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Abstract

Protein structures provide basic insight into how they can interact with other
proteins, their functions and biological roles in an organism. Experimental methods
(e.g., X-ray crystallography, nuclear magnetic resonance spectroscopy) for predict-
ing the secondary structure (SS) of proteins are very expensive and time consum-
ing. Therefore, developing efficient computational approaches for predicting the
secondary structure of protein is of utmost importance. Advances in developing
highly accurate SS prediction methods are mostly constrained in 3-class (Q3) struc-
ture prediction. However, 8-class (Q8) resolution of secondary structure contains
more useful information and is much more challenging than the Q3 prediction. We
present SAINT, a highly accurate method for Q8 structure prediction, which in-
corporates self-attention mechanism (a concept from natural language processing)
with the Deep Inception-Inside-Inception (Deep3l) network in order to effectively
capture both the short-range and long-range dependencies among the amino acid
residues. SAINT offers a more interpretable framework than the typical black-box
deep neural network methods. We report, on an extensive evaluation study, the
performance of SAINT in comparison with the existing best methods on a collec-
tion of benchmark dataset (CB513, CASP10, and CASP11). Our results suggest
that self-attention mechanism improves the prediction accuracy and outperforms
the existing best alternate methods. SAINT is the first of its kind and offers the
best known Q8 accuracy and interpretable results. Thus, we believe SAINT rep-
resents a major step towards the accurate and reliable prediction of secondary
structures of proteins. We have made SAINT freely available as open source code
at https://github.com/SAINTProtein/SAINT.
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1 Introduction

Proteins are bio-molecules made of long chains of amino acid residues connected by
peptide bonds. The functions of proteins are usually determined by the their tertiary
structure and for determining the tertiary structure and related properties, the secondary
structure information is crucial. Protein structure can be experimentally determined
by X-ray crystallography and multi-dimensional magnetic resonance in laboratory, but
these methods are very costly and time consuming and are yet to be consistent with
the proliferation of protein sequence data [1]. Thus, the proteins with known primary
sequence continue to outnumber the proteins with experimentally determined secondary
structures. The structural properties of a protein depend on its primary sequence [2-5],
yet it remains as a difficult task to accurately determine the secondary and tertiary
structures of proteins. Hence, the problem of predicting the structures of a protein —
given its primary sequence — is crucially important and remains as one of the greatest
challenges in computational biology.

Secondary structure — a conformation of the local structure of the polypeptide back-
bone — prediction dates back to the work of Pauling and Corey in 1951 [6]. The secondary
structures of proteins are traditionally characterized as 3 states (Q3): helix (H), strand
(E), and coil (C). Afterwards, a more fine-grained characterization of the secondary struc-
tures was proposed [7] for more precise information by extending the three states into
eight states (Q8): a-helix (H), 3jp-helix (G), m-helix (I), S-strand (E), isolated S-bridge
(B), turn (T), bend (S), and Others (C). Q8 prediction is more challenging and can reveal
more precise and high resolution on the structural properties of proteins.

Protein secondary structure prediction is an extensively studied field of research [8-
30]. Developing computational approaches (especially using machine learning techniques)
for 3-state SS prediction has a long history which dates back to the works of Qian &
Sejnowski [8] and Holley & Karplus [9] who first used neural networks to predict SS. In
the 1980s, only statistical model based methods were used on raw sequence data which
could ensure Q3 accuracy merely below 60%. Afterwards, significant improvement was
achieved [10H12| by leveraging the evolutionary information such as the position-specific
score matrices (PSSM) derived from multiple sequence alignments. Subsequently, many
machine learning methods have been developed for Q3 prediction which include support
vector machines (SVM) [1315,131], probabilistic graphical models [16}32,|33], hidden
Markov models [17,/18], bidirectional recurrent neural networks [19-22,|34}35], and deep
learning frameworks [23].

The performance of Q3 prediction methods has approached the postulated theoretical
limit [24]. At the same time, there has now been a growing awareness that 8-state predic-
tion can reveal more valuable structural properties. As such, the interest of the research
community has recently shifted from Q3 prediction to relatively more challenging Q8 pre-
diction. Quite a few deep learning methods for Q8 prediction have been proposed over
the last few years |19)25/26/28-30,36]. To the best of our knowledge, the first notable suc-
cess in Q8 prediction methods was SSpro8 [19] which was published in 2002 and achieved
63.5% Q8 accuracy on the benchmark CB513 dataset [37], 64.9% on CASP10 and 65.6%
on CASP11 [25]. Later in 2011, RaptorX-SS8 [36], another 8 state predictor using con-
ditional neural fields, surpassed SSpro8 by demonstrating 64.9% Q8 accuracy on CB513.
In 2014, Zhou and Troyanskaya [26] highlighted the challenges in 8-state prediction and
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obtained 66.4% Q8 accuracy on CB513 dataset using deep generative stochastic network
(GSN). One of their major contributions was making their training dataset CB6133 pub-
licly available. Afterwards many used their dataset for training various deep learning
architectures and tried to improve Q8 accuracy on the CB513 dataset. Some of the
notable works include deep conditional random fields (DeepCNF) [25], cascaded convolu-
tional and recurrent neural network (DCRNN) [27], next-step conditioned deep convolu-
tional neural network (NCCNN) [28], multi-scale CNN with highway (CNNH_PSS) [29],
deep inception-inside-inception (Deep3l) network named MUFOLD-SS [30], and Deep-
ACLSTM ([38] with an asymmetric convolutional neural networks (ACNNs) combined
with bidirectional long short-term memory (BLSTM). CRRNN (Convolutional, residual,
and recurrent neural network) [39] represents another class of methods that uses vari-
ous physical properties (e.g., e.g., steric parameters (graph-shape index), polarizability,
normalized van der Waals volume, hydrophobicity, etc.) in addition to the primary se-
quence and position-specific scoring matrix (PSSM). Although these works demonstrate
a steady improvement in the published Q8 accuracy over the past few years, the improve-
ments across successive publications are very small. Yet, these small improvements are
considered significant given the high complexity of 8-state SS prediction.

Usually the models that focus more on short range dependencies (local context of the
amino acid residues) face difficulties in effectively capturing the long range dependencies
(interactions between amino acid residues that are close in three-dimensional space, but
far from each other in the primary sequence) [22,27,/40]. Various deep learning based
models have been leveraged to handle the long-range interactions by using recurrent or
highway networks [28}/29], deeper networks with convolutional blocks [30], long short-term
memory (LSTM) cells [22,27], whereas the short-range interactions have been handled by
convolutional blocks of smaller window size [27,28,30]. These methods circumvent some
challenging issues in capturing the non-local interactions, but have limitations of their
own. Models, using recurrent neural networks to capture long range dependencies, may
suffer from wvanishing gradient or exploding gradient problems [41-44]. Moreover, these
methods may fail to effectively capture the dependencies when the sequences are very
long [45]. Furthermore, as the models grow deeper, the number of parameters also grows
which makes it prone to over-fitting. It is also likely that the short range relationships
captured in the earlier (shallow) layers may disappear as the models grow deeper [29]. As
a result, developing techniques which can capture both long-range and short-range de-
pendencies simultaneously is of utmost importance. Another limiting factor of the deep
learning methods is that the high accuracy comes at the expense of high abstraction
(less interpretability) due to their black-box nature [46-49]. Although there has been a
flurry of recent works towards designing deep learning techniques for bio-molecular data,
no notable attempt has been made in developing methods with improved interpretablity
and explainability — models that are able to summarize the reasons of the network be-
havior, or produce insights about the causes of their decisions and thus gain trust of users.

In this study, we present SAINT (Self-Attention Augmented Inception Inside Incep-
tion NeTwork) — a novel method for 8-state SS prediction which uniquely incorporates
the self-attention mechanism [50] with a state-of-the-art Deep Inception-Inside-Inception
(Deep3l) network [30]. We proposed a novel architecture called attention-augmented 31
(2A3I) in order to capture both the local- and long-range interactions. SAINT was com-
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pared with a collection of the best alternate methods for Q8 prediction on the publicly
available benchmark dataset (CB513, CASP10, and CASP11). It demonstrated Q8 ac-
curacy (70.9% on CB513, 74.7% on CASP10, 73.3% on CASP11) that is superior than or
indistinguishable from the other state-of-the-art methods, and obtained high precision,
recall and F'l1-score for individual states. Moreover, SAINT provides interesting insights
regarding the interactions and roles of amino acid residues while forming secondary struc-
tures, which help to interpret how the predictions are made. Hence, we have made the
following significant contributions: 1) we, for the first time, successfully translated the
success of self-attention mechanism from natural language processing to the domain of
protein structure prediction, and demonstrated that self-attention improves the accuracy
SS prediction, 2) introduced a method which can capture both the short- and long-range
dependencies, and offers the best known Q8 accuracy, and 3) improved the interpretabil-
ity of the black-box deep neural network based methods which are often criticized for
lack of interpretability.

2 Materials and Methods

2.1 Feature Representation

SAINT takes a protein sequence feature vector X = (z1, 29,23, ...,2y) as input, where
1;6R%(d = 43) is the vector corresponding to the i'" residue, and it returns the protein
structure label sequence vector Y = (yi1, 42, ¥s, ..., Yyn) as output, where y; € R® (s = 8)
is the structure label (one of the eight possible states) of the i residue. The dimension of
z; is 43 as this is the concatenation of both sequence information z_seq; € R%<1(d,,, = 22)
and evolutionary information z_pssm; € R%=m (d,, = 21) of the i’ residue. In the
training dataset C'B6133, each protein is encoded as a vector of dimension 700, and
so the proteins having less than 700 amino acid residues are padded with NoSeq at the
end [26]. Proteins containing more than 700 residues are excluded from CB6133, however
CB513 contains a protein having more than 700 amino acids and it is splited into two
overlapping sequences. The sequence information z_seq is encoded as a 22-dimensional
one-hot vector, where 21 dimensions represent 21 different amino acids (including ‘X’
for unknown or unspecified amino acids) and the remaining dimension is for NoSeq
marker (a marker used for padding the sequence). The evolutionary information x_pssm
is represented in the form of a position specific scoring matrix (PSSM) [12]. To generate
PSSM, PSI-BLAST [51] was run against Uniref90 database [52] with inclusion threshold
0.001 and three iterations. PSI-BLAST returns PSSM matrix of dimension L x 21, where
L is the size of a protein query sequence. This feature representation is similar to what
was proposed by Zhou and Troyanskaya [26], and was subsequently used by [25,[27-29).

2.2 Architecture of SAINT

The architecture of SAINT can be split into three separate discussions: 1) the architecture
of our proposed self-attention module, 2) the architecture of the existing inception mod-
ule and the proposed attention augmented inception module, and finally 3) the overall
pipeline of SAINT.
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Figure 1: Architecture of the self-attention module used in SAINT.

2.2.1 Self-Attention module

Attention mechanism implies paying attention to specific parts of input data or features
while generating output sequence [50,53]. It calculates a probability distribution over the
elements in the input sequence and then takes the weighted sum of those elements based
on this probability distribution while generating outputs.

In self-attention mechanism [50,54,55], each vector in the input sequence is trans-
formed into three vectors- query, key and wvalue, by three different functions. Each of the
output vectors is a weighted sum of the value vectors, where the weights are calculated
based on the compatibility of the query vectors with the key vectors by a special function,
called compatibility function (discussed later in this section).

The self-attention module we designed and augmented with the inception modules is
inspired from the self-attention module proposed by Vaswani et al. [50] and is depicted
in Fig. . Our self-attention module takes two inputs: 1) the features from the previous
inception module, € Rdprotein X dieature and 2) position identifiers, pos_id € Ré%retein  where
dprotein 1s the length of the protein sequence, and d feqture is the length of the feature vector
for each position coming from the previous layer or module.

Positional Encoding Sub-module. The objective of positional encodings is to
inject some information about the relative or absolute positions of the residues in a
protein sequence. The Positional Encoding PE,, for a position pos can be defined as
follows [50].

PE (pos 2i) = sin(pos /100007 Areature) (1)

PE(posQi—i—l) — Cos<p08/100002i/dfeature) (2)

where 7 is the dimension. We used such function as it may allow the model to easily learn
to attend by relative positions since for any fixed offset k, PE,,s;1 can be represented
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Figure 2: Architecture of the scaled dot-product attention sub-module.

as a linear function of PE,, [50]. For every position pos, PE,,s has the dimension
Aprotein X A feature- The output of positional encoding is added with the inputs x, resulting
in new representations h (see Eqn. |3)) which contain not only the information extracted
by the former layers or modules, but also the information about individual positions.

hpos = Tpos + PEpos- (3)

Scaled dot-product attention sub-module The input features in this sub-module,
h € Réprotein X dseature are first transformed into three feature spaces @, K and V, repre-
senting query, key and value respectively, in order to compute the scaled-dot attention,
where Q(h) = Wgh, K(h) = Wkh, V(h) = Wyh. Here Wy, Wi, Wy, are parameter
matrices to be learned.

Among various compatibility functions (e.g. scaled dot-product attention [50], additive-
attention [b3], similarity-attention [56], multiplicative-attention [57], biased general at-
tention [58], etc.), we have chosen the scaled dot-product attention as it showed much
promise in case of sequential data. Vaswani et al. [50] showed that in practice, the dot-
product attention is much faster and space-efficient as it can be implemented using highly
optimized matrix multiplication code, though theoretically both dot-product and addi-
tive attention have similar complexity. Scaled dot-product s;; of two vectors h; and h;
is calculated as shown in Equation [4

sy = LOIRC) )

where dg is the dimension of the feature space K. The numerator of the equation,
Q(h;)K (hj)T is the dot product between these two vectors, resulting in the similarity
between them in a specific vector space. Here v/dg is the scaling factor which ensures
that the result of the dot product does not get prohibitively large for very long sequences.
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The attention weights e € R¥rotein X djeature gre calculated as shown in Equation ,
where e;; represents how much attention have been given to the vector at position i
while synthesizing the vector at position j.

exp(Si ;)
dp'rotein (5)
et erp(si;)

i =

The attention distribution e is multiplied with the feature space V' and then in order to
reduce the internal covariate shift this multiplicand is normalized using batch normal-
ization [59], producing g, the output of the scaled dot-product attention sub-module,
following the Equation [6]

dp'rotein
g; = BatchNorm( Z ejiV (h;)) (6)

n=1

Here, BatchNorm is the batch-normalization function and g; is the j-th vector in the
output sequence of this sub-module. Finally, according to the Equation [7, the output
of the scaled dot-product attention module g is multiplied by a scalar parameter «, the
original input feature map x is multiplied by (1 — «) and these two multiplicands are
summed to synthesize the final output y.

yi = (@)gi + (1 —a)x; (7)

where y; is the ¢th output and « is a learnable scalar. By introducing weighed sum of
g; and z;, we give our model the freedom to chose how much weight should be given to
each of the features maps, ¢g; and z; while generating the output ;. The optimal value
of the parameter « is learnt through back propagation along with the rest of the model.

We have observed in our experiments that the final results are not much sensitive to
the initial choice of a. In most cases the training learns a value for o within the range
0.18 ~ 0.3. However, the further away the initial value « is from the above mentioned
range, the longer it takes for the model to converge. As such, for quick reproducibility of
our model, we have set the initial value of o to 0.2 in our model training scripts.

2.2.2 Attention augmented inception-inside-inception (2A3I) module

A novel deep convolutional neural network architecture, Inception, was first introduced
by Szegedy et al. [60], which demonstrated state-of-the-art performance for image clas-
sification and detection. An inception module has several branches, each having one or
more convolutional layers. Fang et al. used an assembly of inception modules, which
they call Inception-inside-Inception (31 module), in their proposed method MUFOLD-
SS to predict protein secondary structure. They tried to leverage the inception blocks
to retrieve both short-range and long-range dependencies and achieved the best known
accuracy at the time. However, convolutional layers cannot capture enough information
about long-range similarities or dependencies among feature vectors of a sequence, syn-
thesized by a certain level of the network [61]. In protein secondary structure prediction,
this issue leaves more impact on the overall accuracy when the sequence grows in length.
Though these types of neural networks that use only convolutional layers need to be
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deeper to capture the long range dependency, it is often not feasible to add arbitrarily
large numbers of layers. Moreover, the authors of MUFOLD-SS showed that using more
than two inception-inside-inception modules sequentially does not result into significant
increase in the overall accuracy, rather increases the computational expense. Earlier
works [19,[201[22,[27./62,/63] used Recurrent Neural Network(RNN) based architectures for
capturing global features, but incorporating RNN or its derivatives (Gated Recurrent
Units (GRU) [64], Long Short Term Memory (LSTM) [65]) inside 3I module would es-
calate the complexity and computational cost of the model. Therefore, we incorporated
the self-attention mechanism to effectively capture both the short-range and long-range
dependencies and to bring a better balance between the ability to model long-range de-
pendencies and the computational efficiency. We placed our self attention modules in
each branch of the 3I module as shown in Figure |3 We call this an attention augmented
inception-inside-inception (2A3I) module.

Concatenate

‘ . Inception Module
Self-Attention
Module

Figure 3: Architecture of our proposed 2A3I module by augmenting self-attention within
the inception-inside-inception (3I) network.

2.2.3 Overview of SAINT

A schematic diagram of the overall architecture of SAINT is depicted in Fig. |4 SAINT
starts with two consecutive 2A3I modules followed by a self-attention module to sup-
plement the non-local interactions captured by the initial two 2A3I modules. We also
observed that this attention module helps achieve faster learning rate. MUFOLD-SS used
one convolutional layer with window size 11 after two 31 modules. The level of long-range
interactions being captured varies with varying lengths of the window. However, we ob-
served that using window size larger than 11 increases the computational cost without
significantly increasing the performance. As a result, we used similar convolutional layer
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as MUFOLD-SS. However, we included another self-attention module after the convo-
lutional layer to help capture the relations among vectors that the convolutional layer
failed to retrieve. The last two dense layers in the MUFOLD-SS were also used in SAINT.
However, we placed an attention module in between the two dense layers. We did so to
understand how the residues align and interact with each other just before generating
the output. This paves the way to have an interpretable deep learning model (as we will

discuss in Sec. (3.2.1)).

Sequence
feature

(One-hot
vector) ‘/

Secondary
2A31 2A31
Dense Dense
Module Module Structure

Profile Conv (1)
Feature

(PSSM)
ﬂ Self-Attention Module

Softmax

Concatenate

Figure 4: A schematic diagram of the overall architecture of SAINT. It comprises
two 2A3I modules, three self-attention modules, convolutional layers with window size
11 and two dense layers.

3 Results and discussion

We performed an extensive evaluation study, comparing SAINT with a collection of state-
of-the-art Q8 prediction methods on three publicly available benchmark dataset.

3.1 Dataset

We evaluated SAINT on three publicly available and widely used benchmark dataset:
CB513, CASP10 and CASP11. We trained our model on a subset of the publicly avail-
able CB6133 dataset [66] which was carefully and appropriately filtered by Zhou and
Troyanskaya [26].
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3.1.1 CB513

CB513 dataset is developed by Cuff and Barton [37] and comprises 513 protein sequences
and 84,107 residues. It is the most widely used benchmark dataset for evaluating protein
secondary structure prediction methods [25-30,,38]. This dataset, preprocessed by Zhou
and Troyanskaya [26], is publicly availabe at https://www.princeton.edu/~jzthree/
datasets/ICML2014/ (last accessed June, 2019).

3.1.2 CASP

CASP stands for Critical Assessment of protein Structure Prediction. This is an bien-
nial competition for protein strcuture prediction and a community wide effort to ad-
vance the state-of-the-art in modelling protein structure from its amino acid sequences
since 1994 [67]. Among the CASP datasets, we analyzed the widely used CASP10 and
CASP11 dataset which contains 123 and 105 domain sequences respectively. They are
publicly available at https://github.com/icemansina/IJCAI2016 [27] (last accessed
June, 2019).

3.1.3 CB6133

This dataset was originally produced with PISCES CullPDB server [66] containing 6128
proteins. Zhou and Troyanskaya later modified the dataset by retrieving those proteins
sharing less than 30% identity and having better than 2.5A resolution and made the
dataset publicly available [26]. Since some sequences of CB6133 and CB513 were homolo-
gous, CB6133 was not directly used for training to ensure a fair evaluation. The sequences
having > 25% sequence similarity with CB513 were filtered from CB6133, resulting into
a set of 5534 proteins. Among the remaining ones, some were duplicates which were
removed by the authors [68] and thus a collection of 5365 protein sequences remained.
The filtered and duplication free dataset is available at: https://www.princeton.edu/
~jzthree/datasets/ICML2014 named as ‘cullpdb+profile_5926_filtered’. We used this
filtered dataset to train SAINT.

3.2 Results on benchmark dataset

We compared SAINT with a collection of existing popular Q8 predictors: SSPro8 [19),
RaptorX-SS8 [36], DeepGSN [26], DeepCNF [25], DCRNN [27], NCCNN [2§],
CNNH_PSS [29], CBRNN [63] and MUFOLD-SS [30]. Another relevant method CR-
RNN [39] reported 71.4% accuracy on the CB513 dataset but its training dataset is
twice as large as the one used by the other methods, and uses several extra features
including seven physical properties (e.g., steric parameters (graph-shape index), polariz-
ability, normalized van der Waals volume, hydrophobicity, isoelectric point, helix prob-
ability, and sheet probability). Therefore, similar to other studies |38, 68|, we exclude
CRRNN from the evaluation study to ensure a fair comparison. MUFOLD-SS, which
achieves one of the best known Q8 accuracies, was not trained on the filtered CB6133.
Rather the authors used their own dataset consisting of 9581 proteins from the CullPDB
dataset [66], of which 9000 proteins were used for training and 581 for validations. Since
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the source code and the dataset used for training are not publicly available, we imple-
mented their method and trained it on the filtered CB6133 dataset. In the spirit of
reproducible research, we made our implementation of MUFOLD-SS freely available at
https://github.com/SAINTProtein/MUFOLD-SS. The comparison of SAINT with other
well-known existing methods on CB513, CASP10 and CASP11 is shown in Table[I] The
reported accuracies for various methods are based on training the models on the CB6133
dataset, and are obtained from respective publications. SAINT achieves 70.91% Q8 ac-
curacy on the benchmark CB513 dataset, outperforming all the methods by a significant
margin. MUFOLD-SS was the second best method with 70.5% accuracy. The accuracy of
MUFOLD-SS was also reported to be 70.5% in [39]. However, the accuracy was reported
to be 70.63% when it was trained on a much larger dataset containing 9000 proteins [30].
Irrespective of the choice of training dataset for MUFOLD-SS, SAINT is much better
than MUFOLD-SS. In addition to the model accuracy, we also investigated the precision,
recall and F'l-score to obtain better insights on the performances of various methods.
Precision, also know as predictivity, denotes the confidence that can be imposed on a
prediction. Recall signifies how accurately an algorithm can predict a sample from a
particular class. Sometimes an algorithm tends to over-classify which results into high
recall but low precision. On the otherhand, some algorithms tend to under-classify, pre-
serving the precision at the cost of recall. In order to get an unbiased evaluation of the
performance, F'l-score is considered to be an appropriate measure and has been being
used for over 25 years in various domains [69,70]. Tables [2] 3] and [4] show the precision,
recall and F'l-score on each of the 8 states obtained by SAINT and other state-of-the
art methods. These results suggest that SAINT achieves better F'l-score than other
methods on 5 states (out of 8 states), showing that SAINT produced more balanced and
meaningful results than other methods. SAINT substantially outperforms MUFOLD-SS
and NCCNN on the non-ordinary states such as G, S and T. However, NCCNN achieved
better F'1-score for the loop (L) state. State ‘I’ is extremely rare in the test set (only 30
out of 84,765 residues in CB513), and is hard to predict [71].

SAINT also achieved state-of-the-art accuracy on the CASP dataset. On CASP10,
SAINT achieved 74.7% accuracy which is lower than DCRNN, but higher than MUFOLD-
SS and others. On CASP11, SAINT achieved the best known accuracy of 73.3% outper-
forming the previous best accuracy (73.1%) achieved by DCRNN.

In order to assess the performance of SAINT in capturing the continuous structure
of a protein, we visualized the structures predicted by SAINT for a few proteins from
CASP11 and CB513, and superimposed them on the 3D structures obtained from PDB
(see Fig.[5). We selected three proteins: 1) T0821-D1:20-274 in CASP11 (PDB ID: 4r7s),
for which SAINT achieved the highest accuracy on CASP11 (92.94%), 2) T0840-D2:546-
661 in CASP11 (PDB ID: 4qt8) where SAINT achieved the lowest accuracy (51.09%)
on CASP11, and 3) a representative protein from CB513 (PDB ID: 154L). These clearly
demonstrate the ability of SAINT in predicting reliable structures of proteins.

3.2.1 Interpretability

One notable feature of SAINT is that it can actually visualize and provide insights on
how the architecture is making decisions. By leveraging the self-attention alignment
matrix, it can be interpreted how different parts of input are dependent on each other
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SSPro8 2002 63.5 64.9 65.6
RaptorX-SS8 2010 64.9 64.8 65.1
DeepGSN 2014 66.4 - -
DeepCNF 2016 68.3 71.8 72.3
DCRNN 2016 69.7 76.9 73.1
NCCNN 2017 70.3 - -
CBRNN 2018 70.2 74.5 72.5
CNNH_PSS 2018 70.3 - -
MUFOLD-SS! 2018 70.5 74.1 73.0
SAINT 2019 70.91 4.7 73.3
! Results are obtained from our experiments using the filtered CB6133 as the training
dataset.

Table 1: A comparison of the Q8 accuracy (%) obtained by SAINT and other state-of-
the-art methods on CB513, CASP10, and CASP11 dataset.

H 0.849 0.846 0.841 0.832 0.849
B 0.475 0.485 0.676 0.554 0.433
E 0.748 0.753 0.767 0.753 0.748
G 0.420 0.424 0.487 0.429 0.49
I 0 0 0 0 0

T 0.568 0.564 0.577 0.559 0.53
S 0.539 0.533 0.548 0.518 0.487
L 0.60 0.596 0.565 0.573 0.571
1

Results are generated by our experiments.

Table 2: Predictive precision on each of the 8 states obtained by SAINT and other state-
of-the-art methods on CB513 dataset.

H 0.928 0.926 0.932 0.933 0.904
B 0.056 0.053 0.041 0.026 0.026
B 0.851 0.839 0.821 0.828 0.833
G 0.364 0.363 0.285 0.252 0.26
I 0 0 0 0 0

T 0.550 0.547 0.524 0.522 0.528
S 0.271 0.268 0.24 0.249 0.255
L 0.635 0.644 0.69 0.652 0.657
1

Results are generated by our experiments.

Table 3: Recall on each of the 8 states obtained by SAINT and other state-of-the-art
methods on CB513 dataset.
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H 0.887 0.884 0.884 0.879 0.875
B 0.10 0.096 0.077 0.05 0.049
B 0.796 0.794 0.793 0.789 0.788
G 0.39 0.391 0.359 0.317 0.339
I 0 0 0 0 0

T 0.559 0.555 0.549 0.54 0.529
S 0.361 0.357 0.334 0.336 0.335
L 0.617 0.619 0.62 0.61 0.611
1

Results are generated by our experiments.

Table 4: Comparison of F'l-score on each of the 8 states obtained by SAINT and other
state-of-the-art methods on CB513 dataset.

while generating the output ,, and hence it was used to develop interpretable
models [77-80]. In SAINT, the attention map can reveal how and to what extent the
residues of the proteins interact with each other while forming the secondary structure.
SAINT uses the self-attention alignment score matrix of the attention module placed
just before the last dense layer (i.e., prior to the final prediction). We show the native
structure and the corresponding alignment matrix obtained from SAINT as a gradient
image for a sample protein 5MIZ Chain A in CB513 dataset in Fig. [0l We selected a
short sequence 5MIZ Chain A (only 21 residues) to easily demonstrate with visualizations
how the alignment matrix provides insight about the 3D structure. Higher correlation is
represented by deeper hue and lower correlation is represented by lighter hue. In Fig. @ (b),
each residue on the X-axis of the attention map represents a query and each corresponding
row represents the results of the query. This alignment matrix suggests that Isoleucine (I)
is interacting mostly with one of its distant (in primary sequence) residue Serine (S) and
Serine’s surrounding residues (see Fig. [6] (¢) which shows the interactions of I with other
residues). Interestingly, the 3D structure of 5MIZ, obtained from PDB, also shows that
I is closer to S (indicated in Fig. [f] (a)). Thus, SAINT provides insights into the roles of
the amino acids in a protein’s structure and explains how it is making the predictions —
laying a firm, broad foundation for interpretable secondary structure predictions.

4 Conclusions

We have presented SAINT, a highly accurate and interpretable method for 8-state SS
prediction. We demonstrate for the first time that the self-attention mechanism proposed
by Vaswani et al. is a valuable tool to apply in the structural analyses of proteins.
Another earlier type of attention mechanism proposed by Bahdanau et al. coupled
with recurrent neural network (RNN) based encoder-decoder architectures achieved state-
of-the-art performance on various natural language processing tasks (e.g. neural machine
translation , question answering task , text summarization , document
classification , sentiment classification , etc.). As proteins are also sequences
similar to sentences in a language, this type of architecture is expected do well in protein
secondary structure prediction as well. However, previous attempts on using attention
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(@) (b) ©)

Figure 5: Superpositions of the structures predicted by SAINT (cyan) with
the structures obtained from PDB (red) for three representative proteins
from CASP11 and CB513. (a) T0821-D1:20-274 in CASP11 (PDB ID: 4r7s), (b)
T0840-D2:546-661 in CASP11 (PDB ID: 4qt8), and (c) a representative protein from
CB513 (PDB ID: 154L). The images are generated in Pymol [72]. Since Pymol does
not differentiate between all the 8 distinct states, we translated the 8-state structure to
3-state structure according to the Rost and Sander scheme [10].

with LSTM based encoder-decoder only achieved 68.4% accuracy on CB513 dataset which
is significantly worse than the MUFOLD-SS. In this study, we have used the self-attention
mechanism in a unique way and proposed a novel attention augmented 31 module (2A31
module) and achieved notable success. We have used the self-attention mechanism to
retrieve the relation between vectors that lay far from each other in a sequence. As self-
attention mechanism looks at a single vector and measures its similarity or relationship
with all other vectors in the same sequence, it does not need to encode all the information
in a sequence into a single vector like recurrent neural networks. This reduces the loss of
contextual information for long sequences.

SAINT contributes towards simultaneously capturing the short- and long-range de-
pendencies among the amino acid residues. Unlike some of the existing deep learning
methods, SAINT can capture the long-range dependencies without using computationally
expensive recurrent networks or convolution networks with large window sizes. SAINT
was assessed for its performance against the state-of-the-art 8-state SS prediction meth-
ods on a collection of widely used benchmark dataset. Our experimental results suggest
that SAINT outperforms the best existing methods across all the dataset. In particular,
it achieved 70.91% accuracy on the most widely used benchmark dataset CB513, whereas
the previous best results achieved by MUFOLD-SS was 70.5%. Given the difficulties and
the slow progress rate of the Q8 prediction accuracy, this demonstrated improvement of
SAINT over the previous best results is remarkable.

One of the most significant conclusions from the demonstrated experimental results is
that appropriate use of self-attention mechanism can significantly boost the performance
of deep neural networks and is capable of producing results which rank SAINT at the very
top of the current SS prediction methods. Thus, the idea of applying self-attention mech-
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Figure 6: Demonstration of the interpretability of SAINT using the attention
map. (a) 3D structure of 5MIZ chain A obtained from PDB, (b) self-attention alignment
matrix generated by SAINT on 5MIZ, and (c) self-attention alignment scores indicating
the interactions of a specific amino acid residue (I) with others in 5MIZ. Deeper hue and
thicker lines indicate higher levels of interactions.
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anism can be applied to predicting various other protein attributes (e.g., torsion angles,
turns, etc. [90]) as well. SAINT also contributes towards generating interpretable deep
neural network methods by leveraging the attention map to explain how different residues
interact with each other and their roles in the structure of a protein. These insights will be
useful to understand the complex relationship between the primary sequence and various
structural and functional properties of proteins. Therefore, we believe SAINT represents
significant advances, and will be a useful tool for predicting the secondary structures of
proteins.
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