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Abstract

Motivation: Genome-wide association studies (GWAS) are one of the most commonly used methods to
detect associations between complex traits and genomic polymorphisms. As both genotyping and
phenotyping of large populations has become easier, typical modern GWAS have to cope with massive
amounts of data. Thus, the computational demand for these analyses grew remarkably during the last
decades. This is especially true, if one wants to implement permutation-based significance thresholds,
instead of using the näıve Bonferroni threshold. Permutation-based methods have the advantage to provide
an adjusted multiple hypothesis correction threshold that takes the underlying phenotypic distribution into
account and will thus remove the need to find the correct transformation for non Gaussian phenotypes. To
enable efficient analyses of large datasets and the possibility to compute permutation-based significance
thresholds, we used the machine learning framework TensorFlow to develop a linear mixed model
(GWAS-Flow) that can make use of the available CPU or GPU infrastructure to decrease the time of the
analyses especially for large datasets.
Results: We were able to show that our application GWAS-Flow outperforms custom GWAS scripts in terms
of speed without loosing accuracy. Apart from p-values, GWAS-Flow also computes summary statistics, such
as the effect size and its standard error for each individual marker. The CPU-based version is the default
choice for small data, while the GPU-based version of GWAS-Flow is especially suited for the analyses of big
data.
Availability: GWAS-Flow is freely available on GitHub (https://github.com/Joyvalley/GWAS_Flow) and
is released under the terms of the MIT-License.
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Introduction 1

Genome-wide association studies, pioneered in human genetics [1] in the last decade, have become the 2

predominant method to detect associations between phenotypes and the genetic variations present in a 3

population. Understanding the genetic architecture of traits and mapping the underlying genomic 4

polymorphisms is of paramount importance for successful breeding both in plants and animals, as well as for 5

studying the genetic risk factors of diseases. Over the last decades, the cost for genotyping have been 6

reduced dramatically. Early GWAS consisted of a few hundred individuals which have been phenotyped and 7

genotyped on a couple of hundreds to thousands of genomic markers. Nowadays, marker density for many 8

species easily exceed millions of genomic polymorphisms. Albeit commonly SNPs are used for association 9

studies, standard GWAS models are flexible to handle different genomic features as input. The Arabidopsis 10

1001 genomes project features for example 1135 sequenced Arabidopsis thaliana accessions with over 10 11

million genomic markers that segregate in the population [2]. Other genome projects also yielded large 12

amounts of genomic data for a substantial amount of individuals, as exemplified in the 1000 genomes project 13

for humans [3], the 2000 yeast genomes project or the 3000 rice genomes project [4]. Thus, there is an 14

increasing demand for GWAS models that can analyze these data in a reasonable time frame. One critical 15

step of GWAS is to determine the threshold at which an association is termed significant. Classically the 16

conservative Bonferroni threshold is used, which accounts for the number of statistical tests that are 17

performed, while many recent studies try to use significance thresholds that are based on the false-discovery 18

rate (FDR) [5]. An alternative approach are permutation-based thresholds [6]. Permutation-based thresholds 19

estimate the significance by shuffling phenotypes and genotypes before each GWAS run, thus any signal left 20

in the data should not have a genetic cause, but might represent model mis-specifications or uneven 21

phenotypic distributions. Typically this process is repeated hundreds to thousands of times and will lead to 22

a distinct threshold for each phenotype analyzed [7]. The computational demand of permutation-based 23

thresholds is immense, as per analysis not one, but at least hundreds of GWAS need to be performed. Here 24

the main limitation is the pure computational demand. Thus, faster GWAS models could easily make the 25

estimation of permutation-based thresholds the default choice. 26

Methods 27

GWAS Model 28

The GWAS model used for GWAS-Flow is based on a fast approximation of the linear-mixed-model described 29

in [8, 9], which estimates the variance components σg and σe only once in a null model that includes the 30

genetic relationship matrix, but no distinct genetic markers. These components are thereafter used for the 31

tests of each specific marker. Here, the underlying assumption is, that the ratio of these components stays 32

constant, even if distinct genetic markers are included into the GWAS model. This holds true for nearly all 33

markers and only markers which posses a big effect will alter this ratio slightly, where now σg would become 34

smaller compared to the null model. Thus, the p-values calculated by the approximation might be a little 35

higher (less significant) for strongly associated markers. 36

The GWAS-Flow Software 37

The GWAS-Flow software was designed to provide a fast and robust GWAS implementation that can easily 38

handle large data and allows to perform permutations in a reasonable time frame. Traditional GWAS 39

implementations that are implemented using Python [10] or R [11] cannot always meet these demands. We 40

tried to overcome those limitations by using TensorFlow [12], a multi-language machine learning framework 41

published and developed by Google. GWAS calculations are composed of a series of matrix computations 42

that can be highly parallelized, and easily integrated into the architecture provided by TensorFlow. Our 43

implementation allows both, the classical parallelization of code on multiple processors (CPUs) and the use 44

of graphical processing units (GPUs). GWAS-Flow is written using the Python TensorFlow API. Data import 45

is done with pandas [13] and/or HDF5 for Python [14]. Preprocessing of the data (e.g filtering by minor 46

Allele count (MAC)) is performed with numpy [15]. Variance components for residual and genomic effects 47
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are estimated with a slightly altered function based on the Python package limix [16]. The GWAS model is 48

based on the following linear mixed model that takes into account the effect of every marker with respect to 49

the kinship: 50

Y = β0 +Xiβi + u+ ε, u ∼ N(0, σgK), (O, σeI)

The residuals are used to calculate a p-value for each marker according to an overall F-test that compares 51

the model including a distinct genetic effect to a model without this genetic effect: 52

F =
RSSenv −R1full

R1full

n−3

Apart from the p-values that derive from the F-distribution, GWAS-Flow also report summary statistics, such 53

as the estimated effect size (βi) and its standard error for each marker. 54

Calculation of the permutation-based threshold for GWAS 55

To calculate a permuation-based threshold, we essentially perform n repetitions (n > 100) of the GWAS on 56

the same data with the sole difference that before each GWAS we randomize the phenotypic values. Thus 57

any correlation between the phenotype and the genotype will be broken and indeed for over 90% of these 58

analyses the estimated pseudo-heritability is close to zero. On the other hand, the phenotypic distribution 59

will stay unaltered by this randomization. Hence, any remaining signal in the GWAS has to be of a 60

non-genetic origin and could be caused by e.g. model mis-specifications. Now we take the lowest p-value 61

(after filtering for the desired minor allele count) for each permutation and take the 5% lowest value as the 62

permutation-based threshold for the GWAS. 63

Dissemination and reproducibility 64

GWAS-Flow is an open-source software and was published on GitHub 65

(https://github.com/Joyvalley/GWAS_Flow) under the terms of the MIT-License making GWAS-Flow free 66

to use and alter for the scientific community. All calculations mentioned in the study were performed with 67

the first stable version v1.0. Detailed installation information are given in the README.md file on GitHub. 68

We provide three different ways to install and run GWAS-Flow: (i) with virtual environments using Anaconda 69

for Python, (ii) Docker containers that in version 1.0 have the exact setup used for the calculations in this 70

study to ensure full reproducibility [17]. Besides Docker no other Software is required. (iii) To make use of 71

the advantages of containerized solutions in multi-user HPC environments we also provide instructions for 72

compilation of singularity images [18]. 73

Benchmarking 74

For benchmarking of GWAS-Flow we used data from the Arabidopsis 1001 Genomes Project [2]. The genomic 75

data we used were subsets between 10,000 and 100,000 markers. We chose not to include subsets that exceed 76

100,000 markers, because there is a linear relationship between the number of markers and the 77

computational time demanded, as all markers are tested independently. We used phenotypic data for 78

flowering time at ten degrees (FT10) for A. thaliana, published and downloaded from the AraPheno 79

database [19]. We down- and up-sampled sets to generate phenotypes for sets between 100 and 5000 80

accessions. For each set of phenotypes and markers we ran 10 permutations to assess the computational time 81

needed. All analyses have been performed with a custom R script that has been used previously [7], 82

GWAS-Flow using either a CPU or a GPU architecture and GEMMA [20]. GEMMA is a fast and efficient 83

implementation of the mixed model that is broadly used to perform GWAS. All calculations were run on the 84

same machine using 16 i9 virtual CPUs. The GPU version ran on an NVIDIA Tesla P100 graphic card. 85

Additionally to the analyses of the simulated data, we compared the times required by GEMMA and both 86

GWAS-Flow implementations for > 200 different real datasets from A. thaliana that have been downloaded 87

from the AraPheno [19] database and have been analyzed with the available fully imputed genomic dataset 88

of ˜10 million markers, filtered for a minor allele count greater five. 89
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Figure 1. Comparison of the computational time needed for GWAS between GWAS-Flow,
GEMMA and a custom R script. A Computational time as a function of the number of accessions with
10000 markers each. B Computational time as a function of the number of genetic markers with constantly
2000 accessions for both GWAS-Flow versions. C Comparison of the computational time for the analyses of >
200 phenotypes from Arabidopsis thaliana as a function of the number of accessions for GEMMA and the
CPU- and GPU-based version of GWAS-Flow. GWAS was performed with a fully imputed genotype matrix
containing 10.7 M markers and a minor allele filter of MAC > 5.

Results 90

The two main factors influencing the computational time for GWAS are the number of markers incorporated 91

in such an analysis and the number of different accessions, while the latter has an approximate quadratic 92

effect in classical GWAS implementations [20]. Figure 1A shows the time demand as a function of the 93

number of accessions used in the analysis with 10,000 markers. The quadratic increase in time demand is 94

clearly visible for the custom R implementation, as well as for the CPU-based GWAS-Flow implementation 95

and GEMMA. The GWAS-Flow implementation and GEMMA clearly outperforms the R implementation in 96

general, while for a small number of accessions GWAS-Flow is slightly faster then GEMMA. For the 97

GPU-based implementation the increase in run-time with larger sample sizes is much less pronounced. While 98

for small (< 1,000 individuals) data, there is no benefit compared to running GWAS-Flow on CPUs or 99

running GEMMA, the GPU-version clearly outperforms the other implementations if the number of 100

accessions increases. Figure 1B shows the computational time in relation to the number of markers and a 101

fixed amount of 2000 accessions for the two different GWAS-Flow implementations. Here, a linear relationship 102

is visible in both cases. To show the performance of GWAS-Flow not only for simulated data, we also run 103

both implementations on more than 200 different real datasets downloaded from the AraPheno database. 104

Figure 1C shows the computational time demands for all analyses comparing both GWAS-Flow 105

implementation to GEMMA. Here, the CPU-based GWAS-Flow performs comparable to GEMMA, while the 106

GPU-based implementation outperforms both, if the number of accessions is above 500. Importantly all 107

obtained GWAS results (p-values, beta estimates and standard errors of the beta estimates) are nearly 108
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(apart from some mathematical inaccuracies) identical between the three different implementations. 109

Discussion 110

We made use of recent developments of computational architecture and software to cope with the increasing 111

computational demand in analyzing large GWAS datasets. With GWAS-Flow we implemented both, a CPU- 112

and a GPU-based version of the classical linear mixed model commonly used for GWAS. Both 113

implementations outperform custom R scripts on simulated and real data. While the CPU-based version 114

performs nearly identical compared to GEMMA, a commonly used GWAS implementation, the GPU-based 115

implementation outperforms both, if the number of individuals, which have been phenotyped, increases. For 116

analyzing big data, here the main limitation would be the RAM of the GPU, but as the individual test for 117

each marker are independent, this can be easily overcome programmatically. The presented GWAS-Flow 118

implementations are markedly faster compared to custom GWAS scripts and even outperform efficient fast 119

implementations like GEMMA in terms of speed. This readily enables the use of permutation-based 120

thresholds, as with GWAS-Flow hundred permutations can be performed in a reasonable time even for big 121

data. Thus, it is possible for each analyzed phenotype to create a specific, permutation-based threshold that 122

might present a more realistic scenario. Importantly the permutation-based threshold can be easily adjusted 123

to different minor allele counts, generating different significance thresholds depending on the allele count. 124

This could help to distinguish false and true associations even for rare alleles. GWAS-Flow is a versatile and 125

fast software package. Currently GWAS-Flow is and will remain under active development to make the 126

software more versatile. This will e.g. include the compatibility with TensorFlow v2.0.0 and enable data 127

input formats, such as PLINK [21]. The whole framework is flexible, so it is easy to include predefined 128

co-factors e.g to enable multi-locus models [22] or account for multi-variate models like the multi-trait mixed 129

model [23]. Standard GWAS are good in detecting additive effects with comparably large effect sizes, but 130

lack the ability to detect epistatic interactions and their influence on complex traits [24,25]. To catch the 131

effects of these gene-by-gene or SNP-by-SNP interactions, a variety of genome-wide association interaction 132

studies (GWAIS) have been developed, thoroughly reviewed in [26]. Here, GWAS-Flow might provide a tool 133

that enables to test the full pairwise interaction matrix of all SNPs. Although this might be a statistic 134

nightmare, it now would be computationally feasible. 135
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