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1 Supplementary Methods

1.1 Chromatin Immunoprecipitation (ChIP-seq)

The whole experiment was performed following the published protocols. Firstly, weigh 30-40 mg of frozen tissue in

a petri dish. Chop tissue into small pieces (between 1-3 mm3 using a scalpel blade. Add 1 ml of ice-cold PBS with

protease inhibitor cocktail and disaggregate the tissue using a dounce homogenizer (or pestle) to get a homogeneous

suspension. Transfer the tissue suspension into a 1.5 ml tube and centrifuge at 1,300 rpm for 5 min at 4∘C. Gently

discard the supernatant and keep the pellet. Resuspend the pellet in 1 ml of ice-cold PBS containing formaldehyde

to a final concentration of 1% (37% in stock) at room temperature. Rotate tube for 10-15 min at room temperature.

Stop the cross-linking reaction by adding fresh glycine to a final concentration of 0.125 M. (2.5 M in stock). Continue

to rotate at room temperature for 5-10 min. Centrifuge samples at low speed (1,300 rpm) at 4∘C. Wash the pellet with

1 ml of ice-cold PBS (plus protease inhibitors). Aspirate the supernatant and resuspend the pellet in 1 ml of ice-cold

PBS (plus protease inhibitors). Centrifuge at low speed (1,300 rpm) at 4∘C and discard the supernatant. Repeat the

washing one more time. Flash freeze the tissue pellet in liquid nitrogen and store at -80∘C.

Chromatin was sonicated by Bioruptor (Diagenode, Belgium) under the condition as follows: 20 cycles of 30s on, 60s

off. The sonicated chromatin was spun down at 12,000 rpm for 10 min at 4 ∘C to collect the chromatin. Add antibody

(10 𝜇g) to the soluble chromatin (80 𝜇g), and incubate at 4 ∘C with rotation overnight. Protein A/G Dynabeads (10

𝜇l of beads per 1 𝜇g of antibody, Life Tech, 10004D) were washed three times with Low Salt Wash Buffer. The washed

Dynabeads were added to the soluble chromatin and antibodies, incubated at 4 ∘C for 4 h with rotation. The magnetic

Dynabeads were pelleted by placing the tubes in a magnetic rack and were sequentially washed once with Low Salt

Wash Buffer, once with High-salt Wash Buffer, once with LiCl Wash Buffer. Wash the beads three times with TE

buffer. Remove any supernatant remaining after the last washing. The beads were resuspended in 150 𝜇l of Elution

Buffer (50 mM Tris-Cl pH 8.0, 10 mM EDTA, 1% SDS), followed by incubation for 15 min at 65 ∘C. Repeat step 7

again, combine the elution, then you have 300 𝜇l of the eluted DNA solution. Add 1 𝜇l of high concentration RNase

A (10 mg/ml) to the eluted DNA solution and the input samples (500 𝜇l), respectively. Incubate them at 37 ∘C for

1 h. Reverse formaldehyde crosslinks by respectively adding 12.5 𝜇l or 55 𝜇l of 5 M NaCl to the eluted DNA solution

and the Input samples to a final concentration of 0.2 M. Incubate samples at 65 ∘C (650 rpm) for more than 8 h (less

than 16 h). Add both 80.5 𝜇l of ddH2O and 5 𝜇l of 20 mg/ml Proteinase K to the eluted DNA solution, and just 5

𝜇l of Proteinase K to the Inputs. Incubate at 56 ∘C for 2 h. Extract once with 400 𝜇l of phenol/chloroform/isoamyl

alcohol, and once with 400 𝜇l of chloroform/isoamyl alcohol (optional). Transfer 355 𝜇l of supernatant to a new tube.

Add 55 𝜇l or 40 𝜇l of 3 M NaAc (pH 5.2, 0.3 M final) to the Input samples and eluted DNA solution, 5 𝜇l of glycogen

each sample and mix well. Add 800 𝜇l (two-fold volume) of absolute ethanol. Precipitate at -20 ∘C overnight or at

-80 ∘C for 4 h. Centrifuge at 14000 rmp for 20 min at 4 ∘C. Wash once with 75% ethanol and store at -20 ∘C.

The used the antibody includes (1) ATF4, CTS,11815S (lot#4); (2) Olig2, RnD, AF2418 (lot#UPA0718031); (3)

THRA, SantaCruz, SC-56873 ((lot#J1614).
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1.2 Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq)

ATAC-seq was performed in GENEWIZ company following the protocol introduced in [1, 2]. Place frozen tissue into

a pre-chilled 2 ml Dounce with 2 ml cold nuclei lysis buffer. Allow frozen tissue to thaw for 5 minutes. Dounce with

A pestle until resistance goes away ( 10 strokes). Dounce with B pestle for 20 strokes. Pre-clear larger chunks by

pelleting at 100 RCF for 1 min in a pre-chilled centrifuge.Count nuclei using Trypan blue staining and aliquot nuclei

for ATAC reaction. Harvest and count cells (counting protocol to be defined by the user; see APPENDIX3F). Cells

should be intact and in a homogenous, single-cell suspension; Centrifuge 50,000 cells 5 min at 500 x g, 4∘C. The

number of cells at this step is crucial, as the transposase-to-cell ratio determines the distribution of DNA fragments

generated. Remove and discard supernatant. Wash cells once with 50 𝜇l of cold PBS buffer. Centrifuge 5 min at

500x g, 4∘C. Remove and discard supernatant. Gently pipet up and down to resuspend the cell pellet in 50 𝜇l of cold

lysis buffer. Centrifuge immediately for 10 min at 500 x g, 44∘C. Discard the supernatant, and immediately continue

to transposition reaction. Make sure the cell pellet is set on ice. To make the transposition reaction mix, combine

the following: TD (2x reaction buffer from Nextera kit) 25 𝜇l; TDE1 (Nextera Tn5 Transposase from Nextera kit)

2.5 𝜇l; Nuclease-free H2O 22.5 𝜇l. Resuspend nuclei pellet (from step 5) in the transposition reaction mix. Incubate

the transposition reaction at 37∘C for 30 min. Gentle mixing may increase fragment yield. Immediately following

transposition, purify using a Qiagen MinElute PCR Purification Kit. Elute transposed DNA in 10 𝜇l Elution Buffer

(Buffer EB from the MinElute kit consisting of 10 mM Tris·Cl, pH 8). To amplify transposed DNA fragments, combine

the transposed DNA (10 𝜇l), nuclease-free H2O (10 𝜇l),25 𝜇M PCR Primer 1 (2.5 𝜇l), 25 𝜇M Barcoded PCR Primer 2

(2.5 𝜇l), NEBNext High-Fidelity 2x PCR Master Mix (2 5 𝜇l). Thermal cycle as follows 72∘C,5 min, 1 cycle; 98∘C,30

sec; 98∘C, 10 sec 5 cycles; 63∘C, 30 sec; 2∘C, 2 min; 4∘C.

1.3 Bi-clustering algorithm

In this work, we developed a bi-clustering algorithm to study AD patient diversity in TF-mediated transcription

regulation. The philosophy behind this algorithm is to find the patient subset with different transcription regulation

context. Let’s demonstrate its necessity with following R codes:

> x1= rnorm(100 ,1 , 1 ) # a simu la ted expre s s i on vec t o r f o r 100 s u b j e c t s as popu la t i on 1 ;

> y1= x1 + rnorm ( 1 0 0 , 1 , 0 . 5 ) # to generated a vec t o r o f r e g u l a t o r s

> cor ( x1 , y1 )

# output 0.8529 , i nd i c a t e d s t rong r e g u l a t i o n

> x2= rnorm(50 , 1 , 1 ) # second s imu la ted vec to r o f 50 s u b j e c t s as popu la t i on 2 ;

> y2= x2 + rnorm(50 , 1 , 3 ) # to generated a vec t o r o f r e g u l a t o r s

> cor ( x2 , y2 )

# output 0.3015 , i nd i c a t e d weak r e gu l a t i o n

> x=c ( x1 , x2 ) # merge popu la t i on 1 and 2

> y=c ( y1 , y2 ) # merge r e g u l a t o r s
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> cor (x , y )

# output 0.4648 , i nd i c a t e d a mediate r e g u l a t i o n in mixed popu la t i on

Above demo indicates that patient mixture can conceal the true TF-gene regulation. There should be tools to

study cohort structure based on their regulation status.

To do it, we make two assumptions: (1) we can find a set of marker genes to indicate the TF regulation activity; (2)

AD patients can be clustered into subsets under different regulation context. Considering the fact that bi-clustering is

an NP (nondeterministic polynomial time) problem, we designed an approximating implement. It always starts with

a TF gene (𝑔𝑖) and a gene expression matrix. The patient subsets are identified by following steps:

1. The co-expression correlation, measured by Spearman’s method was calculated for TF-gene pairs, 𝑟𝑖,𝑗 = 𝑐𝑜𝑟(𝑒𝑔𝑖 , 𝑒𝑔𝑗 ),

where 𝑒𝑔𝑖 was the expression vector for TF gene 𝑔𝑖 and 𝑒𝑔𝑗 was the expression vector for gene 𝑗;

2. The genes were ranked by 𝑟𝑖,𝑗 and the top 𝑚
′

genes were selected as the initial gene set 𝐺 = {𝑔1, 𝑔2..𝑔𝑚′};

3. For each gene 𝑔𝑗 in 𝐺, the subjects were ranked based on the degree of correlation improvement after subject

removal, where the correlation improvement was described by expression rank difference: 𝑑𝑖,𝑗 = |𝑑𝑖 − 𝑑𝑗 |;

4. A voting step was used to select the subject with the best Spearman’s correlation improvement: 𝑎𝑟𝑔𝑚𝑖𝑛{
∑︀𝑚

𝑗=1 𝑑𝑖,𝑗}.

In this process, we did following steps:

(a) To calculate the rank differences between TF and genes, and assigned the priority rank to remove in next

round;

(b) To count the rank occurrence in the windows of 50;

(c) To selected the one with least value of rank occurrences as subject to remove;

5. Remove the selected subject and recalculate the Spearman’s correlation;

6. Repeat above process until more than 𝑚 genes in more than 𝑛 subjects with co-expression correlation greater

than a predefined cutoff 𝑟𝑚𝑖𝑛.

This process is repeated for all the TF genes. To make sure of the confidence of bi-clustering analysis results,

we chose a set of strict parameters setting for our data based on evaluation analysis, including 𝑛 > 50, 𝑚 > 30 and

𝑟𝑚𝑖𝑛 = 0.8. Only the result satisfying these thresholds would be reported. As the process of bi-clustering analysis

would generate continuous number of patient and gene number combination, we checked the output results under

three scenario: the solution with the maximum number of genes, the solution with the maximum subjects and the

solution with the maximum product values of patient and gene number. We evaluated them using clinical association

and found that to maximize the number of genes had overall better clinical consistency, which might better indicate

the status of regulation loss. Therefore, in this work, we chose the gene-subject combination when maximum gene

number as the solution of bi-clustering analysis.
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2 Supplementary Results

We evaluated the performance of our bi-clustering algorithm using both simulated data and real brain data mentioned

in this manuscript. In this step, we performed four evaluations, including (1) ability to identify the subsets of patients

under different regulation context; (2) evaluation to false discovery ratio of bi-cluster analysis; (3) impact of co-

expression correlation cutoffs on analysis results; (4) evaluation using independent normal brain tissues. Additionally,

we also did one evaluation to the existence of neuronal loss in the data used in this work.

2.1 Ability to identify the subsets of patients under different regulation context

To test if our bi-clustering algorithm grouped the subset of patients under different regulation context, we generated

a simulated data under different regulation context with r codes are like following:

> x1=rnorm(200 ,1 , 1 )

> mx11 = t ( sapply ( 1 : 1 0 0 , function ( i ) x1 + rnorm ( 200 , 1 , 0 . 4 + rnorm(1 , 0 , 0 . 0 1 ) ) ) )

> mx12 = t ( sapply ( 1 : 1 0 0 , function ( i ) x1 + rnorm ( 200 , 1 , 1 . 5 + rnorm(1 , 0 , 0 . 0 1 ) ) ) )

> mx21 = t ( sapply (1 : 14900 , function ( i ) x1 + rnorm(200 ,1 ,5 + rnorm(1 , 0 , 0 . 0 1 ) ) ) )

> mx22 = t ( sapply (1 : 14900 , function ( i ) x1 + rnorm(200 ,1 ,5 + rnorm(1 , 0 , 0 . 0 1 ) ) ) )

> mx=rbind (cbind (mx11 , mx12 ) , cbind (mx21 , mx22 ) )

> # the matrix has a form of

> # mx11 | mx12

> # −−−− −−−−

> # mx21 | mx22

> row .names(mx) <− paste ( ”g” ,1 : 15000 , sep=”” )

> colnames (mx) <− paste ( ”p” , 1 : 400 , sep=”” )

In this simulated data, “mx11” represents the subset of gene-patient combination under strict regulation (median

𝑟 = 0.86) while “mx12” represents the subset with regulation loss (median 𝑟 = 0.31). “mx21” and “mx22” are the gene

without regulation and they are used as background. We generated such simulated data for 100 times and performed

bi-clustering analysis. We summarized the analysis results and found that our algorithm accurately predicted all the

true clusters for both patient and genes (100% accuracy, no figure is showed).

As a technical evaluation, this result suggested that our bi-clustering algorithm has good ability to identify subjects

under different regulation contexts and our algorithm can identify the subset of AD patients under different regulation

context.

2.2 Evaluation to false discovery ratio of bi-cluster analysis

Bi-clustering analysis is a NP (nondeterministic polynomial time) problem in algorithm design. Our tool applies an

approximating implement by moving out subjects one by one to reach a maximum number of TF-regulated genes (or

TF-gene pairs) under a strict threshold. One concern is about its false discovery ratio or if its prediction results are

only due to technical bias. We performed two evaluations using simulated data and real data.
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  p1 p2 p3 p4 p5   p1 p2 p3 p4 p5 

g1 1 2 3 4 5 g1 3 4 1 2 5 

g2 6 7 8 9 10 g2 9 8 7 6 10 
g3 11 12 13 14 15 g3 14 15 12 13 11 

g4 16 17 18 19 20 g4 20 18 19 16 17 

shuffle 
Bi-

clustering 
analysis 

  p1 p2 p3 p4 p5 p6 p7 p8   p4 p5 p6 p7 p8 
g1 1 2 3 4 5 6 7 8 g1 4 5 6 7 8 
g2 9 11 8 12 13 14 15 16 g2 12 13 14 15 16 

g3 19 16 19 20 21 22 23 24 g3 20 21 22 23 24 
g4 25 21 27 28 29 30 31 32 g4 28 29 30 31 32 

g5 39 34 35 36 37 38 39 40 g5 36 37 38 39 40 

(a) 

(b) 

Bi-
clustering 
analysis 

r>0.4 

subset 

Figure 1: Evaluation to false discovery ratio of predicted regulation. (a) The gene expression data were shuffled to
disrupt the TF-gene regulation and then checked if any false regulation would be predicted. Here, we did not observed
any false prediction even when loosed cutoff was used. (b) We filtered the subjects with TF regulation (e.g. p1,p2,p3)
and did another round of bi-clustering analysis using the only non-regulated subjects. We did not observed any new
TF-gene regulation.

In the first evaluation, we randomly shuffled the gene expression data so that each gene had true gene expression

values but wrong assignment to patients. In such simulated data, the TF-gene regulation was supposed to be completely

disrupted by shuffling. We did bi-clustering analysis to check if any TF-gene regulation could be falsely identified by

our algorithm. We relaxed the co-expression correlation cutoff to to |𝑟| > 0.4 and the others are the exact same

parameter setting mentioned in the manuscript. The whole evaluation process, from data shuffling to bi-clustering

analysis, was repeated for 100 times. We summarized the results and did not find any predicted TF-gene regulation,

including weakened and missed regulation (see Figure 1(a)). This result suggests that the predicted regulation loss is

not due to technical bias of strict cutoffs.

We did another evaluation by performing second-round bi-clustering analysis to the subjects without TF regulation.

The TF regulation statuses were determined based on the bi-clustering analysis results using AD expression data. We

extracted subjects with weakened or missed TF regulation to form a new dataset as the input. To make sure of good

confidence, we filtered the datasets with less than 100 subjects. Using the same parameter setting, including a cutoff of

|𝑟| > 0.8, we did second round of bi-clustering analysis to check if there was any new WR or MR regulation patterns.

This process was performed for four brain regions, including 316 TFs in total. We did not find any pattern of WR or

MR for studied TFs, where some samples were under strict TF-gene regulation while regulation loss was observed in

remaining samples (see Figure 1(b)). This result suggests that there is no alternative solution for the same TFs.

Overall, our evaluation suggests that the predicted TF-gene regulation is almost impossibly resulted from technical

biases and there is no alternative solution for bi-clustering analysis results.

2.3 Impact of different cutoffs on the bi-clustering analysis result

In bi-clustering analysis, we have to set some arbitrary cutoffs to predict the TF-gene regulation. Among them,

co-expression correlation is the most critical one. It needs an evaluation for the cutoff selection.
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Figure 2: Impact of different cutoffs on the bi-clustering results. (a) The frequency of TF regulation types predicted at
four different cutoffs. We observed that when |𝑟| > 0.6 or |𝑟| > 0.9 was set, about half of TFs were assigned with types
of DR or NR, and they would not be evaluated for weakened or missed regulation, leading to low power of bi-clustering
analysis. (b) Weakened and missed regulator predicted at 4 cutoffs. The y-axis indicated the co-expression correlation
difference between TF-regulated subjects (r1) and the ones with TF regulation loss (r2). Red arrows mark the DR
TFs predicted at a cutoff of |𝑟| > 0.6. We found that most of DR regulation predicted at |𝑟| > 0.6 could get weakened
or missed at |𝑟| > 0.8, which suggested the missed power at |𝑟| > 0.6.

Using the AD expression data mentioned in the manuscript, we did bi-clustering analysis at four cutoffs, including

|𝑟| > 0.6, 0.7, 0.8, 0.9. We summarized the types of predicted TF-gene regulation (see Figure 2(a)). At a cutoff of

|𝑟| > 0.6, 40% of TFs were predicted with dominant regulation types. On the contrary, 50% of TFs take no regulatory

roles at a cutoff |𝑟| > 0.9. This result suggests that cutoff selection has great influence on the analysis results. Although

there is no golden standard to choose the proper cutoff, it seems that that too strict or loosed cutoff would result to

more false negative discovery. Under our setting, only MR and WR TFs are evaluated for regulation loss. Too loosed

or strict cutoffs could lead to low power to identify AD relevant TF regulation.

To further evaluate the cutoff selection, we checked if the DR TFs predicted at |𝑟| > 0.6 had regulation loss at

stricter cutoffs. In Figure 2(b), we show their regulation status at a cutoff of |𝑟| > 0.8. We found that most of DR TFs

predicted at |𝑟| > 0.6 could get lost or weakened at |𝑟| > 0.8 and the correlation value differences are big enough for a

conclusion of regulation loss. This result suggests that the prediction at |𝑟| > 0.6 has many false negative discoveries.

We also evaluated the cutoff of |𝑟| > 0.7 and still found more false DR regulation, which caused the lower power

than the prediction at |𝑟| > 0.8. On the contrary, many regulation loss were assigned with types of NR at |𝑟| > 0.9,

suggesting a the missed power in identifying regulation loss.

Overall, our results suggest too loosed or strict cutoffs can lead to low power; 𝑟 > 0.8 is a good cutoff for the data

used in this study.
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Figure 3: Bi-clustering analysis can recover the TF gene regulation in the normal brain tissue. (a) Bi-clustering
analysis reports more DR regulation in all three normal brain tissues than the AD sample. This result suggests that
regulation loss is less observed among normal cohorts. (b-c) Co-expression correlations of TF-gene pairs were improved
after bi-clustering analysis. TF-gene regulation were firstly predicted by co-expression analysis to normal brain tissues
and then their correlations were checked before and after bi-clustering analysis to AD samples. Here, three exemplary
TFs were showed and we observed clear improvement of overall co-expression profiles after bi-clustering analysis. This
result suggests that bi-clustering analysis could recover the TF-gene regulation in the normal brain tissues.
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2.4 Evaluation using brain normal tissues

We test if the prediction of our algorithm could reflect the disease regulation status. We evaluated it based on an

assumption that there should be less regulation loss prediction in normal brain tissues than AD samples. We collected

RNA-seq data of three normal brain tissues from GTEx project (https://gtexportal.org/home/), include the regions

of frontal cortex, cerebellum, cerebellar hemisphere. We did the bi-clustering analysis using our algorithm under the

same parameter setting. In Figure 3(a), we showed the frequency distribution of predicted regulation types. We found

that DR was major regulation type of normal brain regions, account for 50%-70% of expressed TFs. The observed

regulation loss was more likely due to the non-disease relevant factors, e.g. cell types and ages. Comparing to the

results of AD data, this result is consistent with our assumption about less regulation loss.

Another evaluation was to check if bi-clustering analysis could recover the regulation discovered in the normal

tissues. This evaluation is based an assumption that AD is associated with disruption of TF-gene regulation of normal

brain. Therefore, we firstly collected the TF-gene regulation of normal brain tissues by co-expression analysis to normal

brain expression data. The top 200 positively correlated genes were selected as biomarkers for TF regulatory activity in

normal brain. Then, we evaluated the biological relevance of bi-clustering analysis results by checking if the normal TF-

gene regulation could be recovered by our algorithm. Therefore, we compared their TF-gene co-expression correlation

changes before and after analysis. Figure 3(b-d) showed three exemplary TFs and their correlation distribution with

the biomarker genes. We observed that the co-expression correlation was greatly improved after bi-clustering analysis.

These results suggest that the bi-clustering analysis can recover the true TF mediated regulation from the AD patients;

the predicted regulation loss is relevant to disease.

Overall, our evaluations suggested that regulation loss was more observed in AD patients; our algorithm can recover

the regulation of normal brain tissues from AD samples.

2.5 Evaluation to Neuronal loss

Neuronal loss can be a confounding factor for the bi-clustering analysis results. Therefore, we computationally evalu-

ated the existence of neuronal loss among the samples used in this work.

First, we searched the published system biology papers of large-scale AD samples. The first large-scale AD study

was published in 2013 [3]. Other papers included [4], [5], [6], [7]. In three of them, neuronal loss was mentioned and

evaluated. Unfortunately, no effective solution was given to remove its effects. Among the papers with evaluation,

there was no report about strong biases of their analysis results due to neuronal loss.

Then, we collected the brain cell expression data from Barres’ lab [8]. We selected 68 brain-cell-type-specific

biomarker genes for seven brain cell types and used the methods introduced in [9] to cluster the samples. In this

process, the biomarker genes were selected if they highly-expressed in only one of seven brain cell types. We checked

if there was any sample with clear deviation to other samples, especially the normal samples. We found that AD

patients and normal samples had overall similar expression profiles, and did not find any clear clusters with distinct

expression profiles or any clusters of biomarker gene (see Figure 4)(a). PCA analysis using multiple component fails

to indicate any clear pattern to support the cell type difference. We also did hierarchical clustering and PCA analysis

using top 2000 genes with the most expression variances. The similar results were observed (result is not showed for

the similar pattern like Figure 4) and no evidence supported the existence of neuron loss or other confounding factors.
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Figure 4: Computational evaluation of neuronal loss using brain cell-type-specific genes. (a) Hierachical clustering
using 68 cell-type-specific genes. From the plot, we did not see any clustering of any cell types or cell-type-specific
genes; (b) PCA plots for all the brain samples at different dimensions. NP1: a comprehensive diagnose of AD
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Overall, our results did not support the existence of extreme neuronal-loss cases.
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Figure S1: Clinical information of AD subjects. RNA-seq expression data for 945 autopsied samples from 364 subjects
in four brain regions: frontal pole (BA10), superior temporal gyrus (BA22), parahippocampal gyrus (BA36) and
frontal cortex (BA44). PMI: Post-Mortem Interval; NP.1: Neuropathology Category.

12



11%
11%
11%
11%
20%
17%
16%
26%
22%
23%
18%
40%
34%
31%
35%
35%
29%
36%
37%
29%
28%
32%
39%
25%
31%
27%
42%
44%
33%
39%
46%
35%
29%
26%
30%
26%
31%
30%
24%
32%
34%
32%
23%
22%
29%
29%
27%
20%
22%
18%
18%
19%
20%
37%
22%
30%
28%
33%
25%
29%
21%
20%
46%
54%
68%
50%
43%

ZNF112
FOSL2
BACH1
ZNF24
TAF10
STAT5B
KLF2
GLI2
FOXJ1
MLX
ZKSCAN5
CGGBP1
ZFP14
ZNF415
RAD21
CREBRF
ZBTB14
ZNF639
ZNF148
ZFP30
ARID4A
ZNF518B
CREBL2
ZNF583
RCAN1
E2F6
ZBTB16
HLTF
GTF2H3
ZNF92
ZNF267
ZNF213
HSFX1
HR
TAF6
ZNF135
PPARD
NPAS2
ZNF628
SP3
GABPA
SMAD2
IKZF5
AFF4
ZNF322
ZNF302
IRF5
ZNF879
ZNF790
BTAF1
CREM
PGR
BCL6
PPARA
NFATC4
NFATC1
ALX4
RNF4
ZNF419
ATF4
ZSCAN23
TARDBP
CREB3
NUCKS1
ZNF711
MEF2D
PLSCR1

0
10
20
30
40
50

0 200 400 600

Reg
Yes

Figure S2: Regulation status of predicted regulators. Each bar in column indicates one subject and rows represents the
regulation loss regulators. From this figure, we observe that TFs have different regulation status in selected subjects.
This results suggests that transcription regulation loss is not specific to some AD patients but a general phenomenon
during AD genesis and progression.
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where the significance was 𝑝 = 6.01𝑒−5, 3.8𝑒−2, 8.32𝑒−5𝑎𝑛𝑑1.78𝑒−4 for BA10, BA22, BA36 and BA44, respectively.

14



0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

BM10

Regulator number / gene

Fr
eq

ue
nc

y

0 20 40 60 80
0.

0
0.

2
0.

4
0.

6
0.

8

BM22

Regulator number / gene

Fr
eq

ue
nc

y

0 20 40 60 80

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

BM36

Regulator number / gene

Fr
eq

ue
nc

y

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

BM44

Regulator number / gene

Fr
eq

ue
nc

y

Figure S4: WR and MR regulators take dominant regulatory roles. 43% of genes are regulated by only one regulator
and 80% are regulated by less than 5 regulators. Only very TFs take broad regulatory roles.
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Figure S5: Ubiquitin-proteasome system is disturbed by transcriptional regulation loss. Here, the KEGG pathway
“Ubiquitin Mediated Proteolysis” is marked for the dysregulated genes
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Figure S6: RLB is associated with the clinical outcomes. Here, the RLB is calculated using all the TFs, including
the ones without any AD association. A moderated clinical association was observed for RLB with the clinical traits,
especially cdr and plagues.
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Figure S7: RLB better indicates clinical outcomes than genes, transcription factors and WGCNA modules. Here three
clinical traits, including CDR, Plaque, Braak scores, were used.
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Figure S8: Regulation loss indicated by histone modification mark, H4K16ac. H4K16ac is a mark of active transcription
and its ChIP-seq data were collected from published work [4]. (a) More regulation loss was observed based on H4K16ac
peaks; (b) Regulation loss of H4K16ac peaks is greatly overlapped with the dysregulated genes identified in bi-clustering
analysis.
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Figure S10: ChIP-seq peak loss of three TFs is overlapped with the predicted dysregulated genes. In this step, we
collected the genes that were predicted to be regulated by (a) THRA1 (b) Olig2 and (c) ATF4. We checked their
overlaps with the nearby genes of ChIP-seq peaks. Fisher’s exact test was used to evaluate the significance. Significant
overlaps were observed with THRA1 and ATF4. Here, only weak overlaps were observed, this might be caused by the
many dysregulation TF regulation happened in the enhancer regions [6].
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