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Abstract 25 

Natural populations are increasingly threatened with collapse at the hands of anthropogenic effects. 26 

Predicting population collapse with the help of generic early warning signals (EWS) may provide a 27 

prospective tool for identifying species or populations at highest risk. However, pattern-to-process 28 

methods such as EWS have a multitude of challenges to overcome to be useful, including the low 29 

signal to noise ratio of ecological systems and the need for high quality time-series data. The inclusion 30 

of trait dynamics with EWS has been proposed as a more robust tool to predict population collapse. 31 

However, the length and resolution of available time series are highly variable from one system to 32 

another, especially when generation time is considered. As yet it remains unknown how this variability 33 

with regards to generation time will alter the efficacy of EWS. Here we take both a simulation- and 34 

experimental-based approach to assess the impacts of relative time-series length and resolution on the 35 

forecasting ability of EWS. We show that EWS’ performance decreases with decreasing length and 36 

resolution. Our simulations suggest a relative time-series length between ten and five generations and a 37 

resolution of half a generation are the minimum requirements for accurate forecasting by abundance-38 

based EWS. However, when trait information is included alongside abundance-based EWS, we find 39 

positive signals at lengths and resolutions half of what was required without them. We suggest that, in 40 

systems where specific traits are known to affect demography, trait data should be monitored and 41 

included alongside abundance data to improve forecasting reliability. 42 

 43 
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Introduction 49 

Anthropogenic pressures have long been known to reduce the resilience of ecological systems, leaving 50 

them vulnerable to transitioning into undesirable states where the systems’ ability to provide valuable 51 

ecosystem services is diminished. Such undesirable transitions have occurred in multiple systems such 52 

as in the global whale stock collapse of the 20th century due to overfishing (Hilborn et al. 2003, 53 

Clements et al. 2017); lake eutrophication through heavy nutrient input (Smith and Schindler 2009); or 54 

coral bleaching as a result of increased ocean warming (Hughes et al. 2017). In many cases recovery 55 

from such a perturbed state can be difficult as complex systems such as those seen in ecology often 56 

show hysteresis (Folke et al. 2004, Scheffer et al. 2009), thus driving a need to minimize impacts on 57 

biological systems, as well as a developing effective methods to monitor them (Costanza et al. 1997). 58 

 59 

Early warning signals (EWS) have been shown to predict population collapses (Wissel 1984, Drake and 60 

Griffen 2010, Dai et al. 2012, Clements and Ozgul 2018) and shifts in ecosystem states (Scheffer et al. 61 

2009, Carpenter et al. 2011). These indicators provide the possibility to intervene and reverse these 62 

undesirable events (Biggs et al. 2009, Pace et al. 2017). Classical EWS are statistical signatures which 63 

arise as a result of a phenomenon known as critical slowing down (CSD) that occurs prior to an 64 

ecosystem transition (Dakos et al. 2008, Scheffer et al. 2009, Clements and Ozgul 2018). CSD occurs 65 

as a system loses stability in the face of increasing external stress and takes longer to return to its 66 

original equilibrium state (Wissel 1984). Directly measuring CSD requires monitoring the return rate of 67 

the system which is challenging to do in natural systems. Alternatively, whether a system is 68 

experiencing CSD can be inferred through other statistical metrics measured over state-based data, for 69 

example abundance time series. Some proposed statistical signatures related to the return rate of a 70 

dynamical system are variance and autocorrelation, although various other metrics have also been 71 
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developed (Dakos et al. 2012a). Increases in variance and autocorrelation in abundance time series, 72 

known as classical abundance-based EWS (Drake and Griffen 2010, Dai et al. 2012), are shown both 73 

theoretically and experimentally to occur in systems approaching transition (Drake and Griffen 2010, 74 

Carpenter et al. 2011, Dakos et al. 2012b, Clements and Ozgul 2016b). 75 

 76 

Increases in variance and autocorrelation, along with other classical abundance-based EWS, provide an 77 

ideal generic method that responds to the dynamics of the system independent of any system-specific 78 

data such as intrinsic demographic processes and extrinsic environmental factors. However, the 79 

performance of these classical EWS has been questioned in numerous simulations (Hastings and 80 

Wysham 2010, Boerlijst et al. 2013b, Clements et al. 2015, Burthe et al. 2016, Clements and Ozgul 81 

2016a, Dutta et al. 2018) as well as in experimental and field data (Wilkinson et al. 2017, Pace et al. 82 

2017). Recent studies on data quality have shown that these signals might require high-resolution time-83 

series data to produce reliable forecasting (Clements et al. 2015). Given that EWS are statistics derived 84 

from abundance time series, the quality of data available is critical to obtain a strong forecast by EWS 85 

and temporal limitations might have many consequences. 86 

 87 

In monitoring programs from natural ecological systems high resolution data can be hard to achieve. In 88 

addition, data can be spatially and temporally limited due to constraints on resources. Thus, data from 89 

ecological systems can often present with short time-series lengths, low sampling resolutions, or both 90 

(Clements et al. 2015). Further, abundance time-series data collected in field or experimental 91 

populations can vary greatly in temporal quality. For instance, in a laboratory experiment, populations 92 

of Didinium nasutum were sampled roughly once every two generations for 45 days before a collapse 93 

of the population occurred (Clements and Ozgul 2016a) while in a field experiment data on a lake 94 

system was collected once a day during the summer season for three years (Carpenter et al. 2011). 95 
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Similarly, in wild populations demographic data is generally collected monthly (van Benthem et al. 96 

2017) or annually (Walle et al. 2018). Due to these differences in sampling effort the temporal quality 97 

of the time series relative to the process rate of the system (for example the generation time of the 98 

species sampled) will vary (Clements and Ozgul 2018). Previous work suggested that the length and 99 

resolution of data being analyzed in relation to the process rate, that is: the relative length and 100 

resolution, could alter the rate at which a tipping point occurs (Spanbauer et al. 2016). Following this, it 101 

has been shown that the speed at which a tipping point occurs can affect the detectability of abundance-102 

based EWS (Clements and Ozgul 2016b). It is thus unknown how the temporal quality of the time 103 

series relative to the generation time of the organisms being monitored will affect the detectability of 104 

abundance-based EWS. Given that wild populations are monitored using varied sampling efforts, it is 105 

important to further our understanding of the relative length and resolution of time series needed to 106 

derive reliable EWS. In turn, this would help lay the foundation for generalizable guidelines for the 107 

monitoring of populations with the aim of reliably predicting population declines, or whether time 108 

series that are currently available will be suitable for detecting abundance-based EWS.  109 

 110 

Composite EWS have been proposed as a more reliable method whereby multiple leading indicators 111 

are combined to increase overall forecasting ability (Drake and Griffen 2010). Recent work has used 112 

this composite approach to drive the inclusion of fitness related phenotypic trait data, specifically body 113 

size, alongside abundance-based methods to create trait-based EWS (Clements and Ozgul 2016a, 114 

Clements et al. 2017). The motivation behind the use of fitness-related trait data combined with leading 115 

indicators comes from a body of work providing evidence that individual traits affected by changes in 116 

the external environment are linked with concurrent demographic changes (Ozgul et al. 2009, Pigeon et 117 

al. 2017, Baruah et al. 2019b). In particular, individual plasticity in body size has been shown to buffer 118 
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environmental change to higher trophic levels for example in the face of reduced food availability, 119 

climate change, and increased pollution (Brown et al. 2004, Cheung et al. 2013), For example, previous 120 

study has shown that shifts in body size can accompany a transition in diatom communities (Spanbauer 121 

et al. 2016). In addition, trait-based signals derived from body size data have been shown to be more 122 

robust than traditional abundance-based leading indicators (Clements and Ozgul 2016a, Clements et al. 123 

2017, Baruah et al. 2019b). There remains a need to fully assess whether the inclusion of body size data 124 

leads to any considerable improvement in forecasting population collapses in the face of common data 125 

quality issues, such as shortened time-series lengths. 126 

 127 

In this paper, we use model-simulations and data from microcosm populations of Didnium nasutum 128 

(Clements and Ozgul 2016a) to test and compare the effects of sampling length and resolution on the 129 

detectability of population collapse by both classical abundance-based EWS as well as trait-based 130 

EWS. We first investigated the strength and reliability of abundance-based EWS across a range of 131 

sampling lengths and resolutions. Subsequently, we tested whether the inclusion of trait dynamics 132 

(body size) can increase forecasting ability even when data is sparse.  133 

 134 

Methods 135 

2.1 Simulations: transcritical and fold bifurcation model 136 

We first modeled the logistic growth of a population that moves from an underexploited state to critically 137 

exploited state through a non-catastrophic transcritical bifurcation. The population is forced through the 138 

transcritical bifurcation via a linear harvesting regime. The dynamics of this population are given by: 139 

 𝑑𝑁 𝑑𝑡⁄ = 𝑟𝑁(1 − 𝑁 𝐾⁄ ) + 𝜎𝑁𝑑𝑊 − 𝑐𝑡𝑁 (1) 140 

where, r is the growth rate of the population (0.5 individuals/day), K is the carrying capacity (100 141 

individuals), ct is the harvesting rate, and σNdW is the Gaussian distributed white noise process with 142 
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mean 0 and standard deviation σ (1.5). Time step dt used was 0.3 for each of the stochastic simulations 143 

and was implemented using the Euler approximation. The simulation was run for 100 total time steps. 144 

Next, to simulate the dynamics of population collapse via a fold catastrophe, we used a second model 145 

where harvesting of individuals of the population followed a non-linear function (May 1977, Scheffer 146 

2009). The parameters in this model are identical to those of the transcritical catastrophe model except 147 

for the addition of h, the half-saturation constant: 148 

𝑑𝑁 𝑑𝑡⁄ = 𝑟𝑁(1 − 𝑁 𝐾⁄ ) + 𝜎𝑁𝑑𝑊 − 𝑐𝑡 𝑁
2 (ℎ2 + 𝑁2)⁄ (2) 149 

 150 

2.2. Population collapse and abundance-based EWS: 151 

We simulated population collapse for the two models by increasing the value of the harvest parameter 152 

ct linearly with time. We used three different levels of forcing (Clements and Ozgul 2016b) : 1) slow 153 

forcing: where the rate of forcing increased linearly from 0.03 and 0.0015 in fold and transcritical 154 

models respectively; 2) moderate forcing: where the forcing parameter ct increased linearly at the rate 155 

of 0.045 and 0.0025 in fold and transcritical models respectively; fast forcing: where the forcing 156 

parameter ct increased linearly at the rate of 0.07 and 0.004 in fold and transcritical bifurcation models 157 

respectively. For each simulated population’s time-series data, we estimated the bifurcation time point 158 

by fitting GAMS (Generalized Additive Modelling) to 1 𝑁⁄ (𝑑𝑁 𝑑𝑡⁄ ) over time t. The time point at 159 

which 1 𝑁⁄ (𝑑𝑁 𝑑𝑡⁄ ) < 0 is then our estimated bifurcation time point. For abundance-based EWS’ 160 

analyses we discarded abundance time-series data after the estimated bifurcation point. We then applied 161 

generic EWS of population collapse by using the earlywarnings package (Dakos et al. 2012a) in R 162 

version 3.5.2 (R Core Team 2018). Specifically, we used two early warning indicators: autocorrelation 163 

at first-lag (ar(1)) and standard deviation (sd). Other indicators such as return rate, first-order 164 

autoregressive coefficient, coefficient of variation can theoretically be derived from these two main 165 

indicators. We used Gaussian detrending to remove any trends in the abundance time-series data. To 166 
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quantify the strength of population collapse, we calculated Kendall’s Tau correlation coefficients of the 167 

statistical indicators over time. Strong positive Kendall’s Tau correlation of the statistical indicators (sd, 168 

ar(1)) with time would indicate an approaching population collapse (Dakos et al. 2012b). We further 169 

quantified the rate of false negatives as the number of times Kendall’s Tau value calculated to be less 170 

than or equal to zero within the set of replicate time series. While previous work has suggested that a 171 

strong trend is indicated by a Kendall’s tau correlation approaching one (Dakos et al. 2012b), we use 172 

this false negative metric as an alternative visualization to presenting raw Kendall’s tau values. 173 

  174 

2.3 Effect of sampling in relation to simulated population dynamics on EWS 175 

To study the effect of varying resolutions on the detectability of collapse, we subset the data into four 176 

datasets that varied in their resolution: as the generation time for the populations in the simulation models 177 

is t=1, sampling of the abundance time series was done every quarter of t, every half of t, every t, and 178 

every two t. Interpolation between points was not performed. With these four datasets, we explored the 179 

effect of different sampling resolutions on the efficacy of EWS forecasting. Specifically, we assessed the 180 

resolution required to detect positive EWS. We assessed the effect of these sampling regimes on EWS 181 

for the three different levels of environmental forcing as mentioned in section 2.2. Next, we calculated 182 

Kendall’s tau correlation coefficients as a measure of the strength of EWS and rates of false negatives as 183 

a measure of the reliability of EWS for these sampling regimes and for each level of environmental 184 

forcing. 185 

 186 

2.4 Effect of varying length of simulation abundance time series on EWS 187 

To quantify the effect of varying lengths of abundance time series on EWS we used the quarter 188 

generation sampling resolution dataset acquired following section 2.3. We used this resolution as it 189 

allowed us to explore the largest range of time-series lengths. Next, we quantified the strength and 190 
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reliability of EWS on the entire length of the abundance time series and then re-quantified it using the 191 

same time series but with the earliest data point removed (or the furthest data point from the bifurcation 192 

point). We repeated this process by sequentially removing the earliest data point and re-performing 193 

EWS analysis until the time series was 6 data points, where it becomes too short for any meaningful 194 

analysis. sd and ar(1) that were estimated on abundance data using the ‘earlywarnings’ package 195 

typically uses a sliding window approach where the window size is generally 50% of the time series 196 

length. At 6 data points, rolling window size of 50% of the time series would be just two data points, 197 

where estimating autocorrelation and standard deviation would lead to spurious values. We performed 198 

this length reduction analysis on time series from the three forcing scenarios mentioned in section 2.2. 199 

Finally, we calculated Kendall’s tau correlation coefficients as a measure of the strength of EWS and 200 

rates of false negatives as a measure of the reliability of EWS for these sampling regimes and for each 201 

level of environmental forcing. 202 

The parameters used in our simulations were chosen such that in all three forcing scenarios populations 203 

persisted long enough to return sufficiently long time series. This allowed us to later reduce their length 204 

and re-analyze them giving us a range of time series lengths for each resolution and forcing scenario. 205 

 206 

2.5. Experimental data 207 

In addition to the model simulations, we also analyzed an experimental microcosm dataset. In this 208 

experiment, microcosm populations were forced to collapse by varying the rate of decline in food 209 

availability over time in four different scenarios: 1) fast decline in food availability, 2) moderate decline 210 

in food availability, 3) slow decline in food availability, 4) constant food availability as the control 211 

treatment. The microcosm populations consisted of protozoan ciliate Didinum nasutum feeding on 212 

Paramecium caudatum. This particular experiment used a total of 60 replicate populations, where 15 213 

replicates were used per treatment. In our study, we used the microcosm data only from the three different 214 
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deteriorating environments (fast, moderate and slow decline in food availability). For details of the 215 

experimental design refer to Clements and Ozgul 2016a. 216 

 217 

2.5.1 Effect of varying length of experimental time series on EWS 218 

For each of the three experimental treatments (fast, moderate, and slow), we estimated the effect of 219 

different lengths of time series on the efficacy of EWS as was done with simulation data in section 2.4 220 

to directly compare our simulation results with the experimental data. 221 

 222 

2.5.2 Effect of sampling in relation to microcosm population dynamics on EWS  223 

We subset the experimental data into two sampling regimes. Since Didinum nasutum has a generation 224 

time of roughly 2 days (Beers 1926), sampling of the abundance time-series data was done: 1) every 225 

half a generation (everyday), 2) every generation (every 2 days). Subsampling of this kind was done for 226 

each of the three experimental treatments of the microcosm population collapse. Next, as was done 227 

with simulation data, we quantified Kendall’s tau correlation coefficients as a measure of the strength 228 

of EWS and rates of false negatives as a measure of the reliability of EWS for these sampling regimes 229 

and for each level of environmental forcing. 230 

 231 

2.6 Inclusion of body size data: trait-based EWS 232 

We wanted to assess whether including trait dynamic information (body size) alongside abundance-233 

based EWS would improve the predictability of population collapse for the scenarios of time-series 234 

length and for the sampling resolutions in the experimental data for the three forcing experimental 235 

treatments. To evaluate the utility of trait-based EWS for the different sampling resolutions and lengths 236 

of abundance time series, data from mean body size was incorporated with the leading indicators in an 237 

additive manner (Clements and Ozgul 2016a). We z-standardized abundance-based EWS (standard 238 
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deviation (sd), autocorrelation at-lag-1 (ar(1)), and body size time-series data. The length of body-size 239 

time series that was used was the same as the corresponding replicate abundance time series. Before a 240 

population collapse, sd and ar(1) are anticipated to increase linearly over time, while body-size is 241 

expected to decline as food availability in the experimental treatment decreases. As a consequence, z-242 

standardized body-size time series were multiplied by -1 so that they could be included alongside 243 

standardized abundance-based EWS. Next, standardized abundance-based EWS were then added to 244 

standardized mean body-size time series to create trait-based EWS. Next, we evaluated two trait-based 245 

EWS metrics namely ar(1)+mean body size, sd+mean body size. Finally, we compared these two trait-246 

based EWS in terms of strength and reliability of forecasting a population collapse with the abundance-247 

based statistical EWS for both the scenarios of varying time-series length and varying sampling 248 

resolution. 249 

 250 

Results 251 

3.1 Effect of sampling resolution on abundance-based EWS (simulated data) 252 

Reducing the resolution of the time series used for analysis with abundance-based EWS in simulated 253 

populations did not led to significant reductions in the strength of abundance-based indicators of 254 

population collapse for slow and fast forcing levels. However, for moderate forcing levels, particularly 255 

for sd, decreases in the resolution of the time series generally led to decreases in the median strength of 256 

the signal of population collapse (Fig. 1 – yellow, Appendix S1:Fig. S4-6). Further, at highest 257 

resolutions in the moderate forcing levels, we see the highest Kendall's tau values indicating that time 258 

series at this resolution return the most confident forecasts capable of passing more strict thresholds 259 

than our own at a tau value of zero. While the median strength of signals (sd and ar(1)) did not 260 

generally drop with decreasing resolution (Fig.1), the proportion of false negatives increased with 261 

decreasing resolution, particularly for slow and moderate environmental forcing (Appendix S1:Table 262 
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S1). For fast environmental forcing, however, false negatives increased as resolution decreased. This 263 

particular result indicated that abundance-based EWS were unable to forecast collapse of populations 264 

as resolution decreased for fast environmental forcing (Appendix S1:Table S1). For sd, in slow and 265 

moderate levels of environmental forcing, rate of false negative decreased slightly as resolution 266 

increased. In general, forecasts became reliable only when there was moderate level of environmental 267 

forcing as we increase time series resolution. 268 

3.2 Effect of length of time series on abundance-based EWS (simulated data): 269 

In simulations, decreasing the length of the sampling time series before either a fold or transcritical 270 

bifurcation negatively affected the performance of abundance-based EWS ar(1) and sd across all three 271 

intensities (Fig. 2, Appendix S1:Table S2). Particularly for moderate forcing, ar(1) and sd had a strong 272 

decline in Kendall’s tau value (slope = -0.09 and R2 = 0.8 for ar(1) ; slope = -0.07 R2=0.71 for sd ) as 273 

length of time series decreased regardless of the type of bifurcation. Moreover, as forcing increased, the 274 

decline of signal reliability (Fig. 2B) and signal strength (Fig. 2A), as indicated by the rate of false 275 

negatives and the Kendall’s tau value respectively, saw a steeper decline. With fast forcing, when time 276 

series dropped below approximately ten generations long both EWS performed poorly with Kendall’s 277 

tau values near zero (Fig. 2A) and approximately 50% false negatives (Fig. 2B). With moderate 278 

forcing, this minimum length drops closer to 5 generation long timeseries. Finally, with slow forcing 279 

the minimum timeseries length becomes less clear, particularly for fold bifurcation, as slopes of 280 

Kendall’s tau value against length of time series were small for both ar(1) (slope = -0.01, R2 = 0.39) 281 

and sd (slope = -0.0003, R2 = -0.009). For, transcritical bifurcation and for slow forcing (dotted lines, 282 

Fig. 2A slow), however, the minimum length drops to around 5 to 10 generation long time series for 283 

both sd (slope = -0.075, R2 = 0.22) and ar(1) (slope = -0.09, R2 = 0.43).  284 

 285 

3.3 Effect of sampling resolution on abundance and trait-based EWS (experimental data): 286 
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Decreasing the resolution of the time series in microcosm populations led to decreases in the strength 287 

of abundance-based EWS (Fig. 3), corroborating the results of model simulations (Fig. 1). The decrease 288 

in strength of was most noticeable in sd, while ar(1) remained nearly constant as resolution was 289 

decreased (Fig. 3).  290 

 291 

Including information from mean body size data alongside abundance-based EWS to create trait-based 292 

EWS led to significant increases in strength and reliability of predicting population collapse regardless 293 

of forcing strength, or time-series resolutions (Fig. 3, dark colors).  294 

The rate of false negatives was substantially high for abundance-based EWS across the two different 295 

time series resolution for the experimental data (appendix S1:Fig. S2). In comparison to ar(1), the false 296 

negative rate of sd was higher in slow and fast decline in food availability across the two time series 297 

resolutions. When the resolution of time series decreased the rate of false negatives increased for 298 

abundance-based EWS, particularly for ar(1) (appendix S1:Fig. S2). In contrast, trait-based EWS were 299 

significantly more reliable in forecasting population collapse even when time series resolution was low. 300 

 301 

3.4 Effect of length of time series on abundance and trait-based EWS (experimental data):  302 

In agreement with the results from simulations, abundance-based EWS derived from microcosm data 303 

saw an increase in false negatives and a decrease in signal strength as the length of the sampling time 304 

series was decreased (Fig. 4A, 4B, dotted lines). This was most noticeable with fast forcing but also 305 

occurred in all forcing conditions with time series of six or less generations long. However, the drop in 306 

performance seen in microcosm data was lower than in the simulations, which is partially due to the 307 

fact that the former performs the analysis on a smaller range of time-series lengths.  308 

 309 
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Furthermore, trait-based EWS i.e., including body size information alongside abundance EWS, 310 

significantly improved the strength as well as reliability of population collapse across different length 311 

in time-series data for different levels of environmental forcing. With trait-based EWS, Kendall’s tau 312 

value always remained positive regardless of very short time series and strength of environmental 313 

forcing (Fig 4A, solid lines). Only during slow environmental forcing scenario, and when length of 314 

time series was less than 5 generations, trait inclusive ar(1) was unable to predict population collapse. 315 

 316 

Discussion 317 

Generic EWS would provide a unique tool for conservation prioritization and management of 318 

populations facing increased stress with changes to their abiotic environment if they are detectable 319 

prior to their collapse (Scheffer et al. 2009, Dakos et al. 2012b, Burthe et al. 2016). The attraction of 320 

generic EWS is their relative simplicity; they are easy to calculate and require only state data such as 321 

the abundance of a population (Drake and Griffen 2010, Boettiger et al. 2013, Dutta et al. 2018). 322 

Alternative approaches such as trait-based EWS have been developed with the goal of providing more 323 

reliable predictions of population collapse but require additional data to calculate (Clements and Ozgul 324 

2016a, Clements et al. 2017). For both complementary approaches how the relative length and 325 

resolution of a time series may affect their performance has thus far remained unknown. This question 326 

is critical for our understanding of the utility and applicability of these methods (Boerlijst et al. 2013a, 327 

Boettiger and Hastings 2013). Here, using simulations and experimental data, we show that time-series 328 

length and resolution relative to the process rate of the system in question significantly influence the 329 

performance of abundance-based EWS. Further, we found that including average body size with 330 

abundance-based EWS leads to stronger and more reliable signals even when temporal length and 331 

resolution of the time series are low. 332 

 333 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 1, 2019. ; https://doi.org/10.1101/568600doi: bioRxiv preprint 

https://doi.org/10.1101/568600


Running head: EFFECT OF TIME-SERIES ON EWS 15 

4.1 Effect of resolution of sampling time series on abundance-based and trait-based EWS 334 

Reducing the resolution of time series in simulated and experimental populations subjected to different 335 

forcing levels led to a decrease in the performance of abundance-based EWS (Fig. 1 and 3). Reliability 336 

of abundance-based EWS, particularly sd, in forecasting population collapse for the experimental 337 

microcosms was rather poor when resolution was decreased. In fact, for the fast decline in food 338 

availability treatment false negative rate rose to 90% as time series resolution was decreased. On 339 

average, ar(1) performed better in forecasting population collapse than sd when time series resolution 340 

was manipulated for the experimental microcosm data. There were important differences in the 341 

behavior of abundance-based EWS calculated between simulated and experimental populations. Low 342 

reliability of sd could probably be attributed to the fact that experimental systems are inherently more 343 

stochastic. While in simulated population we found sd to produce the most robust signal of population 344 

collapse (Fig. 1), in experimental populations ar(1) performed better across varying resolutions (Fig. 345 

3). Our simulated populations were likely subjected to smaller amounts of stochasticity in population 346 

size compared to our experimental populations. Given that sd is sensitive to rising stochasticity in a 347 

system (Boettiger and Hastings, 2013), one could expect sd to perform better when there is a high level 348 

of environmental stochasticity. Indeed, results from replicate simulations, where we varied stochasticity 349 

levels and measured the performance of abundance-based EWS suggested that sd performed relatively 350 

better when environmental stochasticity was higher.  However, ar(1), regardless of low or high 351 

environmental stochasticity, performed better than sd. In fact, when there was high environmental 352 

stochasticity, ar(1) outperformed sd, confirming our speculation on the performance of ar(1) when 353 

environmental stochasticity was high (appendix S1:Fig. S1). 354 

In addition, abundance-based EWS showed a greater sensitivity to system stochasticity than trait-based 355 

EWS did; the latter did not present any obvious differences in performance between metrics used (Fig. 356 

3). This is possibly an effect of adding phenotypic data to abundance data which stabilizes the signal 357 
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through time and reduces stochasticity. This is an important finding if abundance-based EWS are to be 358 

used to monitor natural populations which likely have more stochasticity than laboratory populations. 359 

 360 

As observed with abundance-based EWS, trait-based EWS also saw a decrease in their performance 361 

with decreasing sampling resolution (Fig. 3). However, these drops were in most cases very small and 362 

the performance of trait-based EWS was much better than abundance-based EWS alone. Trait-based 363 

EWS calculated with the lowest resolution in either simulated or experimental populations still derived 364 

a more reliable forecast than abundance-based EWS calculated with the highest possible resolution. 365 

 366 

Our findings suggest that abundance-based EWS derived from autocorrelation at-first-lag would 367 

perform better in natural populations subjected to high levels of stochasticity when compared with 368 

standard deviation derived signals when the resolution of available abundance time series is low. On 369 

the other hand, the inclusion of trait data with either metric led both to an increase in EWS performance 370 

when faced with reduced sampling time-series resolutions and minimized any important differences 371 

between the two time-series metrics used. Thus, whenever possible, trait-based EWS will likely 372 

outperform abundance-based EWS in natural populations (but see (Baruah et al. 2019b)) and, when 373 

trait data is not available, abundance-based EWS derived from autocorrelation at-first-lag are more 374 

powerful and reliable indicators. 375 

 376 

4.2 Effect of length of sampling time series on abundance-based and trait-based EWS 377 

Reducing the length of the sampling time series in simulated data negatively affected the performance 378 

of abundance-based EWS. In our simulation study, having longer timeseries led to stronger EWS, 379 

particularly for slow and moderate levels of environmental forcing. In general, time series from slow 380 

and moderate forcing scenarios with lengths less than 5 generations returned weaker forecasts of 381 
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population collapse with higher rates of false negatives (Fig. 2). The choice of fold or transcritical 382 

bifurcation models had little influence on predictability of population collapse, with the exception of 383 

the fast forcing scenario. When forcing was fast, transcritical models showed a shift in trend indicating 384 

the length of time series no longer had a strong effect on the predictability of collapse (Fig. 2 – dashed 385 

lines). In the context of a ciliate population such as the one used in the microcosms of this paper (D. 386 

nasutum) 10 generations corresponds to roughly 20 days. Twenty days’ worth of sampling might seem 387 

feasible to generate reliable forecasting for a ciliate population. However, for this same reliability in a 388 

population experiencing rapid forcing, 22 to 35 years of sampling would be required in the case of 389 

Thynnus thynnus (Atlantic bluefin tuna): an endangered species of high economic concern with a 390 

generation time between 2.2 to 3.5 years (Collette et al. 2011).  For organisms with longer generation 391 

times such as T. thynnus, the required investment of resources and time becomes an important 392 

consideration if there is a desire to monitor populations using abundance-based EWS. In addition, we 393 

found that abundance time series require a minimum of 10 generations worth of data when forcing is 394 

fast and a minimum of 5 when forcing is moderate (Fig. 2). This finding suggests that in situations 395 

where forcing is more intense and, thus, populations are most at risk the requirement for good quality 396 

data is extended. This requirement of long time series is a clear shortcoming of abundance-based EWS 397 

for organisms with long generation times and populations experiencing rapid forcing. 398 

 399 

In our microcosm study, the effect of time-series length on the Kendall’s tau metric was less clear than 400 

in the simulation. However, a general decreasing trend in forecasting strength was still observed in 401 

most forcing scenarios. In addition, abundance-based EWS rarely had the length of sampling required 402 

to make a confident forecast of collapse. It appears that regardless of improvements brought about by 403 

the increased length of the sampling time series, most abundance-based EWS did not provide a 404 

confident forecast even with the maximum length of sampling time series (between 10 and 12.5 405 
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generations). In our simulations we showed that abundance time series need a minimum of 10 406 

generations of data to provide an accurate forecast. These microcosm results show that the required 407 

minimum length of sampling exceeds 10 generations in controlled laboratory settings. Thus, we can 408 

expect that in natural populations subjected to higher levels of stochasticity the minimum length of 409 

sampling might exceed even that which is required in the microcosms. However, in natural populations 410 

there is the possibility to measure phenotypic data and derive trait-based EWS which we have 411 

additionally assessed. The addition of phenotypic data with abundance data improved forecasting in the 412 

microcosms. Trait-based EWS, that included body size information alongside abundance-based EWS, 413 

offered a significant improvement over abundance-based EWS, providing a positive forecast of 414 

collapse for all time-series lengths tested. 415 

Our modelling scenario of timeseries length and resolution was focused solely on abundance dynamics, 416 

and ignored trait dynamics. Abundance data are the most available, with databases such as Living 417 

Planet Index (LPI) or BioTime  (Dornelas et al. 2018) offering an opportunity to analyze abundance 418 

time series data (>22,000) for future forecasts of population declines at a global scale. However, 419 

average time series length in the LPI databases is around 10.3 years and median length of 6 years. It is 420 

thus of foremost importance to understand whether short time series of different resolutions would 421 

affect the predictability of population decline before these statistical tools could be applied widely. Trait 422 

data, such as body size time series are less widely available. Hence, the main motivation of our work is 423 

to develop an understanding of the efficacy of abundance-based EWS in forecasting population decline 424 

when time series lengths are variable and are of varying resolutions. 425 

Trait-based simulation of population dynamics could essentially be done using a quantitative genetic 426 

framework (see Baruah et al., 2019a). Infact, a recent simulation study, on comparing the strength of 427 

abundance-based and trait-based EWS, have implied the preferential use of trait-based EWS over 428 

abundance-based EWS. This particular study suggested that under certain ecological circumstances 429 
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such, as high trait plasticity, and/or high reproductive rate, trait-based EWS outperformed abundance-430 

based EWS in predicting population declines (Baruah et. al 2019b). Parallel to their simulation study, 431 

we show with experimental data from microcosms, that despite shorter timeseries lengths and/or low 432 

sampling resolutions, body-size based signals outperform abundance-based EWS. Whether a trait, such 433 

as body size, could be included among the suite of EWS will depend not only on the type of the trait 434 

but also on whether external environmental forcing affects the trait. If external environmental forcing 435 

does not affect body size it is expected that body size based EWS will fail in forecasting potential 436 

population declines. We thus expect traits that are correlated to fitness of an organism to be potential 437 

candidates to be included within the suite of trait based EWS. 438 

That being said, body-size based signals are clearly potential candidates to be included alongside 439 

generic EWS of population collapse. Recent study on this aspect have highlighted the environmental, 440 

ecological, and evolutionary circumstances under which it is possible for phenotypic traits to shift 441 

before a potential population decline and thus act as a warning signal (Baruah et al. 2019a)). The 442 

strength of shifts in phenotypic trait such as body size, was dependent on how fast the environment 443 

changes, how plastic the trait is to changes in the external environment, and how high genetic variation 444 

was in the trait (Baruah et al. 2019). Infact, strength of trait-based EWS was directly dependent on the 445 

above ecological and evolutionary factors. For instance, it was suggested that, high levels of plasticity 446 

in the trait led to stronger trait-based EWS (Baruah et al. 2019b). 447 

 448 

In our modelling scenarios, we chose a specific set of parameters to evaluate the performance of EWS 449 

in the face of myriad sampling lengths and resolutions. The choice of such a specific set of parameters 450 

that we used in our simulations were motivated through an iterative process that returned time series 451 

spanning a large range of forcing values while maintaining time series lengths. Changes in the 452 

parameter values of strength in forcing levels or growth rate did not significantly alter our simulation 453 
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results (see appendix S1: Fig. S4-5). In fact, even when forcing levels and growth rate of the population 454 

was altered, we observe similar results: longer time series generally led to stronger forecasts of 455 

population collapse, while low resolution led to poor forecasts of population collapse with EWS. 456 

 457 

Our findings on the effect of sampling length on the forecasting of population collapse by EWS suggest 458 

that the length of sampling required to calculate confident forecasts by abundance-based EWS are very 459 

long and likely impractical from a conservation and monitoring standpoint. On the other hand, trait-460 

based EWS can give accurate and reliable forecasts with much less sampling data compared to their 461 

abundance-based counterparts. 462 

 463 

Conclusion 464 

Our results stemming from simulations and a laboratory microcosm study make a case for the use of 465 

trait-based EWS over classical abundance-based signals based on their increased reliability and 466 

strength when faced with varying lengths and resolutions of sampling time series. We attempted here to 467 

evaluate these EWS with data which might more realistically resemble data gathered from field 468 

monitoring programs. However, true field data arising from monitoring programs are likely to be 469 

noisier than the data we have presented and analyzed here. Nonetheless, our results suggest that 470 

abundance-based EWS perform poorly when the length or resolution of abundance time series with 471 

regards to the process rate of the system is decreased. We found that including trait dynamics alongside 472 

abundance-based EWS to generate trait-based EWS leads to more reliable and confident forecasts of 473 

population collapse. We further found in our simulations that a length of ten generations and a 474 

resolution of a half generation are the minimum for deriving confident forecasts with abundance-based 475 

EWS. If trait-based EWS are used, this length and resolution requirement is much more relaxed. With 476 

these results in mind, we recommend considerations be made for the length and resolution of sampling 477 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 1, 2019. ; https://doi.org/10.1101/568600doi: bioRxiv preprint 

https://doi.org/10.1101/568600


Running head: EFFECT OF TIME-SERIES ON EWS 21 

time series required to accurately forecast populations in the design of monitoring programs. Further, 478 

we recommend the additional monitoring of phenotypic traits in populations, which have been shown 479 

to vary with increasing levels of environmental forcing such that trait-based EWS which have more 480 

forecasting power and reliability can be derived. 481 
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Figure legends 639 

 640 

Figure 1. Boxplots of the strength of abundance-based early warning signals of population collapse 641 

across decreasing resolutions of sub-sampling in simulated populations subjected to collapse by 642 

harvesting. The data is split into subplots based on the bifurcation model simulated (fold, transcritical) 643 

and forcing level (slow, medium, fast). Boxplots are further split by metric used (yellow: standard 644 

deviation, red: autocorrelation at-first-lag). Each box represents the median Kendall’s tau value (shown 645 

on the y-axis) across replicate time series across three forcing level with lengths ranging from 1,000 to 646 

40 time steps. The x-axis shows the resolution of sampling in numbers of generations such that a value 647 

of 2 indicates that sampling was performed every 2 generations and 0.25 denotes sampling every 648 

quarter generation. 649 

 650 

Figure 2. Performance of abundance-based early warning signals of population collapse across 651 

decreasing sampling time-series lengths in simulated populations subjected to collapse by harvesting. 652 

The data is split into subplots based on forcing intensity (slow, moderate, fast) and further split by 653 

metric used (yellow: standard deviation, red: autocorrelation at-lag-1) and bifurcation model simulated 654 

(solid: fold model, dashed: transcritical model). Each point represents (A) the mean Kendall’s tau 655 

correlation coefficient or (B) rate of false negatives on the y-axis of 100 replicate simulations of 656 

population collapse. X-axis represents length of time series analyzed. 657 

 658 

Figure 3. Performance of abundance-based (lighter colors) and trait-based EWS (darker colors) of 659 

population collapse across decreasing sampling time-series resolutions for the experimental data of 660 

Clements & Ozgul 2016. Plots are organized into subplots based on the forcing intensity (slow, 661 

medium, fast) and further split by metric used (blue: standard deviation, purple: autocorrelation at-first-662 
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lag). Each box represents the Kendall’s tau value (on the y axis) for each resolution studied (on the x 663 

axis). Lighter colors represent classical abundance-based EWS while the darker colours represent trait-664 

based EWS. 665 

 666 

Figure 4. Performance of abundance-based and trait-based EWS of population collapse across 667 

decreasing sampling time-series lengths for the experimental data of Clements & Ozgul 2016. Plots are 668 

organized into subplots based on the forcing intensity (slow, medium, fast). X-axis is the length of 669 

time-series data analyzed and Y-axis denotes in (A) mean Kendall’s Tau value and in (B) rate of false 670 

negatives. Solid lines indicate EWS with body size information added (trait-based EWS) while dotted 671 

lines indicate classical abundance-based EWS. Colours indicate metric used (blue: standard deviation, 672 

purple: autocorrelation at-first-lag). False negative plots were produced using loess smoothing.673 
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