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Abstract 

During embryonic development, cells must navigate through diverse three-dimensional 
environments robustly and reproducibly. The zebrafish posterior lateral line primordium (PLLp), 
a group of approximately 120 cells which migrates from the otic vesicle to the tip of the tail, 
spearheading the development of the lateral line sensory system, is an excellent model to study 
such collective migration in an in vivo context. This system migrates in a channel formed by the 
underlying horizontal myoseptum and somites, and the overlying skin. While cells in the leading 
part of the PLLp are flat and have a more mesenchymal morphology, cells in the trailing part 
progressively reorganize to form epithelial rosettes, called protoneuromasts. These epithelial 
cells extend basal cryptic lamellipodia in the direction of migration in response to both 
chemokine and FGF signals. In this study, we show that, in addition to these cryptic 
lamellipodia, the core epithelial cells are in fact surrounded by a population of motile cells which 
extend actin-rich migratory processes apposed to the overlying skin. These thin cells wrap 
around the protoneuromasts, forming a continuous sheath of cells around the apical and lateral 
surface of the PLLp. The processes extended by these cells are highly polarized in the direction 
of migration and this directionality, like that of the basal lamellipodia, is dependent on FGF 
signaling. Consistent with interactions of sheath cells with the overlying skin contributing to 
migration, removal of the skin stalls migration. However, this is accompanied by some surprising 
changes. There is a profound change in the morphology of the sheath cells, with directional 
superficial lamellipodia being replaced with the appearance of undirected blebs or ruffles. 
Furthermore, removal of the skin not only affects underlying lamellipodia, it simultaneously alters 
the morphology and behavior of the deeper basal cryptic lamellipodia, even though these cells 
do not directly contact the skin. Directional actin-rich protrusions on both the apical and basal 
surface and migration are completely and simultaneously restored upon regrowth of the skin 
over the PLLp. We suggest that this system utilizes a circumferential sheath of motile cells to 
allow the internal epithelial cells to migrate collectively in the confined space of the horizontal 
myopseptum and that elastic confinement provided by the overlying skin is essential for 
effective collective migratory behavior of primordium cells. 
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Introduction 
 
Collective cell migration is fundamental for embryonic development1 and its dysregulation during 
morphogenesis is a key contributor to many developmental disorders2. Recent studies have 
additionally placed collective cell migration at the heart of metastasis of certain types of 
cancer3,4. These physiological and pathogenic contexts are linked by the necessity for cells to 
migrate, often through diverse 3D environments, while maintaining group cohesion and 
directionality. 
 
In recent years, the Zebrafish posterior lateral line primordium (PLLp) has emerged as a 
powerful model for studying a wide range of cellular and developmental processes, including 
cell-cell signaling, tissue patterning, and collective migration 2,5,6. This group of 100-150 cells is 
initially specified adjacent to the otic vesicle and migrates caudally down the length of the 
embryo over the course of ~24 hours. As this primordium migrates, cells in the tailing domain 
are progressively reorganized into apically-constricted epithelial rosettes, each cradling a central 
sensory hair cell progenitor7. Cells in the trailing-most rosette in the PLLp eventually lose the 
ability to sustain collective migration and are deposited by the migrating primordium. These 
deposited clusters will go on to develop into the mature sense organs of the lateral line, a 
sensory system that detects water flow about the animal 8. Cells in the PLLp that are not 
incorporated into these epithelial rosettes are deposited as a continuous stream of so-called 
“interneuromast cells”, which lie between the sense organs9,10. 
 
Migration of the PLLp is guided by a unidirectional stripe of a chemokine, Cxcl12a, secreted by 
muscle pioneer cells lying along the horizontal myoseptum11,12. Directional interpretation of this 
uniform stripe is accomplished by the expression of two chemokine receptors in the PLLp. The 
leading two-thirds of the PLLp express the chemokine receptor Cxcr4b, which can bind Cxcl12a 
and activate productive G-protein coupled signaling to drive cell migration. The trailing-most 
cells, on the other hand, express the Cxcr7b chemokine receptor, which can bind Cxcl12a but 
cannot activate G-protein coupled signaling and is thought to act as a sink for ligand 12–14. 
Together, these two receptors generate a tissue-scale gradient of Cxcl12a availability along the 
length of the primordium which drives directional migration 15,16, and provides an inherent polarity 
in the competence of cells to transduce the chemokine signal. 
 
In cell transplantation experiments, basal cryptic lamellipodia are observed extending from PLLp 
cells in the direction of migration 14,17, a common strategy for migrating epithelial cells18. Crucially, 
these lamellipodia are observed extending from both leading mesenchymal cells and trailing 
epithelial cells14, suggesting that cells along the length of the PLLp contribute to migration. This 
is consistent with recent studies showing that chemokine signaling is necessary along the entire 
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cxcr4b-positive domain to support effective collective migration 19. In addition to chemokine 
signaling, fibroblast growth factor (Fgf) signaling is also required for migration. The polarization 
of these basal migratory protrusions appears to be dependent on active Fgf signaling; their 
polarity is lost upon Fgf receptor inihbition, even when chemokine signaling is unperturbed, and 
this occurs concomitantly with a loss of migratory ability17. Furthermore, experiments with 
isolated PLLp fragments generated by laser ablation suggest that Fgf could act as a direct 
migratory cue 20. These two systems, and potentially others, act together to govern collective 
migration of the PLLp. 
 
Less studied, however, is the way in which the PLLp interacts with surrounding tissue as it 
migrates and what influence surrounding tissue might have on migration and morphogenesis. 
Aman et al showed that traversing underlying intersomitic boundaries does not influence the 
deposition of neuromasts, as the lateral line primordium does not deposit more closely spaced 
neuromasts in trilobyte mutants, which have more densely packed somites21. Other studies 
have shown that the directionality of migration does not rely on any extrinsic cues from the 
surrounding tissue and that directional migration is an autonomous property of the primordium 
itself14. However, the primordium has a dramatic effect on the tissue through which it migrates. 
The PLLp migrates along the horizontal myoseptum, between between the underlying somites 
and overlying skin. As it migrates, the skin is displaced upwards and is separated from the 
underlying tissue by the passage of the PLLp, returning rapidly to its original apposition with the 
underlying somites after the passage of the PLLp. 
 
In this study, we focus on the PLLp cells that lie on the apical side of the PLLp, above the apical 
constrictions of the neuromasts, and make extensive contacts with the overlying skin. We show 
that these cells extend directional migratory processes and that the directionality of these 
processes, like that of the basal cryptic lamellipodia is dependent on Fgf signaling. Furthermore, 
we show that mechanically removing the skin prevents PLLp migration, which is subsequently 
recovered when the skin heals back over the PLLp. Loss of the overlying skin disrupts 
polarization of both apical and basal migratory processes. Taken together, these data suggest 
that the PLLp coordinates collective migration by extending lamellipodia both basally, against 
the underlying tissue, and apically, against the skin, and that confinement between the skin and 
underlying somites is essential for PLLp migration.  
 
 

Materials and Methods 

Fish Lines and Embryo Manipulation 

Zebrafish embryos were generated by natural spawning, maintained under standard conditions, 
and staged according to Kimmel et al 22. The following lines were used: Tg(cldnb:lyn-gfp)14, 
TgBAC(cxcr4b:lifeact-gfp)23, TgBAC(cxcr4b:h2a-mcherry)19, Tg(cldnb:lyn-mscarlet), 
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Tg(krt4:dsred)24. For FGF receptor inhibition experiments, embryos were treated with 20μM 
SU5402 (Tocris) 6 hours prior to imaging. For skin removal experiments, embryos were 
embedded in 2% low-melt agarose in Fluorobrite media. Agarose above the PLLp was removed 
with forceps, and a tungsten needle (Roboz surgical instruments) was used to manually remove 
the skin above the PLLp. Following skin removal, embryos were dissected from the agarose and 
re-embedded in 1% low-melt agarose in Fluorobrite for imaging.  
 
For generation of Tg(cldnb:lyn-mscarlet) transgenic fish, the lyn-mscarlet25 DNA sequence was 
codon optimized for zebrafish expression 26 and commercially synthesized. This fragment was 
cloned downstream of the 4.2kb claudinb promoter fragment27, which drives expression in the 
lateral line primordium and periderm, among other tissues. This construct was cloned between 
sites for the Tol1 transposon 28 and 20ng of plasmid DNA was injected with 80ng of tol1 mRNA 
into 1-cell stage zebrafish embryos. Founders were screened by fluorescence for high 
expression in the lateral line primordium. 
 
For generation of chimeric PLLp, we dechorionated embryos at ~2hpf, and placed them in 
embryo media with 100 U/mL penicillin and 0.1mg/mL streptomycin (Roche). When the embryos 
had reached high-sphere stage (~3.5-4hpf), they were placed in individual wells made in 
agarose by a custom-printed mold. An Eppendorf CellTram Vario connected to a glass capillary 
needle with the tip removed at approximately the diameter of an embryonic cell was used to 
gently aspirate cells from the host embryo and place them in the donor embryo. After 
transplantation, embryos were placed in individual chambers of a 48-well plate in embryo 
medium with Penicillin and Streptomycin and grown overnight at 28°C. Embryos were screened 
at 24hpf for expression of the donor transgene in the PLLp. 
 
Time-lapse microscopy, segmentation, and quantification 
 
For time-lapse microscopy, embryos were anesthetized in embryo media containing 600 μM 
MS-222 (Sigma) and mounted in 1% low melt agarose (NuSieve GTG). High-resolution time-lapse 
microscopy of apical protrusions was performed on a Zeiss 880 Airyscan confocal microscope 
using the fast Airyscan mode and processed using the default parameters. Actin rods were 
manually counted and quantified in FIJI29 using sum slice projections of processed Airyscan 
image stacks taken at 5 second intervals at the PLLp-skin boundary. All rods quantified were 
within 4.5 μ m of the basal surface of the skin (for apical protrusions) or within 4.5 μ m of the basal 
surface of the PLLp (for basal protrusions). Bleb fluorescence intensity quantification was 
performed by measuring the intensity of either LifeAct-Gfp or Lyn-mScarlet along the edge of 
the bleb in single confocal slices. Intensities were normalized to that of the first image in the 
blebbing sequence. Retrograde actin flow was quantified by making kymographs along the 
lamellipodia parallel to the direction of flow. 
 
Segmentation was performed in FIJI by generating regions of interest (ROIs) corresponding to 
the membrane outline of each cell, followed by manual validation and, if necessary, 
re-segmentation. These ROIs were converted to 3D models in OBJ format by a macro and 
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models were meshed in Meshlab 2016.12 30 using the screened poisson surface reconstruction 
algorithm31 followed by simplification by quadratic edge collapse decimation. Rendering was 
performed in Blender 2.8 32 using the cycles rendering engine. For long-term timelapse, 
Tg(clbnb:lyn-gfp);TgBAC(cxcr4b:h2a-mcherry) double transgenic embryos at 32hpf were 
embedded in 1% agarose and imaged on a custom DiSPIM33 using a 40X objective after 
removal of overlying agarose. Image registration and joint deconvolution was performed using a 
recently improved pipeline that offers greatly increased processing speed 34. Registration was 
performed using the methods in Guo et al, and for deconvolution we used 10 iterations of 
conventional Richardson-Lucy. Image rotation was performed using TransformJ35 Data analysis 
was performed in Python 3.7 using the SciPy36, Pandas37 and NumPy38 libraries. Plots were 
generated in Python using the Matplotlib 39 and Seaborn 40 libraries. Raw data in CSV format and 
Jupyter notebooks containing all statistical analyses and plots are available at 
https://github.com/chitnislabnih/dallenogare2019 
 

Results 

 
We set about to image the morphology of individual cells in the PLLp by transplanting cells 
labelled with a membrane localized eGfp driven by the cldnb promoter (Tg(cldnb:lyn-egfp)) into 
Tg(cldnb:lyn-mscarlet) transgenic embryos. The resulting chimeric embryos contained 
mosaically labelled primordia, with a small percentage of donor cells expressing 
membrane-localized Gfp while the remaining host-derived cells expressed membrane-localized 
mScarlet (Fig 1A). 
 
In most cases, cells in the trailing domain had the characteristic shape of cells incorporated into 
an epithelial neuromast -- a basally positioned nucleus and a tightly constricted apical domain 
that connects with the apical domains of other neuromast cells to form an apical microlumen 41. 
In a smaller number of cases, cells in the leading mesenchymal domain were labelled. These 
cells had a flat morphology without any clear apical-basal polarity, and extended numerous 
basal membranous protrusions. However, we also observed cells whose cell bodies lie above 
the level of the neuromast apical constrictions. In some cases, these cells were clearly 
connected to the apical constriction a nearby neuromast, and they extended laterally across the 
top of the PLLp and wrapped around the lateral sides (Fig 1B, C). In other cases these 
apical-dwelling cells had no apparent direct connection to the neuromast apical constriction, 
often lying between neuromasts. During the course of a timelapse movie, we observed these 
cells extending multiple broad, flat apical protrusions reminiscent of lamellipodia (Fig 1 D-F, 
Movie S1). These protrusions were extended closely apposed to the basal surface of the skin, 
and their similarity to basal cryptic lamellipodia suggested that they might also contribute to the 
migration of the PLLp. 
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To further characterize this apical population, we performed high resolution imaging of the PLLp 
in Tg(cldnb:lyn-egfp);TgBAC(cxcr4b:h2a-mcherry) double transgenic fish, in which both the 
membranes and nuclei of the lateral line primordium are labelled (Fig 2A-D), using DiSPIM 
microscopy to generate an image with isotropic resolution. While the cells that make up the core 
of the neuromast have a basally positioned nucleus, the nuclei of these overlying cells resided 
apically, often above the level of the apical constriction (arrowheads in Fig 2B, C), and directly 
underneath the skin (Fig 2D). Slicing this image along the coronal plane shows this population 
of cells occupying a position above the apical constrictions of the neuromast cells (Fig 2B), and 
sagittal re-sectioning revealed a series of nuclei occupying a circumferential position around the 
protoneuromast (Fig 2C). 
  
To determine the distribution of these cells along the anterior-posterior extent of the PLLp, we 
mapped the position of all cells whose nuclei resided above the level of the closest neuromast 
apical constriction and were directly apposed to the overlying skin (red in Fig 2E, F). We then 
compared their distribution with the distribution of all of the cells of the PLLp (grey in Fig 2E, F) 
in both single primordia (for example see Fig 2E) and when PLLp were aligned based on the 
position of the most leading neuromast and the positions aggregated (Fig 2F. These data show 
that these cells lie above the fully formed neuromasts in the PLLp, but their frequency 
decreases toward the back of the PLLp, where the trailing-most neuromast is preparing to 
deposit. However, it should be noted that the apparent lack of these cells in the leading edge is 
a consequence of our selection criteria, where leading cells, typically flatter and lying closer to 
the underlying migratory substrate, are excluded. Segmentation and reconstruction of these 
cells showed that they formed a broad “sheath” that covered the apical side of the PLLp, 
forming a layer between the apical constrictions of the neuromast and the overlying skin cells. 
For illustration, Figure 2G, H and movie S2 show a 3D rendering of a fully-segmented PLLp with 
this population colored in magenta, and the remaining cells are colored in green.  
 
Live imaging to track the position and behavior of these cells over time shows they form a stable 
population.  Apically residing cells could be tracked through more than 3 hours of timelapse 
during which time they maintained a stable apical position (Fig S1). In these movies we noticed 
that, consistent with the analysis of the distribution of these cells, they were displaced from their 
apical positions as the trailing-most neuromast was preparing to deposit, in many cases 
becoming part of the interneuromast population.  
 
The presence of a cell population with minimal or nonexistent basal contact with the underlying 
tissue but significant surface area contact with the overlying skin suggested that these cells 
might contribute to the migration of the PLLp through contacts with the overlying skin. 
High-resolution imaging suggested the presence of broad membrane protrusions from these 
cells which were oriented in the direction of migration (Fig 1 D-F). To further examine these 
protrusions, we performed live imaging using Airyscan super-resolution microscopy in embryos 
where a BAC containing the cxcr4b regulatory elements was used to drive LifeAct-Gfp, which 
labels F-Actin 42, in the PLLp. The distribution of LifeAct-Gfp revealed the presence of transient 
Actin fibers extending within broader membrane protrusions, reminiscent of lamellipodia (Fig 3A, 
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Movie S3). These protrusions were even more apparent when we imaged isolated cells by 
transplanting cells from TgBAC(cxcr4b:lifeact-gfp);Tg(cldnb:lyn-mscarlet) double  transgenic 
embryos into Tg(cldnb:lyn-mscarlet) embryos (Fig 3C, movie S4) Quantification of the direction 
of these protrusions in high resolution timelapse movies of the apical domain of the PLLp 
showed that they were highly polarized, extending in the direction of migration (Fig 3B), with an 
average length of ~2.4μm (Fig S2), similar in orientation and length to previously described 
migratory protrusions that extend from the basal aspect of cells that make up a neuromast. In 
contrast, the apical surface of the majority of cells in a neuromast are tightly constricted, and we 
did not observe significant apical protrusive activity from these cells. 
 
In our timelapse movies of Tg(cxcr4b:lifeact-gfp) transgenic embryos, we noticed signs of 
significant retrograde actin flow in these protrusions. In migrating cultured cells, the rate of 
retrograde actin flow in lamellipodial protrusions has been shown to correlate with the traction 
force exerted by the migrating cell 43. To assess the rate of retrograde actin flow, we took high 
speed super-resolution Airyscan movies at one-second intervals and used the movement  of 
inhomogeneities in the signal to assess the rate of retrograde actin flow in these protrusions 
(Movie S5). Figure 3D shows one such inhomogeneity flowing backwards from the lamellipodial 
tip toward the cell body (arrowheads in Fig 3D). Quantification of the flow showed an average 
retrograde actin flow speed of 6.5μm.min -1 with a standard deviation of 1.8μm.min -1 (Fig 3E)  
 
The orientation of migratory protrusions on the basal surface of the PLLp is known to be 
dependent on Fgf signaling, and are lost when Fgf signaling is inhibited by the Fgf receptor 
inhibitor SU5402 17. To test whether the orientation of these protrusions, like those on the basal 
side of the PLLp, is also dependent on Fgf signaling, we treated embryos with either 20μM of 
SU5402 or DMSO for 6 hours and measured the orientation of the protrusions. After 6 hours of 
treatment with DMSO, apical protrusions remained robustly polarized in the direction of 
migration (Fig 3F,G, Movie S6). However, this polarization was lost after Fgf inhibition by 
SU5402 treatment (Fig 3H,I, Movie S6), suggesting that, like the basal protrusions, the 
directionality of these apical protrusions was also dependent on Fgf signaling. For comparison, 
we performed the same analysis on basal protrusions. However, since the densely packed cell 
membranes comprising the basal surface of the PLLp make quantification of these basal 
protrusions challenging, we performed these experiments in chimeric embryos where we 
transplanted TgBAC(cxcr4b:lifeact-gfp);Tg(cldnb:lyn-mscarlet) donor cells into 
Tg(cldnb:lyn-mscarlet) host embryos. As expected, in DMSO-treated embryos the basal 
protrusions were primarily oriented in the direction of migration (Fig 3J, K, Movie S7). However, 
after 6 hours of treatment with SU5402, this polarity was completely abolished (Fig 3L,M, Movie 
S7). 
 
The prior experiments demonstrate the existence of a population of cells that make significant 
contact with the overlying skin during migration. Furthermore, our analysis showed that these 
cells extended protrusions reminiscent of lamellipodia against the skin, and that the orientation 
of these protrusions, like that of the basal cryptic lamellipodia, is sensitive to Fgf inhibition. This 
suggested a potential role for the overlying skin in migration of the PLLp. To test whether the 
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skin is necessary for PLLp migration, we removed the skin overlying the PLLp using a tungsten 
needle and then imaged the resulting behavior of the PLLp using confocal microscopy. We 
performed these experiments both in tg(claudinb:lyn-egfp) embryos, which labels the periderm 
layer with membrane localized Gfp, and in tg(claudinb:lyn-gfp; krt4:dsred) double transgenic 
embryos, in which both the periderm and basal layers of the skin are additionally labeled with 
cytoplasmically localized DsRed 24. Immediately following skin removal, the PLLp ceased 
migration and remained stationary.  
 
In most cases, after skin removal, the skin rapidly healed over the PLLp with little to no damage 
to the PLLp itself (based on the minimal appearance of apoptotic and necrotic cells). In these 
cases, after skin regrowth, the PLLp recovered normal migration and continued migrating along 
the length of the embryo (Movie S8). During this subsequent migration neuromast deposition 
appeared normal, and the primordium reached the tip of the tail after a slight delay (Fig S3). In a 
minority of cases, where large patches of skin covering a significant fraction of the trunk were 
removed such that the skin could not heal over the PLLp in the time course of our movies, we 
observed the PLLp for a period of several hours. In these cases, the PLLp did not recover 
forward migration, and the PLLp cells eventually underwent apoptosis.  
 
Figure 4A-C shows three still frames from a representative timelapse taken while the skin 
healed over the PLLp. Initially the PLLp is stationary, having stopped forward migration. The 
skin (magenta) is healing toward the PLLp (Fig 4A). Twenty minutes later, the skin has made 
contact with the PLLp, and the morphology of the leading cells has changed, becoming more 
stretched out, reminiscent of their morphology in intact primordia (Fig 4B). By 97 minutes, the 
skin has healed over the PLLp and normal forward migration has robustly resumed (Fig 4C). 
This dramatic behavior can be seen in kymographs of both the green PLLp membranes and the 
magenta krt4:DsRed-positive epidermal cells (Fig 4D-F). Initially, the PLLp is stationary, while 
uncovered by the skin (compare figures 4E, F). However, as the skin heals over the PLLp, 
robust and continuous forward migration is recovered. We removed the skin from >10 
independent embryos and, in all cases, migration was abolished until the skin healed over the 
PLLp. 
 
To quantify this migratory behavior, we crossed  Tg(claudinb:lyn-egfp; krt4:dsred) fish to 
TgBAC(cxcr4b:h2a-mcherry) fish to visualize the basal cells and periderm of the skin, as well as 
the both the membranes and nuclei of the PLLp. We then removed the skin overlying the PLLp 
and tracked the movement of randomly selected cells distributed throughout the PLLp for each 
of three replicate embryos. For each cell, the time at which the skin covers the position of that 
individual  cell was marked, and the average velocity in the normal direction of migration (along 
the rostral-caudal axis of the embryo) before and after this point was calculated. Figure 4G 
shows the paired measurements for each cell, with the top row representing the average 
velocity of cells before skin contact and the bottom row representing the average velocity after 
skin contact. Consistent with the results from bulk analysis of movement using kymographs, 
there was a dramatic increase in forward migration after skin contact. The velocity of cells 
before skin contact was distributed around 0, suggesting non-directional or “tumbling” 
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movement, and the velocities after skin contact are clustered around a mean of 0.82μm.min -1, 
close to the normal migration speed of a primordium. Aggregating the frame-to-frame velocities 
shows that the velocity before skin contact is normally distributed around a value of 
approximately zero (mean = 0.067μm.min -1, standard deviation = 0.51μm.min -1), wheras the 
velocities after skin contact are normally distributed around approximately 0.8μm.min -1 (mean = 
0.807μm.min -1, standard deviation = 0.648μm.min -1, p=0.00). Taken together, these data 
suggest a profound inability of the PLLp to migrate without overlying skin, which is completely 
reversed after skin regrowth over the PLLp. 
 
We hypothesized that removing the skin caused a failure of the overlying cells to extend robust 
migratory protrusions and that this contributes to the failure of collective migration. To assess 
this, we crossed TgBAC(cxcr4b:lifeact-gfp) fish to Tg(cldnb4.2:lyn-m-scarlet) fish to generate 
double-transgenic embryos in which both Actin and membranes were labelled. The skin over 
the PLLp was then removed and the resulting Actin dynamics imaged using Airyscan 
super-resolution confocal microscopy. 
 
When the skin was removed and the PLLp imaged at high spatio-temporal resolution, we 
noticed a dramatic change in the behavior of the overlying cells. In embryos lacking skin, we 
saw almost no polarized Actin-rich protrusions of the kind observed extending from overlying 
cells in intact embryos. Instead, cells appeared disorganized and rapidly extended and retracted 
protrusions reminiscent of membrane blebs. High-resolution imaging of these bleb-like 
structures showed that they initiate as a rapid membrane expansion devoid of cortical actin (Fig 
5A-D, Movie S9). As the bleb expands, cortical actin is recruited to the newly expanded 
membrane and can be detected by an increase in the LifeAct-Gfp signal, while the lyn-mScarlet 
membrane marker remains constant in intensity (Fig 5E). After a short period, these blebs are 
retracted into the cell.  
 
Because the regrowth of the skin over the PLLp is associated with a rapid and robust recovery 
of forward migration, we imaged Actin dynamics in the PLLp during skin regrowth in 
TgBAC(cxcr4b:lifeact-gfp); Tg (cldnb4.2:lyn-m-scarlet) embryos (Movie S10). After skin removal 
-- but before skin regrowth over the PLLp -- we observed rapid apical membrane blebbing, as 
described above. However, as the skin heals over the PLLp, cells undergo a dramatic 
morphological change. The bleb-type morphology of overlying cells is abolished and cells begin 
to extend actin-rich protrusions in the direction of migration, reminiscent of those observed 
apically in intact, unperturbed embryos. This transition was so rapid that over the course of our 
timelapse movie, we could simultaneously observe blebs from regions of the PLLp not yet 
covered by skin alongside actin-rich rod-like protrusions from cells that had been covered by the 
regrowing skin. Eventually the entire PLLp is again covered by the skin, apical protrusive activity 
is restored, and normal forward migration of the PLLp resumes. 
 
These data suggested a rapid recovery of apical protrusive activity after skin regrowth. To 
quantify this change, we performed high-resolution imaging of Actin dynamics in 
TgBAC(cxcr4b:lifeact-gfp);Tg(cldnb4.2:lyn-m-scarlet) embryos under three conditions: 
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unperturbed embryos in which the skin has not been removed, embryos in which the skin was 
removed over the PLLp, and embryos in which the skin had been removed and had 
subsequently healed over the PLLp. Figure 5 J-R show the results of this experiment. As 
expected, embryos where the skin had not been removed showed robust protrusions oriented in 
the direction of migration, with an average length of ~2.4um (Fig 5J-L, Movie S11). When the 
skin was removed, we again observed a profound loss of apical Actin-rich protrusions, which 
were replaced by apical membrane blebs of the type shown in figure 5A-D (Movie S12). The few 
protrusions that remained were both shorter (Fig 5O, compare orange to green, mean intact = 
2.45μm, mean skin removed = 1.76μm) and no longer oriented in the direction of migration (Fig 
5N). However, as suggested by the timelapse analysis above, after the skin healed over the 
PLLp, apical protrusions were again observed (Fig 5P, Movie S13), their orientation was again 
strongly polarized in the direction of migration (Fig 5Q) and their length had recovered to almost 
unperturbed levels (Fig 5R, compare green and purple, mean intact = 2.45μm, mean post 
healing = 2.26μm). 
 
Although the absence of these directional apical protrusions was expected after removal of the 
overlying skin, we were surprised by the profound loss of migratory ability resulting from this 
manipulation, given that the basal side of the pLLp was presumably still in contact with the 
underlying tissue. We wondered whether removal of the skin resulted in a broader loss of 
migratory protrusions in the cells of the PLLp. To assess this, we repeated the above 
experiment, this time using embryos in which we transplanted donor cells from 
Tg (BACcxcr4b:lifeact-gfp) into Tg(cldnb:lyn-mscarlet) embryos to generate isolated clones in 
which we could quantify the directionality and length of basal protrusions. 
 
In intact embryos these basal protrusions, like the apical protrusions, were highly polarized in 
the direction of migration, although they were on average slightly shorter than apical protrusions 
(Fig 5 S-U, average length = 1.95μm, Movie S14). When the skin was removed, surprisingly, we 
observed a profound loss of the normal directional orientation of these basal protrusions (Fig 
5W, Movie S15), despite the fact that many of these cells had no contact with the overlying skin. 
This failure of directional orientation was accompanied, as with the apical protrusions, by a 
decrease in the average length of the protrusions, (Fig 5X, compare orange to green, mean 
intact 1.95μm, mean skin removed = 1.32μm) and by the appearance of membrane  blebs on 
the basal surface of these cells (arrowheads in Fig 5V). However, neither the loss of rod-like 
Actin-rich protrusions nor the appearance of membrane blebs were as dramatic on the basal 
surface as on the apical surface. 
  
When we imaged these protrusions after skin regrowth (Fig 5Y-Zz, Movie S16), we observed 
the same dramatic recovery of basal protrusions. The polarization of the basal protrusions in the 
direction of migration was recovered (Fig 5Z) and their length was similar to that of protrusions 
in unperturbed embryos (Fig 5Zz, compare purple to green, mean intact = 1.95μm, mean post 
healing = 1.83μm). Taken together, these data suggest that the profound loss of migratory 
ability after skin  removal does not simply result from loss of apical migratory contacts, but is 
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due to a more general requirement for the presence of an enclosing skin layer in maintaining 
migration through both apical and basal migratory protrusions.  
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Discussion 
 
In this study, we examined the posterior lateral line primordium of Zebrafish, a well-studied 
model of collective cell migration that migrates in a channel between the underlying somites and 
overlying epidermis. We show that, in addition to the previously described basal lamellipodia 
extended by epithelialized cells in this cluster14, there is an additional population of cells lying 
apically, covering these epithelial cells, which also extend migratory processes against the 
overlying skin. As with the directionality of basal cryptic lamellipodia extended from the epithelial 
cells that comprise a neuromast, the directionality of these basal processes is abolished by 
inhibiting Fgf signaling by treatment with SU5402, suggesting that the requirement for Fgf 
signaling to maintain migration applies to both apical and basal processes. Although this study 
has focused on the apical protrusions extended by these cells against the overlying skin, we 
also note that this population - while relatively stable - can also displace and move to the lateral 
edges of the primordium. This suggests the possibility that migratory activity is not confined to 
the basal or apical surfaces of the primordium but in a circumferential sheath that surrounds the 
central core neuromasts. 
 
Typically, the PLLp has been conceptually separated into a leading mesenchymal-like domain, 
where cells are relatively flat and have no obvious apical-basal polarity, and a trailing epithelial 
domain, where cells become elongated and adopt a distinct epithelial morphology with 
apical-basal polarity. Despite this distinction, it has long been recognized that both domains 
contribute to collective migration, with epithelial cells extending cryptic lamellipodia in the 
direction of migration. In this study, we have defined the “sheath” cells as those that occupy an 
apical position above the neuromasts, by definition excluding leading mesenchymal cells. 
However, it is possible that, rather than being an entirely separable population, this “sheath” 
represents and extension of non-epithelial cells over the entire PLLp and these cells constitute a 
continuous migratory population. In this context, rather than conceptually dividing the PLLp into 
a leading and trailing domain with distinct cellular morphologies, a second axis is radially 
arranged with apico-basally polarized epithelial cells in the core and more mesenchymal cells at 
the periphery, an example of what Blanchard and co-authors have called “mesoscale 
heterogeneity” in migrating systems44.  
 
Consistent with the existence of migratory contacts on the apical side of the PLLp closely 
apposed to the overlying skin, we show that when the skin is removed apical lamellipodia are 
almost completely abolished and cells extend and retract rapid membrane blebs. The few 
Actin-rich rod-like protrusions that remain are no longer oriented in the direction of migration and 
are significantly shorter than those extended from the apical surface of the PLLp when the skin 
is intact. Regrowth of the skin restores both the normal length and directionality of these 
protrusions with very little delay suggesting, again, a rapid switch in migratory ability and 
morphology between confined and unconfined PLLp cells.  
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Intriguingly, we observe very similar changes in the basal cryptic lamellipodia of neuromast cells 
when the skin is removed, despite the fact that these cells, in many cases, do not directly 
contact the overlying skin. While Actin-rich protrusions are still observed at the basal surface of 
the PLLp these protrusions, like those observed apically, become shorter and are no longer 
oriented in the direction of migration. Concurrent with this loss of directionality, we see the 
appearance of membrane blebs in the basal surface of these cells, although to a lesser extent 
than is observed apically. This observation, along with the rapid recovery of directionality and 
length of basal protrusions after skin regrowth--despite the fact that these cells to not 
themselves directly contact the skin--raises the possibility that the skin is not only necessary to 
provide a substrate for the apical migratory processes, but that it is necessary to provide some 
confinement in order for productive migratory processes to be extended from both the basal and 
apical surfaces. 
 
This rapid switch between distinct cell morphologies has also been reported in early zebrafish 
cells placed in culture 45. When in culture, these cells show a characteristic but unproductive 
blebbing, and fail to migrate. However, upon either treatment with Lysophosphatidic Acid or by 
being subject to mechanical confinement, the cells adopted a pear-shaped morphology with a 
large stable bleb and became highly migratory. Intriguingly, when the confining substrate is 
non-adhesive, the migratory ability of these cells increases, suggesting that this migratory mode 
does not rely on specific adhesions with the confining substrate. This migration was associated 
with rapid retrograde cortical actin flow in the leading edge of the cell. Whether or not these 
superficial similarities reflect deep mechanistic similarities in the mechanisms of migration in 
these two contexts will require further study.  
 
In other contexts, changes in adhesion and confinement can lead to rapid changes in cell 
morphology in ways that are less consistent with what we observe in the PLLp. Bergert et al46 
placed Walker 256 carcinosarcoma cells in confinement and showed that a rapid switch from a 
primarily bleb-based migration mode and a mixed bleb-lamellipodia mode can also be induced 
by increasing substrate adhesion. This switch could be rapidly reversed when cells moved onto 
a non adhesive surface, with cells no longer forming lamellipodia and reverting to a primarily 
bleb-based migratory mode. The interplay between adhesion, confinement, and cortical 
contractility has been explored systematically by Liu and colleagues47, who suggest that these 
three parameters integrate to determine the mechanism of migration. Similarly, in Dictyostelium, 
confinement itself is sufficient to induce rapid changes between blebbing and 
pseudopod-mediated migration 48. In this context, reducing confinement by increasing the height 
of a microfluidic channel through which the cells are migrating is associated with a rapid loss of 
blebs and an increase in pseudopod formation. However it should be noted that in these other 
contexts cells can switch to bleb formation as a productive mode of migration, whereas in the 
PLLp this transition is associated with non productive blebs and a failure of migration. 
 
How which cells migrate through a confined environment is poorly understood, especially during 
collective migration. Unconfined cells in 2D culture can migrate by promoting attachment to a 
substrate through which force can be transmitted. However, in confined systems such as 3D 
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scaffolds, the mechanical properties of the environment itself can force cells into significant 
contact with their extracellular migratory substrate, allowing the transmission of traction forces 
without adhesion (for review, see Paluch et al, 2016 49). This non-adherent migration has been 
demonstrated in a variety of contexts47,50 and has been proposed to allow for efficient movement 
of cells through complex environments without the energetic cost of continuously forming and 
breaking attachments. In the context of the migrating PLLp it is likely that the overlying 
protrusions are directly contacting the cells of the overlying skin, where classical integrin-based 
adhesions might not be desirable or possible. The fact that in the vast majority of cases (>95%), 
we were able to remove the skin from the PLLp while retaining attachment of the PLLp to the 
underlying substrate suggests an asymmetry of adhesion between the apical and basal 
surfaces of the PLLp. 
 
So-called “chimneying” mechanisms, whereby cells can push outwards against the surrounding 
environment and generate enough force to allow migration, have been suggested to play a role 
in migration of leukocytes in an adhesion-independent manner51. A related but mechanistically 
distinct mechanism, flow-friction-driven force transmission, is hypothesized to transmit 
intracellular force from the cytoskeleton to the substrate by means of nonspecific friction 
between the cell and its environment45,52. In this context retrograde flows of the actomoysin 
cortex, similar to those we observe in apical protrusions in the PLLp, have been suggested to 
play a role in the generation of motile force 49. Gardel and colleagues43 have demonstrated a 
biphasic relationship between retrograde flow speed and traction, with traction and flow directly 
correlated at speeds of below 10nm.s-1 (~0.6μm.min -1) but inversely correlated at higher speeds. 
The retrograde flow speeds we measure are relatively fast, on the order of 6.5μm.min -1 
approximately an order of magnitude faster than the limit for enhancing traction stress 
measured by Gardel et al and ~6 fold higher than the average migration speed of the PLLp 
itself. The relatively rapid retrograde actin speed in lamellipodia of the lateral line is consistent 
with a low-adhesion migratory mode, as adhesions are thought to couple the intracellular actin 
mesh to the ECM and slow the retrograde flow of actin via a molecular “clutch” mechanism53. 
However, future experiments will be necessary to examine the relationship between adhesion 
and retrograde actin flow in this system.  
 
Understanding how cells in the developing embryo move through diverse environments is 
critical for understanding both normal morphogenesis and a number of pathologies. Cell 
migration has been studied extensively in cell culture in the two-dimensional regime, however 
there is growing evidence that 2D models emphasize specific modes and mechanisms of cell 
migration that might not apply to cells migrating in a three-dimensional confined environment.  
While multicellular systems acquire behaviors that correspond broadly to those observed in 
single cells, it is likely that the details about how they acquire those characteristics differ 
significantly. The development of in vivo model systems to study cell migration at high 
spatio-temporal resolution, as well as quantitative methods for analyzing such systems will be 
necessary to extend the study of 3D cell migration from the dish to the animal. 
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Figure 1. A: Z-projection of cells from a Tg(cldnb:lyn-gfp) embryo (green) transplanted into 
a Tg(cldnb:lyn-mscarlet) (magenta) embryo. Dashed line indicates the position of the transverse 
section in B. B: Transverse section of A showing position of green transplanted cells. C: 
Apical-Basal depth coding of the Tg(cldnb:lyn-gfp) cells shown in A and B. D-F: Frames from a 
timelapse movie showing apical membrane protrusions adjacent to the skin (arrowheads). 
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Figure 2. A: Z-projection of the PLLp at ~32hpf from individual DiSPIM slices. Dashed lines 
indicate the position of cross sections in B and C. Membranes are indicated in green and nuclei 
in magenta. B: Sagittal cross section of the PLLp at the position indicated in A. Arrowheads 
indicate apical nuclei. C: Transverse section of the PLLp at the position indicated in A. 
Arrowheads indicate apical nuclei. D: Single confocal slice adjacent to the skin showing apical 
nuclei. E: Schematic of nuclear position in a single PLLp. Grey dots indicate all PLLp nuclei, red 
dots indicated the position of apical nuclei (see text for details), and blue dots indicate the 
position of neuromast apical constrictions. F: Average of the positions of nuclei in n=10 PLLp. 
PLLp were aligned based on the position of the leading-most neuromast. Grey indicates the 
position of all cells, red filled topo-lines indicate the position of apical nuclei and blue open 
topo-lines indicate the position of neuromast apical constrictions. G,H: 3D reconstruction of a 
confocal scan of a ~32hpf PLLp showing the apical cells in magenta and the remaining cells in 
green. 
 

 
 
 
Figure 3. A: Maximum intensity projection of a confocal stack showing LifeAct-positive 
projections (green) within 5μm of the skin. B: Quantification of the direction of apical actin 
protrusions from timelapse movies. 180° (right) indicates the normal direction of PLLp migration. 
C: Frames from a timelapse movie showing a single TgBAC(cxcr4b:lifeact-gfp) cell adjacent to 
the overlying skin with polarized protrusive activity. D: Series of frames from a timelapse movie 
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showing retrograde flow of Lifeact-Gfp in apical protrusion. E: Quantification of retrograde flow 
velocity in apical protrusions. F: Apical LifeAct-positive protrusions after 6 hours of treatment 
with DMSO. G: Directionality of apical protrusions after DMSO treatment. H: Apical 
LifeAct-positive protrusions after 6 hours of treatment with 20μM SU5402. I: Directionality of 
apical protrusions after SU5402 treatment. J: Basal protrusions in TgBAC(cxcr4b:lifeact-gfp) 
transplants after 6 hours of treatment with DMSO. K: Directionality of basal protrusions after 
DMSO treatment. L : Basal protrusions in TgBAC(cxcr4b:lifeact-gfp) transplants after 6 hours of 
treatment with 20μM SU5402. M: Directionality of basal protrusions after SU5402 treatment. 
Scale bar for F,H,J,L is the same as A.  
 

 
Figure 4. A-C: Frames from a timelapse movie showing the skin (basal and periderm layers 
labelled by krt4:dsred) in magenta and the PLLp in green after skin removal and during 
subsequent healing. D: Overlay of kymograph showing movement of the PLLp (green) and 
healing of the skin over the PLLp (magenta) along the migration course of the PLLp shown in 
A-C. E: Kymograph of the PLLp alone. F: Kymograph of the skin alone. G: Quantification of the 
average migration speed of individual cells (n=28) in 3 independent primordia with skin removed 
(orange dots) and after skin healing (blue dots). Red background indicates rostral movement, 
green background indicates caudal movement, p=0.0, paired sample t-test. H: Histogram of all 
individual instantaneous cell velocities for the cells measured in G for skin removed (orange) 
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and skin healed (blue). Dashed lines indicate mean velocity for the cells in each condition, and 
curves indicate the kernel density estimate (kde) for each condition. p=0.0 (unpaired sample 
t-test) 
 
 
Figure 5

. A-D: Frames from a timelapse movie showing apical bleb formation and retraction after skin 
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removal. A-D show lyn-mScarlet, marking membranes, A’-D’ show LifeAct-Gfp, marking F-actin 
and A’’-D’’ show the merge of both channels. E: Quantification of membrane (lyn-mScarlet) and 
Actin (LifeAct-Gfp) along bleb edge over time for n = 8 blebs. Each panel represents an interval 
of 5s. F-I : Frames from a timelapse movie showing apical LifeAct-Gfp during skin healing. Skin 
position is shown by the dashed red line, and time is indicated in the upper left corner. J: Apical 
LifeAct-positive protrusions in embryos with intact skin. K-L Quantification of apical protrusion 
directionality (K) and length (L) in embryos with intact skin. M: Apical LifeAct after removal of the 
overlying skin. N-O: Quantification of apical protrusion directionality (N) and length (O) in PLLp 
with overlying skin removed. Apical protrusion length for embryos with intact skin is shown in 
green in O for comparison.  P: Apical LifeAct after removal and regrowth of the overlying skin. 
Q-R: Quantification of apical protrusion directionality (Q) and length (R) in PLLp with overlying 
skin removed. Apical protrusion length for embryos with intact skin is shown in green in R for 
comparison. S: Transplanted cells showing basal LifeAct-positive protrusions in embryos with 
intact skin. T-U : Quantification of basal protrusion directionality (K) and length (L) in embryos 
with intact skin. V: Transplanted cells showing basal LifeAct after removal of the overlying skin. 
W-X: Quantification of basal protrusion directionality (W) and length (X) in PLLp with overlying 
skin removed. Basal protrusion length for embryos with intact skin is shown in green in X for 
comparison.  Y: Basal LifeAct after removal and regrowth of the overlying skin. Z-Zz: 
Quantification of basal protrusion directionality (Z) and length (Zz) in PLLp with overlying skin 
removed. Basal protrusion length for embryos with intact skin is shown in green in Zz for 
comparison. All images are maximum-intensity projections of confocal stacks within 5μm of the 
skin (for apical protrusions) or basal surface of the PLLp (for basal slices) 
 
 
 
Supplementary Figures 
 

 
Figure S1. Tracks for 5 cell nuclei over 300 minutes of timelapse. Left panel shows cross 
section view of tracks, with the central grey dot at (0,0) indicating the position of the closest 
neuromast, and the grey outline the approximate shape of the PLLp. Right panel shows side 
view of tracks. y-axis represents the apical-basal position of the cell nucleus (with 0 indicating 
the level of the neuromast apical constriction), and the x-axis represents time. Track colors are 
the same in both plots. 
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Figure S2: Distribution of lengths of apical actin filaments 
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Figure S3. Image of an embryo where skin had been removed over the PLLp at ~32hpf and 
migration had been allowed to proceed until 54hpf. Top panel shows control (unmanipulated) 
and bottom panel shows experimental (skin removed) side of the same embryo. 
 
 
Movie S1. Related to figure 1. Z-projection of a timelapse movie of Tg(cldnb:lyn-gfp) (green) 
cells transplanted into Tg(cldnb:lyn-mscarlet) embryos, showing apical membrane protrusions. 
 
Movie S2. Related to figure 2. 3D rendering of a reconstruction of the PLLp from confocal data 
showing apical cells colored in magenta and remianing PLLp cells colored in green. 
 
Movie S3. Related to figure 3. Z-projection of a timelapse movie taken adjacent to the skin in 
TgBAC(cxcr4b:lifeact-gfp) (green); Tg(cldnb:lyn-mscarlet) (magenta) double transgenic 
embryos, showing apical protrusive activity.  
 
Movie S4.  Related to figure 3. Z-projection of a timelapse movie taken adjacent to the skin in an 
embryo where TgBAC(cxcr4b:lifeact-gfp) (green); Tg(cldnb:lyn-mscarlet) (magenta) double 
transgenic cells have been transplanted into Tg(cldnb:lyn-mscarlet) embryos, showing apical 
protrusive activity from a single cell. 
 
Movie S5. Related to figure 3. Z-projection of a timelapse movie taken adjacent to the skin in 
TgBAC(cxcr4b:lifeact-gfp) embryos, showing rapid retrograde actin flow in the apical protrusion. 
 
Movie S6. Related to figure 3. Z-projection of a timelapse movie taken adjacent to the skin in a 
TgBAC(cxcr4b:lifeact-gfp) (green); Tg(cldnb:lyn-mscarlet) (magenta) double transgenic embryo. 
Top panel shows an embryo which has been treated with DMSO for 6 hours, bottom panel 
shows an embryo which has been treated with 20μM SU5402 for 6 hours. 
 
Movie S7. Related to figure 3. Z-projection of a timelapse movie taken of basal protrusions in a 
TgBAC(cxcr4b:lifeact-gfp) (green); Tg(cldnb:lyn-mscarlet) (magenta) double transgenic embryo. 
Top panel shows an embryo which has been treated with DMSO for 6 hours, bottom panel 
shows an embryo which has been treated with 20μM SU5402 for 6 hours. 
 
Movie S8. Related to figure 4. Z-projection of a timelapse movie of Tg(cldnb:lyn-gfp) (green); 
Tg(krt4:dsred) (magenta) double transgenic embryos in which the skin had been removed over 
the PLLp and allowed to heal, showing failure of migration when uncovered by skin and 
subsequent recovery of migration after skin healing. 
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Movie S9. Related to figure 5. Z-projection of a timelapse movie of TgBAC(cxcr4b:lifeact-gfp) 
(green); Tg(cldnb:lyn-mscarlet) (magenta) embryos showing blebbing of apical cells after skin 
removal. 
 
Movie S10. Related to figure 5. Z-projection of a timelapse movie of TgBAC(cxcr4b:lifeact-gfp); 
Tg(krt4:dsred) (omitted for clarity) double transgenic embryos showing the disappearance of 
apical blebs and the reappearance of apical lamellipodia-like protrusions after skin healing. Red 
line indicates the position of the healing skin marked by the position of the Tg(krt4:dsred) signal. 
 
Movie S11. Related to figure 5. Z-projection of a timelapse movie taken adjacent to the skin in 
an intact TgBAC(cxcr4b:lifeact-gfp) (green); Tg(cldnb:lyn-mscarlet) (magenta) double transgenic 
embryo, showing apical protrusive activity.  
 
Movie S12. Related to figure 5. Z-projection of a timelapse movie taken adjacent to the skin in a 
TgBAC(cxcr4b:lifeact-gfp) (green); Tg(cldnb:lyn-mscarlet) (magenta) double transgenic embryo 
where the skin had been removed over the PLLp, showing apical blebbing.  
 
Movie S13. Related to figure 5. Z-projection of a timelapse movie taken adjacent to the skin in a 
TgBAC(cxcr4b:lifeact-gfp) (green); Tg(cldnb:lyn-mscarlet) (magenta) double transgenic embryo 
where the skin had been removed over the PLLp and allowed to subsequently heal over the 
PLLp.  
 
Movie S14. Related to figure 5. Z-projection of a timelapse movie taken of basal protrusions in 
an intact embryo where TgBAC(cxcr4b:lifeact-gfp) (green); Tg(cldnb:lyn-mscarlet) (magenta) 
double transgenic cells had been transplanted into Tg(cldnb:lyn-mscarlet) (magenta) 
single-transgenic embryos.  
 
Movie S15.  Related to figure 5. Z-projection of a timelapse movie taken of basal protrusions 
and blebs in an embryo where TgBAC(cxcr4b:lifeact-gfp) (green); Tg(cldnb:lyn-mscarlet) 
(magenta) double transgenic cells had been transplanted into Tg(cldnb:lyn-mscarlet) (magenta) 
single-transgenic embryos and the skin removed over the PLLp.  
 
Movie S16.  Related to figure 5. Z-projection of a timelapse movie taken of basal protrusions 
and blebs in an embryo where TgBAC(cxcr4b:lifeact-gfp) (green); Tg(cldnb:lyn-mscarlet) 
(magenta) double transgenic cells had been transplanted into Tg(cldnb:lyn-mscarlet) (magenta) 
single-transgenic embryos, the skin removed over the PLLp and allowed to subsequently heal 
over the PLLp.  
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