 +0.1 3/5 

NM_002420.5:c.899+29G>A TRPM1 
disrupts-splicing 0.5017 0 c 0.932163935 c 0.210325 +4.2 3/5 

NM_006204.3:c.1072-11T>C PDE6C 
no-splicing-disruption 0.0585 -0.45 b 0.021913396 b 1.462016 -1.1 2/5 

NM_001098.2:c.526-642C>T ACO2 
no-splicing-disruption 0 0 0 -0.356446 0 0/5 

NM_001142800.1:c.6571+4558A>G EYS 
no-splicing-disruption 0 0 0 -0.058111 0 0/5 

NM_015629.3:c.528-38C>T PRPF31 
no-splicing-disruption 0.0031 -0.33 b 0.001852166 b -0.219718 +6.7 1/5 

NM_024649.4:c.592-21A>T BBS1 
no-splicing-disruption 0.204 0 b 0.041158564 b 0.439125 0 3/5 

NM_020366.3:c.491-386C>T RPGRIP1 
no-splicing-disruption 0 0 0 0.140272 0 0/5 

NM_206933.2:c.14343+36C>G USH2A 
no-splicing-disruption 0 0 b 0.03080452 b -0.363279 0 1/5 

NM_002335.2:c.1413-7T>A LRP5 
no-splicing-disruption 0.3578 0 b 0.02037499 b 0.772416 1.6 4/5 

 

Summaries:  

13 positives 
8 negatives 

PPV = 86% 
NPV = 86% 

PPV = 100% 
NPV = 44% 

PPV = 67% 
NPV = 44% 

PPV = 57% 
NPV = 36% 

PPV = 85% 
NPV = 75% 

PPV = 82% 
NPV = 60% 

Table 2. In-silico splicing scores calculated for ‘variants of uncertain significance’ functionally investigated to assess impact on pre-mRNA splicing. 

Scores unavailable from tools were arbitrary given a value of 0. The thresholds for SpliceAI was set at 0.2, and for SPIDEX at 5/-5, as per suggestions of 

the authors. The high-sensitivity thresholds utilized for S-CAP and CADD were categorized by region, S-CAP: (a)5’extended=0.005, (b)3’intronic=0.006, 
(c)5’intronic=0.006, exonic=0.009; CADD: (a)5’extended=7.39, (b)3’intronic=0.0964, (c)5’intronic=0.574, exonic=0.390. Grey boxes indicate that the variant 

exceeds the applied in-silico splicing score and was interpreted as ‘disruptive’. PPV=positive predictive value; NPV=negative predictive value. 
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Variant Gene Assay Observed mRNA effect Predicted protein effect Status 
(ClinVar/gnomAD*) 

NM_000350.2:c.5584+6T>C ABCA4 minigene 

single exon 
exon skip 
NM_000350.2:r.5461_5584del 

frameshift 
p.(Thr1821Valfs*13) 

VUS/novel 

 

NM_000180.3:c.3043+5G>A GUCY2D minigene 

2 exons 
single exon skip 
NM_000180.3:r.2945_3043del 

dual exon skip 
NM_000180.3:r.2945_3138del 

intron inclusion 
NM_000180.3:r.3043_3044ins3043+1_3043+85 

inframe deletion 

p.(Gly982_Pro1015delinsAla) 

frameshift 
p.(Pro983Glnfs*24) 

frameshift 
p.(Pro1015Hisfs*85) 

novel/novel 

NM_000283.3:c.2130-15G>A PDE6B minigene 

3 exons 
single exon skip 
NM_000283.3:r.2130_2193del 

dual exon skip 

NM_000283.3:r.2130_2268del 

frameshift 
p.(Ala711Serfs*27) 

frameshift 
p.(Met710Ilefs*3) 

novel/0.00004157 

NM_006343.2:c.2486+6T>A MERTK minigene 

single exon  

cryptic splice site, exon truncation & intron inclusion 
NM_006343.2:r.2350_2486delins2454_2486+111 

 

frameshift 
p.(Trp784Valfs*10) 

novel/novel 

NM_001040142.1:c.2919+3A>G SCN2A minigene 

single exon 
exon skip 
NM_001040142.1:r.2563_2919del 

cryptic splice site, exon truncation 

NM_001040142.1:r.2563_2710del 

inframe deletion 

p.(Leu855_Val973del) 

frameshift 
p.(Leu855Valfs*30) 

novel/novel 

NM_015600.4:c.867+5G>A ABHD12 minigene 

single exon 
exon skip 
NM_015600.4:r.788_867del 

frameshift 
p.(Glu263Aspfs*9 

novel/novel 

NM_005208.4:c.213C>T CRYBA1 minigene 

single exon 
exon truncation 

NM_005208.4:r.212_215del 

frameshift 
p.(Gly71Alafs*55) 

novel/0.00000914  

NM_001277115.1:c.6547-963G>A DNAH11 blood-

targeted 

cryptic splice site, pseudo exon inclusion 
NM_001277115.1:r.6546_6547ins6547-999_6547-962 

frameshift 
p.(Ile2183Lysfs*15) 

novel/novel 

 

NM_000492.3:c.3874-4522A>G CFTR LCL-targeted cryptic splice site, pseudo exon inclusion 
NM_000492.3:r.3873_3874ins3874-4521_3874-4397 

stop gained 
p.(Gln1291_Lys1292insCys*) 

VUS/novel 

NM_001034853.1:c.247G>T RPGR minigene 

single exon 
exon skip 

NM_001034853.1:r.155_247del 

inframe deletion 

p.(Gly52_Lys82del) 

novel/novel 

NM_001034853.1:c.1754-3G>C RPGR minigene 

single exon 
orf15a 

exon skip 
NM_000328.2:r.1754_1905del 

NM_001034853.1:r.1754_3459del 

frameshift / truncation 
p.(Glu585Glyfs*3) 

p.(Glu585_Lys1152delins14) 

novel/novel 

NM_000256.3:c.1224-21A>G MYBPC3 minigene 

single exon 
cryptic splice site, intron inclusion 
NM_000256.3:r.1223_1224ins1223+1_1223+20 

frameshift 
p.(Lys409Glyfs*20) 

novel/novel 

NM_002420.5:c.899+29G>A TRPM1 minigene 

single exon 
cryptic splice site, intron inclusion 
NM_002420.5:r.899_900ins899+1_899+30 

stop gained 
p.(Ile301*) 

novel/0.00002516 

Table 3. Molecular consequences of variants determined to disrupt splicing through functional assessment. The clinical phenotypes of 

individuals carrying these variants are described in Table 1. 

 

*gnomAD control variant allele frequency. Accessed in September 2019. 
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Table 4. Number of variants identified above specific thresholds for SpliceAI according to variant consequence and patient outcome from 

routine diagnostic testing strategies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 Number of variants exceeding SpliceAI threshold scores: 
SpliceAI score threshold: 
Total number of variants 

>0.2 
(758 variants) 

>0.5 
(409 variants) 

>0.9 
(193 variants) 

Patient status after dx 
testing: 

Solved Unsolved Solved Unsolved Solved Unsolved 

Canonical splice site 
previously reported 

 

142 

 

43 

 

140 

 

41 

 

111 

 

31 

 

Splice region, synonymous, intronic      

previously reported 
clarified 
newly identified 

30 

34 

139 

11 

16 

109 

18 

27 

59 

9 

11 

40 

1 

6 

13 

3 

2 

9 

 

Missense 
previously reported 
clarified 
newly identified 

 

13 

24 

61 

 

0 

13 

66 

 

8 

11 

10 

 

0 

6 

16 

 

4 

3 

6 

 

0 

1 

1 

       

Nonsense 
previously reported 

 

46 

 

7 

 

12 

 

0 

 

2 

 

0 

       

UTR regions 
previously reported 

 

1 

 

3 

 

1 

 

0 

 

0 

 

0 
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Figure 1. Variant prioritization strategy overview, illustrating the best performing strategy to prioritize 
variants expected to impact splicing. WGS, whole genome sequencing; WES, whole exome sequencing; 
NGS, next-generation sequencing; PPV; positive predictive value; NPV; negative predictive value. 
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Figure 2. Results from in-vitro minigene assays demonstrating multiple consequences as a result of 
variants proximal to the canonical splice site. Left, gel electrophoresis snapshots of cDNA products 
amplified from primers designed for contol exons within the minigene (exon 1 & exon 2). All prominent 
bands were cut out and Sanger sequenced. Right, solid red blocks illustrate alignment of sequenced cDNA 
transcripts to features within the minigene vector: control exons (grey boxes) and inserted exons (purple 
boxes). (a) SCN2A c.2919+3A>G, showing complete exon exclusion and exon truncation in minigene 
vectors containing the c.2919+3A>G variant (top two alignments) and normal splicing in minigene vectors 
containing the WT sequence (bottom alignment). (b) MERTK c.2486+6T>A, showing a shifting of the exon 
included in the reading frame in minigene vectors containing the c.2486+6T>A variant (top alignment) and 
normal splicing in minigene vectors containing the WT sequence (bottom alignment). 

 

`
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Figure 3. Receiver Operating Characteristic (ROC) curves comparing the performance of in-silico splicing tools for variants in known inherited 
retinal disease genes. Genes of interest are listed in TableS1. True negatives (TN) were defined as variants present at >2% frequency in gnomAD. 
True positives (TP) were ‘splicing’ mutations available through HGMD professional. (a) Matched variants, only variants which were scored by the 
prediction algorithm were considered (Splice AI, TN=1329, TP=1397; SPIDEX, TN=1454, TP=1335; CADD, TN=1915, TP=1436). (b) Arbitrary values, 
variants not scored by the prediction algorithm were arbitrarily scored as 0 (TN=1916, TP=1457). (c) Communal pool, only variants scored by all 
three prediction algorithms were considered (TN=1068,TP=1325). In all three situations SpliceAI outperformed SPIDEX and CADD to distinguish 
true negatives from true positives, with an optimal threshold score of 0.15. AUC, area under the curve; Spec, specificity; Sens, sensitivity. 
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Figure 4. Distribution of spliceAI scores for prioritized variants identified in 2783 individuals 
undergoing diagnostic testing for inherited retinal disease. (a) real-time cases with functional 
investigations indicated, and numbers of variants within large cohort separated by inheritance 
patterns of associated genes. (b) distribution of scores by variant consequences. Vertical red intersect 
indicates the spliceAI score threshold of 0.2. 
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Figure 5. DNAH11 c.6547-963 G>A. (A) Family pedigree showing the proband and her unaffected father 
and mother who carry heterozygous alleles of DNAH11 c.8610C>G and c.6547-963G>A, respectively. (B) 
Gel electrophoresis results for the proband, visualized using an Agilent 2200 Tapestation. RNA was reverse 
transcribed after extraction from whole blood and then amplified using primers specific to exons 39 and 
40 of the DNAH11 gene (NM_001277115.1).  The caption shows two distinct cDNA amplicons in the 
proband sample separated by ~40 base pairs. (C) Integrated Genomic Viewer snapshot of the alignment 
of sequencing products to the human reference genome (GRCh37) showing the introduction of a 38 base 
pair cryptic exon (chr7:21,746,318-21,746,355) as a result of c.6547-963 G>A. The top and bottom bands 
were sequenced after being cut from an agarose gel electrophoresis. (D) Impact of the cryptic exon on 
the translated protein. The cryptic exon shifts the reading frame and is expected to introduce a premature 
stop codon in exon 40, resulting in premature termination of protein synthesis, p.Ile2183Lysfs*15. Amino 
acids (AAs) are provided with single letter notations, with X indicating a stop codon. Vertical intersects 
indicate transition of the cDNA to the adjacent exon. 
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Box	1	-	Case	Example		
The proband (Figure 5) was diagnosed in childhood with bronchiectasis, she is currently 54 years of age. 
Nasal nitric oxide levels were extremely low at 4 parts per billion (ppb, normal range =<25ppb) consistent 
with a diagnosis of Primary Ciliary Dyskinesia (PCD).48 Three examinations of the proband’s cilia with 
electron microscopy (EM) showed a significant proportion of static and dyskinetic cilia with a high ciliary 
beat frequency: 20.2Hz (95%CI=19.8-20.5Hz); 22.0Hz (95%CI=20.1-23.2Hz); and 20.1Hz (95%CI=19.8–
20.5Hz). EM histology showed normal dynein arms and microtubules with no ciliary disorientation, and 
conical ciliated protrusions were observed from epithelial cells. These findings are consistent with 
mutations in DNAH11, a recessive cause of PCD.49 Previous genetic testing identified a heterozygous 
nonsense mutation in DNAH11, p.Tyr2870Ter. 

We generated whole genome sequencing datasets through the 100,000 genomes project. Analysis of 
variants was restricted to the genomic region of DNAH11 (chr7:21,582,833-21,941,457, GRCh37) and 
prioritized a candidate non-coding mutation, DNAH11 c.6547-963G>A. The variant is absent from 
gnomAD, ClinVar, HGMD and other samples in the 100,000 genomes project; it was determined to be a 
‘variant of uncertain significance’. 

We assessed in-silico splicing scores for DNAH11 c.6547-963G>A, and determined that it was ‘disruptive’ 
according to thresholds applied to SpliceAI and MaxEntScan scores (Table 2). The variant had a high score 
from SpliceAI (0.67), but it was absent from regions of consideration for SPIDEX and S-CAP.  

We performed targeted cDNA amplification from RNA extracted from whole blood (Figure 5). These 
analyses demonstrated aberrant splicing as a result of c.6547-963G>A, resulting in cryptic exon inclusion 
and the introduction of a premature stop codon, p.Ile2183Lysfs*15. The variant was determined to be 
‘likely pathogenic’. Segregation analysis demonstrated that p.Tyr2870Ter and p.Ile2183Lysfs*15 are 
present in a compound heterozygous state in the proband (Figure 5), and were reported as the cause of 
PCD. 
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Table S1. HGNC approved gene symbols for 180 genes known as a cause of inherited retinal disease. 

ABCA4 C1QTNF5 CNGA1 GNAT1 IQCB1 NEK2 PEX7 RGS9 TEAD1 
ABHD12 C21orf2 CNGA3 GNAT2 ITM2B NMNAT1 PHYH RHO TIMP3 
ACBD5 C2orf71 CNGB1 GNPTG KCNJ13 NPHP1 PITPNM3 RIMS1 TMEM237 
ADAM9 C8orf37 CNGB3 GPR125 KCNV2 NPHP3 PLA2G5 RLBP1 TOPORS 
ADAMTS18 CA4 CNNM4 GPR179 KIAA1549 NPHP4 PRCD ROM1 TRIM32 
AHI1 CABP4 CRB1 GPR98 KIF11 NR2E3 PROM1 RP1 TRPM1 
AIPL1 CACNA1F CRX GRK1 KLHL7 NRL PRPF3 RP1L1 TSPAN12 
ALMS1 CACNA2D4 CSPP1 GRM6 LCA5 NYX PRPF31 RP2 TTC8 
ARL2BP CAPN5 CYP4V2 GUCA1A LRAT OAT PRPF4 RP9 TUB 
ARL6 CC2D2A DFNB31 GUCA1B LRIT3 OFD1 PRPF6 RPE65 TULP1 
BBIP1 CDH23 DHDDS GUCY2D LRP5 OTX2 PRPF8 RPGR UNC119 
BBS1 CDH3 DTHD1 HARS LZTFL1 PANK2 PRPH2 RPGRIP1 USH1C 
BBS10 CDHR1 EFEMP1 HMX1 MAK PCDH15 RAB28 RPGRIP1L USH1G 
BBS12 CEP164 ELOVL4 IDH3B MERTK PCYT1A RAX2 RS1 USH2A 
BBS2 CEP290 EMC1 IFT140 MFRP PDE6A RBP3 SAG VCAN 
BBS4 CERKL EYS IMPDH1 MKKS PDE6B RBP4 SDCCAG8 VPS13B 
BBS5 CHM FAM161A IMPG1 MKS1 PDE6C RD3 SEMA4A WDPCP 
BBS7 CIB2 FLVCR1 IMPG2 MVK PDE6G RDH12 SLC24A1 WDR19 
BBS9 CLN3 FSCN2 INPP5E MYO7A PEX1 RDH5 SNRNP200 ZNF423 
BEST1 CLRN1 FZD4 INVS NDP PEX2 RGR SPATA7 ZNF513 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 26, 2019. ; https://doi.org/10.1101/781088doi: bioRxiv preprint 

https://doi.org/10.1101/781088
http://creativecommons.org/licenses/by/4.0/

