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SUMMARY 

To study the molecular mechanisms driving the pathogenesis and identify novel therapeutic 

targets of late onset Alzheimer's Disease (LOAD), we performed an integrative network analysis 

of whole-genome DNA and RNA sequencing profiling of four cortical areas, including the 

parahippocampal gyrus, across 364 donors spanning the full spectrum of LOAD-related 

cognitive and neuropathological disease severities. Our analyses revealed thousands of molecular 

changes and uncovered for the first-time multiple neuron specific gene subnetworks most 

dysregulated in LOAD. ATP6V1A, a critical subunit of vacuolar-type H+-ATPase (v-ATPase), 

was predicted to be a key regulator of one neuronal subnetwork and its role in disease-related 

processes was evaluated through CRISPR-based manipulation of human induced pluripotent 

stem cell derived neurons and RNAi-based knockdown in transgenic Drosophila models. This 

study advances our understanding of LOAD pathogenesis by providing the global landscape and 

detailed circuits of complex molecular interactions and regulations in several key brain regions 

affected by LOAD and the resulting network models provide a blueprint for developing next 

generation therapeutics against LOAD. 

 

Keywords: Alzheimer’s disease, omics, network analysis, neuronal dysregulation, ATP6V1A, 

human induced pluripotent stem cell derived neurons, Drosophila 
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INTRODUCTION 

Sporadic Late Onset Alzheimer's Disease (LOAD), the most prevalent form of dementia among 

people over age 65, is a progressive and irreversible brain disorder. Over 5.5 million living in the 

US are affected by LOAD, which is currently the sixth leading cause of death in the US, and 

costs more than $200 billion annually 1. There is an urgent need to develop effective methods to 

prevent, treat, or delay the onset or progression of LOAD. The causes of LOAD are poorly 

understood, with numerous intrinsic and extrinsic factors believed to influence when the disease 

occurs and how it progresses. Conventional genetic and genome-wide association studies 

(GWAS) derived primarily from single-nucleotide polymorphism (SNP) analysis have revealed 

~30 loci associated with LOAD 2-5, and almost 40% of the total phenotypic variance can be 

explained by these common SNPs 6. Translating these genetic findings into biologically 

meaningful mechanisms of disease pathogenesis and therapeutic interventions remains a huge 

challenge. A number of studies have performed large-scale molecular profiling (e.g. 

transcriptomics, proteomics and metabolomics) of postmortem brains from normal control and 

LOAD patients 7,8. Integrating these more functionally relevant datasets holds promise for 

improving our understanding of the molecular mechanisms of the pathogenesis in sporadic 

LOAD 9. 

Leveraging cutting-edge, high-throughput molecular profiling techniques, we recently 10 

generated a cohort of matched whole-genome sequencing (WGS), whole-exome sequencing 

(WES), and RNA-sequencing (RNA-seq) data across four brain regions, along with proteomics 

data generated in one of the regions, from a set of 364 well-characterized brains spanning the full 

spectrum of LOAD-related cognitive and neuropathological disease severities represented in the 

Mount Sinai Brain Bank (MSBB) 8,11. Systems biology approaches have proven effective for 
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integrating large-scale and diverse biomedical data 12, and so this MSBB-AD cohort study offers 

an unprecedented opportunity to develop more plausible and objective mechanistic models of 

LOAD. Here we employed a network biology framework to integrate high-dimensional, large-

scale DNA, RNA, and clinical data in LOAD to identify predictive molecular signatures and sub-

networks underlying early- and late-stage LOAD. The core of our integrative analysis included 

genetic association, differential expression, correlation, co-expression network 13, and causal 

network 14,15 analyses, which together provided an unbiased prediction of novel causal genes and 

pathways of AD. While the results confirmed some key findings such as elevated immune 

response from the previous studies of AD12, our current study also uncovered a number of new 

subnetworks and molecular drivers underlying LOAD pathogenesis. This unique collection of 

multi-Omic LOAD data in tandem with the integrative network biology approaches allowed us 

to: 1) identify functional pathways dysregulated in LOAD with respect to multiple 

cognitive/neuropathological outcomes, 2) uncover and prioritize intrinsic co-expressed gene 

modules across a spectrum of disease stages of LOAD, 3) construct Bayesian probabilistic causal 

gene regulatory networks by integrating expression quantitative trait loci (eQTLs), transcription 

factor (TF) and gene expression data, 4) infer the key network hub genes driving key pathways 

of LOAD, and 5) validate the top ranked novel driver gene by characterizing its functional roles 

across human induced pluripotent stem cell (hiPSC)-derived neurons and fly models of LOAD 

(Fig. 1A)..  

 

RESULTS 

Study population and molecular data 
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The MSBB-AD cohort included 364 human brains accessed from the Mount Sinai/JJ Peters VA 

Medical Center Brain Bank8,10,11. The age at the time of death (AOD) of the present population 

ranged from 61 to 108 years, with a mean and standard deviation (s.d.) of 84.7±9.7. Each donor 

and corresponding brain sample was assessed for multiple cognitive, medical, and neurological 

features, including mean plaque density, Braak staging for neurofibrillary tangles (NFT) 16,17, 

clinical dementia rating (CDR) 18, and neuropathology scale as determined by the Consortium to 

Establish a Registry for Alzheimer's Disease (CERAD) protocol 19. These four 

cognitive/neuropathological traits were scored as semi-quantitative features ranging from normal 

to severe disease stages, reflecting the continuum and divergence of pathologic and clinical 

diagnoses of AD beyond a simple case-control classification. Donor brains with no discernable 

neuropathology or only neuropathologic features characteristic of LOAD were selected. We 

generated over 1,900 molecular profiles from the MSBB-AD cohort brain specimens, including 1) 

WGS, 2) WES, and 3) RNA-seq in four brain regions with varying vulnerability to LOAD 

comprised of Brodmann area 10 (frontal pole, BM10-FP), Brodmann area 22 (superior temporal 

gyrus, BM22-STG), Brodmann area 36 (parahippocampal gyrus, BM36-PHG) and Brodmann 

area 44 (inferior frontal gyrus, BM44-IFG) (Fig. 1A). Details about the demographics of the 

study sample as well as data generation and quality control (QC) have been described previously 

10. Expanded details regarding the preprocessing of the RNA-seq data, including sample filtering, 

normalization and covariate correction, are provided in Supplementary Information (SI) (Fig. 

S1). 

Identifying gene expression signatures and pathways of LOAD 

Differential gene expression analysis was performed to identify genes up-or down-regulated with 

respect to four LOAD related neuropathological/cognitive traits in each of the four brain regions. 
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The samples were first stratified into multiple disease severity stages for each of the four semi-

quantitative traits and then contrasts were made among the severity stages to identify expression 

changes in each brain region separately (SI). The full list of DEGs is provided in Table S1. As 

summarized in Fig. 1B and Fig. S2, BM36-PHG had the largest number of differentially 

expressed genes (DEGs), followed by BM22-STG, BM10-FP and BM44-IFG. This is consistent 

with our previous pan-cortical transcriptomic analysis of LOAD brains (which were independent 

of the dataset described herein) in which BM36-PHG was the most impacted region in LOAD at 

the gene expression level8. Our DEG signatures were preserved (adjusted Fisher’s exact test 

(FET) P value up to 1.0E-100) in ten publicly available AD transcriptomic studies7,12,20-27 (Fig. 

S3). Because brain cell-type composition changes over the course of LOAD, we further 

investigated if the present expression signatures from bulk tissue RNA-seq tend to reflect cell-

type changes by overlapping our DEGs with a set of cell type-specific DEGs identified from 

single-nucleus RNA-seq (snRNA-seq) of LOAD postmortem brains28. As shown in Fig. S4, we 

confirmed our down-regulated gene profiles were primarily preserved in down-regulated genes 

detected in astrocytes, neurons, oligodendrocytes and oligodendrocyte progenitor cell (OPC), 

while our up-regulated gene profiles were primarily preserved in up-regulated genes in astrocytes 

and oligodendrocytes (adjusted FET P value up to 6.5E-45), with a few minor exceptions of 

excitatory neuron or microglia DEGs where there was an enrichment for opposite direction of 

expression changes. These results demonstrate that we identified a robust set of LOAD-related 

gene signatures across the four brain regions profiled. 

We further analyzed gene ontology (GO) and functional pathways enriched in the DEGs 

(Fig. S5 and Table S2). As expected, multiple central nervous system (CNS) related gene sets, 

such as neuronal system, transmission across chemical synapses, and neuroactive ligand receptor 
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interaction, were enriched for down-regulated genes. The KEGG 29 Parkinson’s and Alzheimer’ 

disease gene sets were enriched in the genes down-regulated in demented subjects and in 

subjects with high plaque density in BM36-PHG. In contrast, matrisome (defined as the 

ensemble of extracellular matrix (ECM) and related proteins30) and associated pathways were 

most enriched in the up-regulated DEGs in BM36-PHG, followed by immune system, interferon 

signaling and cytokine signaling pathways. These observations are supported by previous reports 

that ECM components are associated with the early stages of LOAD 31 and memory deficits in 

APP/PS1 transgenic mice 32, perhaps by influencing Aβ fibrillogenesis 33,34. Recent genome-

wide association studies (GWAS) show enriched AD risk associated with genes expressed by 

microglia 2,35-38, suggesting immunological mechanisms in AD pathogenesis which are consistent 

with our observation. 

We investigated molecular interactions between brain regions by using Pearson’s 

correlation analysis. Between 176,453 and 1,159,477 (0.03~0.22%) gene pairs showed 

significant inter-region correlations across the six pairs of brain regions at a conservative 

Bonferroni corrected P value threshold of 0.05. The correlations for the same genes between any 

two regions ranged from -0.19 to 0.97 (mean = 0.31 ~ 0.38, median = 0.29 ~ 0.38), indicating the 

presence of both highly self-correlated genes and inversely-correlated genes. The inverse 

correlation highlights the importance of multiregional analyses and biological process inferences 

that can be drawn based on functional connectivity and the complexity of regional interactome. 

On the other hand, when focusing on the gene pairs from genes with consistent inter-region 

correlations across all possible region pairs (Table S3), immune response pathways were most 

enriched in the gene pairs with positive inter-region correlations (4.39-fold enrichment (FE), 

false discovery rate (FDR) = 1.12E-59), while cellular response to unfolded protein (UPR) 
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related pathways were enriched in the gene pairs with negative inter-region correlations (protein 

folding (8.76-FE, FDR = 1.52-E13), unfolded protein binding (12.93-FE, FDR = 1.57E-11) and 

protein refolding (29.95-FE, FDR = 9.71E-9)) (Table S4, Fig. 1C). Inter-region correlated gene 

pairs in the immune response and UPR pathways were also correlated within the corresponding 

individual regions in the same direction, representing coordinated responses to disease-

associated triggers within and between the four brain regions. 

Identifying gene modules associated with disease in networks of LOAD brains 

To elucidate the coexpression and co-regulation relationships among a large number of gene 

expression signatures of LOAD, we constructed region-wide gene coexpression networks using 

MEGENA 39, which employs a novel network embedding technique to build up networks (e.g. 

Fig. 2A) and a multi-scale clustering method to identify coexpressed gene modules (clusters). 

We identified 475, 527, 441 and 423 coherent gene expression modules in BM10-FP, BM22-

STG, BM36-PHG and BM44-IFG, respectively (Table S5). Most modules (53.9% to 67.3%) 

were enriched for MSigDB GO/pathway gene sets (adjusted P value < 0.05) (Table S6).  

To prioritize the gene modules with respect to their association to LOAD pathology, we 

applied an ensemble ranking metric8 across multiple feature types (Fig. 2B-C), including 1) 

correlations between module eigengenes (i.e. the first principal component of module gene 

expression profile) and cognitive/pathological traits associated with LOAD, and 2) enrichment 

for the DEG signatures identified above. A more complete description of the information used to 

rank the modules is included in Table S7. The ranking of the top 25 MEGENA modules are 

illustrated in Fig. 2B, with all of the top modules coming from the BM36-PHG region.  
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Distinct from our previous transcriptomic network analysis in an independent cohort and 

brain regions which prioritizes a diverse set of LOAD-related subnetworks including immune 

response, glutathione transferase, and cell junction, etc. 12, the present network analysis 

highlights the significance of multiple neuronal/synaptic modules in driving the disease process 

in the MSBB-AD cohort. Nine of the top 25 modules were associated with synaptic 

transmission/neuronal systems, negatively correlated with disease traits, and enriched for DEG 

signatures down-regulated in LOAD, including M62 (ranked 1st, denoted as #1 for simplicity) 

and M65 (#2), M6 (#5), M236 (#6), M64 (#7), M252 (#9), M385 (#11), M87 (#17) and M243 

(#23). These nine modules, along with three other chromosomal region related modules M242 

(#13), M379 (#16) and M461 (#18), showed neuron specific expression40 (Fig. 2C).  M64 

module was overrepresented with inhibitory neuron-enriched genes, while six others (M6, M87, 

M65, M236, M62, and M252) were overrepresented with excitatory neuron-enriched genes 41 

(Table S8), suggesting different neuron subtypes might be involved in these modules. The 

topological structures for four of the top ranked neuronal/synaptic modules are shown in Fig. 2D. 

A number of LOAD genetic candidate risk genes were present in these top ranked modules, such 

as MEF2C in the first-ranked module M62, CELF1, MADD, PLD3, PTK2B, and ZCWPW1 in the 

fifth-ranked module M6, and APP and SORL1 in the seventh-ranked module M64. 

We further investigated whether the top ranked neuronal/synaptic modules were involved 

in distinct BPs by overlapping the genes of the 4 top ranked parental neuronal/synaptic modules 

(i.e. M6, M62, M64 and M65) onto the GO/BP hierarchy (Fig. 2E and S6). All these 4 modules 

are enriched in synaptic signaling to different degrees, but M6 and M64 are also enriched in 

regulation of long-term synaptic potentiation, synaptic vesicle trafficking and localization. M64 

is also enriched in learning and memory related pathways. M6 is highly enriched in exocytosis 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 1, 2019. ; https://doi.org/10.1101/788323doi: bioRxiv preprint 

https://doi.org/10.1101/788323


11 
 

such as regulation of synaptic vesicles exocytosis. M64 and M65 are enriched in CNS 

development and morphogenesis, but M64 is also enriched in neurogenesis, neuron development 

related pathways. While all 4 neuronal/synaptic modules are enriched in transporter activities, 

they are likely to participate in different aspects of transporter activities. For example, M64 is 

significantly enriched in ATP hydrolysis coupled proton transport. On the other hand, the other 

modules are enriched in glutamate receptor signaling, which is consistent with the above neuron 

subtype enrichment analysis. Taken all together, M64 is the most distinct module in terms of 

potential involvement in biological signaling pathways. 

We validated the biological coherence (“preservation”) of the top ranked 

neuronal/synaptic modules in two previously published independent LOAD-related postmortem 

brain cohort studies, including 1) the Harvard Brain Tissue Resource Center (HBTRC) 

microarray data 12 and 2) the ROSMAP RNA-seq data 7. Among 111 modules in the 

coexpression network from the HBTRC dataset, a synaptic transmission enriched module (purple) 

was ranked the 16th for relevance to LOAD pathology and this module was enriched in all the 

nine top ranked neuronal/synaptic modules in the current study (FE ranging from 2.7 to 8.7, FDR 

up to 1.2E-62). Of four neuronal/synaptic modules (m16, m21, m22 and m23) in the 

coexpression network from the ROSMAP dataset, m21 and m23 were significantly overlapped 

with all the current nine top ranked neuronal/synaptic modules, while m16 and m22 were 

enriched in three and seven of the current top ranked neuronal/synaptic modules, respectively 

(FE ranging from 1.4 to 14.1, FDR up to 3.5E-39). It is noted that the m23 module showed a 

positive correlation with cognitive decline (P value = 9.1E-4), and the m22 and m23 modules 

showed a negative correlation with amyloid β burden (P value = 3.6E-3 and 3.8E-3, respectively), 

in the ROSMAP cohort.  
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Three of the present top modules, M17 (#3), M153 (#12) and M14 (#21), were enriched 

with immune response pathways. All were positively correlated with disease traits and enriched 

for up-regulated DEGs in AD. While M14 (#21) and its sub-module M153 (#12) were enriched 

for microglia markers, M17 (#3) was enriched for endothelial markers (Fig. 2C).  Two LOAD 

genetic candidate risk genes, CLU and CR1, were members of M17 while seven LOAD genetic 

candidate risk genes (APOE, CASS4, CD33, HLA-DRB1/HLA-DRB5, INPP5D, 

MS4A4A/MS4A6A and TREM2) fell into M153 and M14, resulting in a 15.4-FE for AD risk 

genes in M153 (FET P = 3.8E-9) and an 11.6-FE in M14 (FET P = 4.2E-8). M153 included five 

GWAS genes (CD33, HLA-DRB1, INPP5D, MS4A6A and TREM2) that were up-regulated in 

LOAD (Fig. S7). The clustering of the four up-regulated risk genes (CD33, INPP5D, MS4A6A, 

and TREM2) in the same module was previously observed in an independent coexpression 

network analysis from the ROSMAP cohort 42, indicating a potential core component of LOAD-

related immune response pathway conserved in multiple datasets. 

Besides neuronal system and immune response enriched modules known to be associated 

with LOAD, several less studied pathways emerged in the top ranked modules, including 

matrisome enriched modules M88 (#3) and M91 (#19), ECM enriched modules M355 (#15) and 

M443 (#22), cell proliferation enriched module M367 (#24), and alpha hemoglobin stabilizing 

protein (AHSP) pathway enriched module M356 (#25). These results indicate important potential 

pathways of LOAD that warrant further investigation. 

Bayesian network analysis predicts novel key drivers of synaptic transmission/neuronal 

system pathways implicated in LOAD 
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Coexpression network analysis revealed the global gene coregulatory landscape and identified 

synaptic transmission and neuronal system enriched modules as highly associated with LOAD 

pathology. To determine potential casual relationships between coexpressed genes in these top 

ranked modules for predicting key regulators of the corresponding pathways underlying disease 

initiation and progression, we constructed Bayesian probabilistic causal networks (BNs) by 

integrating genetics (e.g. WGS SNP variants), gene expression, and known TF-target 

relationships.  We first mapped eQTLs by integrating the RNA-seq and WGS-based SNP 

genotype data. We identified more than 92,336 SNP-gene pairs that were associated locally (so-

called cis-SNP-gene pair) in any brain region, with more than 66.1% shared in at least another 

region. Details about the identification and replication of brain region-wide eQTLs are provided 

in SI (see also Table S9-13 and Fig. S8-12). Notably the current eQTL analysis indicated 

marked common genetic regulation occurring across different brain regions. We applied causal 

inference test (CIT) 43,44 to use eQTLs as instrumental variables to compute the probability of the 

possible causal regulatory chain among genes associated with the same eQTL; these causal chain 

probability results were incorporated as structure priors into the BN inference procedure. Fig. 3A 

shows the BN for BM36-PHG. 

Due to limited availability of replication data, validating the BN structure is not trivial and it 

has been reported that replication of edge-to-edge is strongly dependent on the sample size 45. In 

contrast, highly connected key driver nodes tend to be more stable than network edges 45. Indeed, 

a significant number of global key drivers 46 were shared between any two BNs (Fig. S13). In 

light of these findings, we sought to examine whether publicly available experimental gene 

perturbation signatures of the key drivers were predicted by our networks, by testing whether the 

genes in these signatures were enriched for genes in the network neighborhood of the key driver 
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in our BNs. As illustrated in Fig. 3B, we demonstrated that 50~60% of the key driver 

perturbation signatures were enriched in the network neighborhoods of the corresponding key 

drivers across the four region-wide BNs, while the proportion of significantly enriched 

perturbation signatures decreased to 20~30% in the network neighborhood of non-driver genes. 

 We projected each of the nine top ranked neuronal/synaptic modules (M62, M65, M6, 

M236, M64, M252, M385, M87, and M243) (Fig. 2B) onto the BM36-PHG BN and identified 

network key drivers that might potentially modulate a large number of nodes in these modules 

using the key driver analysis 46. We identified 48 key drivers (42 unique genes) across nine 

modules (Table S14), including ten key drivers that were root nodes in the BN without parental 

nodes (Table S15). To further verify the root node status beyond a single region-based network, 

we integrated information from all four brain region-wide BNs by building a union BN, 

combining directed links from four region-wide BNs following previous practices 47,48. Two key 

drivers, ATP6V1A in M64 and GABRB2 in M62, remained as root nodes in this union BN. We 

considered these two key drivers as the most likely process initiators of the neuronal/synaptic 

modules underlying the LOAD pathogenesis in the current dataset. Fig. 3C shows the projection 

of M62 and M64 onto the BM36-PHG BN, while Fig. S14 illustrates more detailed network 

structures surrounding ATP6V1A and GABRB2 on the BM36-PHG BN, respectively. 

While GABRB2 exhibits a region-dependent up- or down-regulation in LOAD based on 

prior studies (SI), the other prioritized key driver, ATP6V1A, was more consistently down-

regulated across brain regions and disease stages in LOAD. This gene encodes a component (V1 

subunit A, V1a) of vacuolar ATPase (v-ATPase), a multi-subunit enzyme that mediates 

acidification of eukaryotic intracellular organelles. v-ATPase is a component of the mTOR 

pathway and functions as a lysosome-associated machinery for amino acid sensing 49,50. A 
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potential role of ATP6V1A in neuronal development was suggested by studying de novo 

mutations in this gene 51. Yet, there are no prior studies linking changes in APT6V1A expression 

with LOAD pathogenesis. ATP6V1A was significantly down-regulated in the BM36-PHG (-1.43 

fold, P value = 1.5E-6) and BM22-STG (-1.25 fold, P value = 2.1E-3) regions of persons with 

dementia (CDR ≥ 1), and it was marginally down-regulated in the BM10-FP region of persons 

with MCI and frank dementia (CDR = 0.5) (-1.11 fold, P value < 0.098) (Fig. 3D and Fig. S15). 

In addition, ATP6V1A expression was negatively correlated with cognitive/neuropathological 

traits in BM22-STG and BM36-PHG (Spearman correlation coefficients ranges between -0.21 

and -0.44 and the corresponding P values are between 5.9E-11 to 3.3E-4), suggesting down-

regulation of ATP6V1A was a consistent event at both early and late stages of the disease. We 

validated the reduced expression of ATP6V1A in LOAD brains by quantitative reverse 

transcription polymerase chain reaction (qRT-PCR) and western blot analyses using BM36 brain 

samples (Fig. 3E-G; 42% decrease at mRNA level and 35% decrease at protein level, P < 1.0E-

4). Down-regulation of ATP6V1A was also previously identified in cortical neurons of the 

superior frontal gyrus 21 and the hippocampus CA1 area 26 of LOAD brains. In addition, it was 

also found to be down-regulated in the excitatory (0.8 fold, adjusted P value 2.6E-117) and 

inhibitory (0.83 fold, adjusted P value 6.7E-22) neurons in brains with early-pathology of LOAD 

compared to no-pathology brains in the ROSMAP cohort 28. Thus, multiple lines of evidence 

indicate that ATP6V1A is a novel therapeutic target for LOAD. To validate the functional role of 

ATP6V1A in LOAD, we performed gene perturbation experiments in both in vitro (hiPSC-

derived neurons) and in vivo (transgenic flies) models.  

Decreased neuronal activity in ATP6V1A-deficient NGN2-neurons 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 1, 2019. ; https://doi.org/10.1101/788323doi: bioRxiv preprint 

https://doi.org/10.1101/788323


16 
 

As ATP6V1A was both down-regulated in the LOAD brains and enriched for neuronal 

expression, we developed a model of hiPSC-derived neurons with reduced expression of 

ATP6V1A. To repress endogenous ATP6V1A expression, we utilized CRISPR inhibition 

(CRISPRi) 52, in which dCas9 (dead Cas9) is fused to the transcriptional repressor of Krüppel 

associated box (KRAB) 53. We designed six sgRNAs (crispr-era.stanford.edu) to target the 

promoter region for knockdown (KD) of the ATP6V1A gene (Fig. 4A; see SI for sgRNA 

sequences), and individually cloned each into a lentiviral vector (lentiGuide-Hygro-

mTagBFP2)52. By qRT-PCR and western blot, we identified two sgRNAs (ATP6V1A-i1 and i2) 

that efficiently repressed ATP6V1A expression in NPCs from two donors stably expressing 

dCas9-KRAB (Fig. S16A-C). Following NGN2-induction (Fig. S16D)54, both ATP6V1A RNA 

(60~70% transcriptional repression, P < 0.001, Fig. 4B) and protein levels (80~90% translational 

repression, P < 0.001, Fig. 4C-D) were significantly reduced in 21-day (D21) cultured neurons. 

 ATP6V1A plays a unique role in synapse function 55. Therefore, we determined whether 

ATP6V1A repression influenced spontaneous neuronal electric activity. Isogenic pairs of control 

and ATP6V1A CRISPRi NGN2-neurons (co-cultured with human fetal astrocytes to enhance 

synaptic maturation) were evaluated across a panel of assays to explore their impact on synaptic 

function and synapse plasticity-associated proteins. We applied an Axion multi-electrode array 

(MEA) to assess the impact of ATP6V1A repression on population-wide neuronal activity, 

including frequency and coordination of network firing. Significantly reduced neuronal activity 

was observed following perturbations with either sgRNA (average 4.32-fold down in D21 

NGN2-neurons, P < 0.01; Fig. 4E-F). We further measured the amplitude of voltage-gated 

potassium (IK) and sodium current (INa) using whole-cell patch-clamp recordings (Fig. 4G-I). 

ATP6V1A KD neurons exhibited significantly smaller INa current density (P = 0.015), but no 
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significant change in IK current (Fig. 4G-I). Consistent with a decrease of INa, RNA sequencing 

of NGN2-neurons at 21 days (detailed below) revealed significantly reduced mRNA expression 

of different voltage gated sodium channel subunits, such as SCN3A, SCN2A, and SCN4B (Fig. 

S17). Lastly, we observed a decrease in the number of full action potentials and increase in 

immature spikes (e.g. spikelets) in the ATP6V1A CRISPRi group (Fig. 4J).  

 To explore the effect of ATP6V1A on synaptic components, NGN2-neurons were 

immunostained against the presynaptic marker SYN1 and the postsynaptic marker HOMER1 and 

analyzed by confocal imaging (Fig. 4K). A significant reduction in SYN1+ puncta number 

following ATP6V1A CRISPRi was observed (1.1-fold down, P < 0.001; Fig. 4K-L) across two 

sgRNAs, whereas CRISPRi had had limited effect on HOMER1 (Fig. 4L). Western blot assay 

showed similar results. A 25-45% reduction of SYN1 (P < 0.05) was observed, while HOMER1 

was expressed at comparable levels regardless of CRISPRi (Fig. 4M-N). qRT-PCR indicated 

that in ATP6V1A-deficient NGN2-neurons, only presynaptic components (SYN1, vGLUT1) were 

significantly decreased in RNA (~20% down, P < 0.05 and ~38% down, P < 0.01, respectively 

Fig. S18A). While postsynaptic components (HOMER1 and PSD95) showed no significant 

change, vGLUT1 protein level decreased by approximately 22% (P < 0.05, Fig. S18A-C). 

 AD neuronal pathology is associated with extracellular beta-amyloid (Aβ) aggregates 56. 

Aβadministration (24 hours, 5 µM) significantly decreased spontaneous neuronal activity (P < 

0.05), without altering ATP6V1A gene expression (Fig. 4O-P and Fig. S19A-C). Moreover, 

ATP6V1A repression in combination with Aβ42 exposure further impaired neuronal activity (p < 

0.05, Fig. 4O-P and Fig. S19B-C).  
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Neuronal knockdown of Vha68-1, a fly ortholog of ATP6V1A, worsens behavioral deficits 

and neurodegeneration in Aβ42 flies 

In addition to the in vitro validation of neuronal activity impairment by ATP6V1A deficit in 

hiPSC-derived neurons, we also evaluated whether there were behavior and cellular 

consequences caused by knocking down ortholog of ATP6V1A using transgenic Drosophila 

models. According to the DIOPT (DRSC Integrative Ortholog Prediction Tool), Drosophila 

Vacuolar H+ ATPase 68kD subunit 1 (Vha68-1, CG12403) and Vha68-2 (CG3762) are the best 

orthologs of human ATP6V1A proteins. 

We first examined the effects of neuronal KD of Vha68-1 and Vha68-2 on neuronal integrity 

during aging in flies. The pan-neuronal elav-GAL4 driver was used to express shRNAi targeting 

Vha68-1 or Vha68-2 in neurons. Since both Vha68-1 and Vha68-2 are essential genes for 

viability in flies and RNAi-mediated KD of Vha68-2 in neurons resulted in lethality of flies, we 

selected an RNAi line that could modestly reduce mRNA expression levels of Vha68-1 (Fig. 

S20A). We found that neuronal KD of Vha68-1 by itself caused modest decline in climbing 

ability in aged flies (Fig. S20B). 

We next examined whether neuronal KD of Vha68-1 worsened neuronal dysfunction and 

neurodegeneration in a transgenic Drosophila model that expresses human Aβ42 in the brain57. 

qRT-PCR analysis detected significant reduction in mRNA expression levels of both Vha68-1 

and Vha68-2 in Aβ42 fly brains (Fig. 4Q), suggesting that downregulation of fly orthologs of 

human ATP6V1A may play a role in Aβ42-mediated toxicity. The pan-neuronal elav-GAL4 

driver was used to express both Aβ42 and shRNAi targeting Vha68-1 or control shRNAi in 

neurons. The Aβ42 flies showed age-dependent locomotor deficits assessed by the forced 

climbing assay 57, which was significantly exacerbated by neuronal KD of Vha68-1 compared to 
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control flies (Fig. 4R). To minimize potential off-target effects of RNAi, the climbing assay was 

repeated in an independent transgenic line carrying shRNAi targeting a different region of 

Vha68-1 (Fig. S20C-E). Although the KD efficiency of Vha68-1 by this shRNAi was weaker 

(Fig. S20C) and Vha68-1 KD by itself did not cause climbing defects (Fig. S20D), locomotor 

deficits in Aβ42 flies were slightly enhanced (Fig. S20E). 

In Drosophila, brain vacuolation is a morphological hallmark of neurodegeneration and 

neuronal expression of Aβ42 causes age-dependent appearance of vacuoles in the central 

neuropils and cell bodies in the fly brains 57. We found that KD of Vha68-1 significantly 

worsened neurodegeneration in the neuropil region in Aβ42 fly brains (Fig. 4S).  

To further ask whether altered neuronal activity underlies toxic interactions between 

ATP6V1A/Vha68-1 deficiency and Aβ42 in flies, we examined mRNA expression levels of 16 

genes related to synaptic activities, focusing on GABAergic and glutamatergic systems as well as 

ion channels (Fig. 4T and S20F-G). We found that mRNA expression levels of 9 out of 16 

genes were significantly reduced by neuronal KD of ATP6V1A/Vha68-1 in fly brains (Fig. S20F), 

while 5 out of 16 genes were significantly reduced in Aβ42 fly brains (Fig. S20G). Three genes, 

including SLC1A2/Eaat1, SLC17A6-8/vGlut and ATP1A1-3/ATP, were commonly reduced in 

both conditions (Fig. S20F-G). By contrast, neuronal KD of ATP6V1A/Vha68-1 in Aβ42 flies 

dramatically reduced mRNA expression levels of all 16 genes compared to control (Fig. 4T). Of 

particular interest, three key driver genes including GABRA1/Grd in M62, SCN2A/para in M65 

and GABBR2/(GABA-B-R2, 3) in M6 were downregulated in these fly brains, suggesting 

functional links between these networks and ATP6V1A/Vha68-1 in M64 module. 
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In summary, these results suggest that Vha68-1/ATP6V1A deficiency and Aβ42 

synergistically downregulate key regulator genes of neuronal activity and exaggerate Aβ42-

induced toxicities in flies. 

ATP6V1A KD signatures are enriched in ATP6V1A regulated networks in human LOAD 

brains 

To characterize the molecular changes and validate the sub-network regulated by ATP6V1A, we 

performed RNA-seq analysis on RNA from four groups of hiPSC-derived NGN2-neurons 

(designated WT-V and WT-Aβ for vehicle-treated and Aβ-treated ATP6V1A wild-type (WT) 

neurons, respectively, and KD-V and KD-Aβ for vehicle-treated and Aβ-treated ATP6V1A KD 

neurons, respectively), with five independent neuronal differentiation experiments in each group 

(SI). At a cutoff of FDR adjusted P value ≤ 0.05 and FC ≥ 1.2, no significant expression change 

was observed between Aβ-treated cells and vehicle-treated cells in either ATP6V1A KD or WT 

genotype. In contrast, three genes (1 up-regulated and 2 down-regulated) showed significant 

expression change in ATP6V1A deficit neurons in vehicle-treated condition (KD-V vs WT-V), 

while 55 DEGs (18 up-regulated and 37 down-regulated) were detected in ATP6V1A deficit 

neurons under Aβ-treated condition (KD-Aβ vs WT-Aβ) (Table S16 and Fig. S21). Furthermore, 

the contrast between KD-Aβ and WT-V presented 326 DEGs (110 up-regulated and 216 down-

regulated ones) (Table S16), the largest number among all the comparisons. 

 We examined the GO/pathways impacted by ATP6V1A deficit and/or Aβ treatment by 

employing the Gene Set Enrichment Analysis (GSEA) 58. Fig. 5A illustrates the top 

GO/pathways enriched in the molecular profiles; the full list of significantly enriched MSigDB 

GO/pathways is provided in Table S17. A number of GO/pathways were commonly impacted by 
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KD (KD-V vs WT-V) and Aβ treatment (WT-Aβ vs WT-V), such as up-regulation of ribosome, 

translation, and DNA packaging, and down-regulation of axoneme assembly and cilium 

movement. As expected, we found V-ATPase transport and phagosome maturation/acidification 

were down-regulated in KD-V vs WT-V. Consistent with the functional assay above, we noted 

that KD-V vs WT-V led to down-regulation of multiple synaptic and presynaptic pathways, with 

the down-regulation even more significant after the exposure to Aβ treatment in KD-Aβ vs WT-

Aβ. In addition, it is noted that UPR and ER stress response were up-regulated in conditions with 

Aβ treatment. 

 As combination of ATP6V1A KD and Aβ treatment led to a greater amount of molecular 

expression change than individual factor perturbation, we explored potential synergistic effects 

between the two factors59. We first modeled the additive effect of differential expression in the 

individually modulated samples computationally. Hierarchical clustering of the log FCs of all 

genes for each contrast showed notable differences between the predicted and observed 

cumulative effects (including inverse differential expression of some genes) (Fig. S22). Similarly, 

competitive gene set enrichment analysis using 877 curated gene sets found strong enrichment of 

disorder and cellular stress gene sets following individual KD or Aβ treatment, while the KD 

showed further associations with cell death and negative correlation with neuronal function 

signatures. The latter was markedly amplified in the combinatorial modulation (Fig. 5B). To 

examine these synergistic effects in more detail, we grouped genes into synergism categories 

based on differential expression between the additive model and the combinatorial modulation. 

Genes were classified as “more” differentially expressed in the combinatorial modulation than 

predicted, if their logarithmic fold change differed by at least the average standard error in all 

samples. Most genes were altered approximately as predicted or less, while 6% (1152 genes) 
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were more downregulated and 9% (1773 genes) were more upregulated than expected (Fig. 5C). 

Overrepresentation analysis in our curated gene sets revealed that genes more upregulated than 

expected from an additive model were significantly enriched for cell death and cellular stress 

gene sets (Fig. 5C). 

 The genes in response to ATP6V1A KD and Aβ perturbation were significantly enriched in 

the human postmortem brain LOAD signatures identified from the current MSBB cohort as well 

as 10 published datasets (Fig. 5A and Table S18). The down-regulated genes identified in 

human LOAD patients tended to show down-regulation in the current perturbation settings, 

while the up-regulated gene signatures identified in human LOAD patients were up-regulated in 

the current perturbation settings. We further overlaid the ATP6V1A KD and Aβ challenge 

perturbation profiles onto the BM36-PHG MEGENA modules and BN. Using GSEA, the top 

ranked neuronal/synaptic modules (M64 which contains ATP6V1A, M62, M65, M6, M236, 

M252, M385, M87, and M243) were down-regulated in KD-Aβ cells compared to WT-V cells 

(Table S19). Meanwhile, several immune response modules (M14, M153, M366 and M428) 

were up-regulated in KD-Aβ cells compared to WT-V cells. As summarized in Table S20 and 

exemplified in Fig. 5D, the genes surrounding ATP6V1A on the BM36-PHG BN were enriched 

for down-regulation signals of ATP6V1A KD with or without Aβ treatment, with the most 

significant enrichment coming from KD-Aβ vs WT-V (FDR 4.1E-6). In summary, the ATP6V1A 

deficit signature in NGN2-neurons is consistent with the predicted topological structures in the 

human LOAD gene networks. 

DISCUSSION 
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Conventional largest scale GWAS have identified ~30 genetic susceptibility loci associated with 

the risk of LOAD 2-5, but little progress has been made in translating these genetic associations 

into therapeutics, reflecting the low penetrance of individual pathogenic factor and the lack of 

knowledge regarding causal mechanisms. Here we generated multi-Omics data from multiple 

brain regions of a large number of LOAD and control subjects. This unique MSBB-AD cohort 

enabled region-wide as well as cross-region analyses of genomic changes in LOAD brains. We 

identified up to 126,799 cis-associated SNP-gene pairs in region-wide analysis, majority 

(66.1~90.7%) of which were shared between brain regions (supplementary text). However, less 

than 6% of the region-wide DEGs were detected to be cis-regulated (FET P value > 0.1), 

suggesting a lack of detectable cis- genetic regulation among the genes dysregulated in LOAD 

brains. This highlights the challenges in identifying the genetic regulator that may drive the 

transcriptomic response in LOAD. Yet, we observed a marginally significant enrichment for 

LOAD genetic association signals at the cis-regulating SNPs (Table S13), warranting further 

investigation to link eQTLs to GWAS hits for a better interpretation of the clinical and biological 

relevance of the GWAS signal. In this study, cis-eQTLs were detected at two AD GWAS loci, 

including one region at the HLA locus and another region near gene ZCWPW1. A fine-mapping 

analysis which integrates eQTLs and GWAS signals with a summary-data-based Mendelian 

randomization (SMR) 61 method suggests that HLA-DRB1 and HLA-DRB6 are the most plausible 

functionally relevant targets underlying the GWAS hits at the HLA locus and PVRIG is 

supported as the most likely target mediating the GWAS effect at the ZCWPW1 locus. The 

present analysis shows that prioritized genes may not be necessarily the genes nearest to the peak 

SNP as reported in the association studies, indicating caution interpreting the reported candidate 
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risk genes by GWAS and potential power of using transcriptomic data to dissect the complex 

genetic association signals. 

The MSBB cohort contains a continuous spectrum of LOAD-related neuropathology and 

clinical dementia symptom, allowing for detection of molecular changes at both early and late 

stage of LOAD. We built coexpression networks and BNs using all samples with an aim to 

maximize the power to identify the most coherent regulatory relationships across disease stages. 

Our integrative network analyses prioritized functional pathways (gene modules) by considering 

module association with the cognitive/neuropathological traits and enrichment for LOAD-related 

DEGs. The top-ranked modules are related to neuronal system/synaptic transmission, immune 

response, ECM and matrisome related, cell adhesion, etc, which is in line with our prior 

knowledge about the molecular feature of LOAD including reduced neuronal activity or loss of 

synapses62, alterations in synaptic adhesion63, dysfunction in the immune system64, and changes 

of ECM structure31,32. Interestingly, a number of LOAD genetic candidate risk genes were 

present in these top ranked modules, including MEF2C (M62), CELF1, MADD, PLD3, PTK2B, 

and ZCWPW1 (M6), and APP and SORL1 (M64), CLU and CR1 (M17), and APOE, CASS4, 

CD33, HLA-DRB1/HLA-DRB5, INPP5D, MS4A4A/MS4A6A and TREM2 (M153 and M14). The 

mechanism underlying the clustering of GWAS risk genes in the top modules is unknown. One 

possible reason is that they express in common cell types, especially those microglia-specific 

genes CASS4, CD33, HLA-DRB1/HLA-DRB5, INPP5D, MS4A4A/MS4A6A and TREM2. 

One of the primary goals of this paper was to discover novel pathways and genes that are 

central to LOAD and could be potentially pursued with therapeutic prospects. We took 

advantage of the coexpression networks to prioritize modules and then used BNs to predict key 

driver nodes that regulated a substantial network of genes disrupted in LOAD brains. By 
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identifying process initiators (i.e. key drivers) and reactive genes, it is possible to unravel the key 

genetic elements modulating pathogenic molecular mechanisms65. Thus, we hypothesize that key 

drivers play prominent roles in regulating biological pathways underlying disease pathogenesis 

and that manipulating the key drivers might reverse the aberrant pathway activities which in turn 

holds promise to reverse the disease phenotypes. The integrative network analysis-based target 

nomination method complements the conventional genetic linkage and linkage disequilibrium-

based gene mapping technique in identifying the most functionally relevant genes that could be 

followed in functional studies. As 9 of the top 25 modules were related to neuronal 

system/synaptic transmission, we highlighted such modules to be of particular relevance to 

LOAD pathology and clinical severity, and predicted key molecular regulators of the modules 

using BNs, and one top driver, ATP6V1A, was tested experimentally for its disease relevance. 

ATP6V1A, an ATP-dependent proton pump, is well known for its role in the acidification 

of intracellular compartments such as the lysosome; morpholino-knockdown of ATP6V1A 

impaired acid secretion in zebrafish66, while siRNA-mediated knockdown induced autophagy 

activity in U87-MG cells67, and KD of ATP6V1A in HeLa cells prevented drug-induced 

lysosomal acidification and autophagy activation50. Under our experimental conditions, 

ATP6V1A CRISPRi in hiPSC neurons did not alter lysosomal acidification (data not shown) or 

impact autophagy-related gene pathways. Instead, ATP6V1A CRISPRi down-regulated neuronal 

activity-associated functional pathways, particularly in the presence of Aβ42 peptides. Similar 

results were obtained from transgenic fly models: mRNA expression levels of fly orthologs of 

ATP6V1A, Vha68-1/Vha68-2, were reduced and neuronal KD of Vha68-1 exacerbated age-

dependent behavioral deficits and neurodegeneration accompanied by downregulation of 

synaptic genes in Aβ42 flies, suggesting evolutionary conserved roles of ATP6V1A in 
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maintaining neuronal activity and integrity. Mounting evidence suggests that ATP6V1A may play 

an additional and unique role in synapse function; although de novo heterozygous mutations 

(p.Asp349Asn and p.Asp100Tyr) in ATP6V1A in rat hippocampal neurons revealed 

contradictory effects on lysosomal acidification, but both mutations lead to abnormalities in 

neurite outgrowth, branching and synaptic connectivity51. The synaptic role of ATP6V1A in 

LOAD brains requires further investigation.  

hiPSC-based models recapitulate disease-relevant features, gene expression signatures, 

and identify deregulated genes with potential clinical implications (reviewed in68). Induced 

neurons also possess age-related signatures that share similarities with the transcriptomic aging 

signatures detected in postmortem human brain samples (reviewed in69). Likewise, ATP6V1A 

deficit signatures in MSBB post-mortem AD cohort were conserved in ATP6V1A-deficient 

NGN2-neurons. Here, we show that ATP6V1A KD signatures in hiPSC-neurons were highly 

enriched for LOAD DEGs and the sub-network surrounding ATP6V1A, indicating that hiPSC 

modeling is a unique and promising avenue to success for devastating diseases such as LOAD 

when living tissues are not available. 

The present transcriptomic profiles were generated from bulk brain tissues which were 

mixtures of different cells of different types. Since variation in cell type proportions across 

individuals can influence the expression pattern, a limitation with the current transcriptomic data 

is that the expression level change in response to external stimuli or disease state may be 

confounded by cell type composition. With the recent technology advancement in single-cell 

gene expression analysis, including single-nucleus RNA-seq (snRNA-seq), it is now possible to 

study diseased tissues at the single-cell level72. We compared our bulk-tissue derived gene 

profiles with a recent snRNA-seq analysis of dorsolateral prefrontal cortex (DLPFC) region of 
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LOAD patients and controls 28 and found significant preservations of our gene signatures in the 

snRNA-seq DEGs with the same direction of change (Fig. S4), despite different brain regions 

analyzed. This suggests that cell type proposition may have a limited impact on our gene 

signatures identification. Nonetheless, it is widely accepted that there exists selective regional 

and cell type-specific vulnerability to LOAD8,73. We anticipate generating region-specific single-

cell multi-Omics data of LOAD and developing cell type-specific network models will offer 

invaluable in-depth understanding of the cellular complexity and etiology underlying the 

devastating disease. 

In summary, we systematically identified molecular signatures, constructed multiscale 

gene networks and uncovered regulators of LOAD in four brain regions. We uncovered a 

number of relatively independent, neuron/synaptic transmission enriched gene subnetworks that 

were highly dysregulated in LOAD. We validated one predicted top key driver of the 

dysregulated neuronal system, ATP6V1A, in silico, in vitro and in vivo, and demonstrated 

ATP6V1A to be a promising therapeutic candidate target for treating LOAD. 
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Fig. 1. Characterization of MSBB genetics and transcriptomics data. A, Schematic of the experimental
design and analysis overflow to construct predictive network models and prioritize novel network modules and
targets with experiment validation. Postmortem brain tissues from 4 different brain regions in a cohort of 364
brains from the Mount Sinai brain bank (MSBB) with comprehensive AD-related clinical and pathological
phenotype characterization are profiled by RNA sequencing (RNA-seq) and whole-genome sequencing (WGS).
The molecular data and phenotypic trait data are combined to compute disease signatures and further rank order
coexpression network modules that are constructed from the RNA-seq profiles by using MEGENA. The top
ranked modules are projected onto Bayesian probabilistic causal networks to identify key driver genes. The
disease relevance of the top predicted key driver gene, ATP6V1A, is tested in human induced pluripotent stem
cell (hiPSC)-derived neurons as well in a Drosophila model of Aβ toxicity through gene perturbations by dCas9
knock-down (KD) or RNA interference (RNAi). Brain region abbreviation: BM10-FP, Brodmann area 10
(BM10) frontal pole; BM22-STG, Brodmann area 22 (BM22) superior temporal gyrus; BM36-PHG, Brodmann
area 36 (BM36) parahippocampal gyrus; BM44-IFG, Brodmann area 44 (BM44) inferior frontal gyrus. DEGs,
differentially expressed genes. eQTLs, expression quantitative trait loci. MEGENA, multiscale embedded gene
co-expression network analysis. B, Number of unique DEGs identified in each brain region for each of the
clinical/pathological traits. Clinical/pathological traits are bbscore (Braak staging for neurofibrillary tangles),
CERAD (neuropathology scale as determined by the Consortium to Establish a Registry for Alzheimer's Disease
protocol), PlaqueMean (mean plaque density), and CDR (clinical dementia rating). C, Bar-chart showing the top
gene ontology (GO) and pathways enriched in gene pairs with consistent positive or negative correlations across
all pairs of brain regions.
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Fig. 2. Coexpression network analysis prioritizes neuronal/synaptic modules associated with disease in
LOAD brains. A, MEGENA network structure in BM36-PHG with nodes colored by module membership.
Genes showing high degree of connectivity are highlighted, with font size proportional to the degree of
connectivity. B, 25 top-ranked MEGENA modules. The heatmap to the left shows the module ranking
(number) and GO/pathway annotation (color) in track 1, the module-trait correlation coefficients r
regarding traits bbscore, CDR, CERAD, and PlaqueMean (tracks 2-5 accordingly), and FDR adjusted P
values of enrichment for different sets of DEGs (track 6-24). Specifically, tracks 6-14 denote the
enrichment for down-regulated DEGs from AD-vs-normal regarding bbscore, demented-vs-MCI regarding
CDR, demented-vs-nondemented regarding CDR, AD-vs-normal regarding CERAD, definite AD-vs-
normal regarding CERAD, medium-vs-normal regarding PlaqueMean, severe-vs-medium regarding
PlaqueMean, severe-vs-mild regarding PlaqueMean, and severe-vs-normal regarding PlaqueMean,
accordingly. Tracks 15-23 denote the enrichment for up-regulated DEGs from the same contrasts as the
down-regulated DEGs. An additional track 24 denotes enrichment for up-regulated DEGs from mild-vs-
normal regarding PlaqueMean. C, Sunburst plots showing the module hierarchy and correlation with CDR
(left), and enrichment for CDR demented-vs-nondemented DEGs (middle) and enrichment for cell type-
specific markers (right). Numbers 1-13 denote 13 top ranked modules as listed to the right. Cell types are
denoted by abbreviations: ast, astrocytes; end, endothelial; mic, microglia; neu, neurons; oli,
oligodendrocytes. D, Representative visualization of the top ranked neuronal/synaptic modules M62, M65,
M6 and M64. Node color denotes whether the gene is up-regulated (red), down-regulated (blue), or no
change (grey) in demented brains. Node size is proportional to the network connectivity within each
module. E, Top ranked neuronal/synaptic modules enriched in GO biological process (BP) hierarchy in
relation to synaptic function, neuronal development and transportation. Each node denotes a GO/BP term,
with a pie-chart displaying the –log10(adjusted P value) of the Fisher’s exact test (FET) enrichment for the 4
top ranked neuronal/synaptic modules (i.e. M6, M62, M64 and M65). The terms are grouped into general
categories as indicated by different background color blocks. Arrows denote the direction from a parent
term to a child term. The GO hierarchy was extracted from the R/Bioconductor package GO.db and the
GO/BP annotation gene sets were obtained from the R/Bioconductor package org.Hs.eg.db.
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Fig. 3. Bayesian probabilistic causal network (BN) analysis predicts novel key drivers of LOAD. A, Global
network topology of the BN in BM36-PHG. Node color denotes whether the gene is up-regulated (red), down-
regulated (blue), or no change (grey) in demented brains. B, Summary of validation of BN structure using gene
perturbation signatures. The left panel shows percentage of the global BN key driver nodes (genes) whose
network neighborhood was enriched for perturbation signature at different path length from the node. The right
panel shows the same analysis results for non-driver nodes. C, Projection of neuronal modules M62 and M64 on
to the BM36-PHG BN. Node labels are shown for the module key drivers, such as the top ranked driver
ATP6V1A. Node shape denotes the module membership. Node color denotes expression change in demented
brains. D-G, A novel network key driver ATP6V1A is down-regulated in LOAD patient. D, Violin plot shows
the ATP6V1A expression in the RNA-seq analysis of BM36-PHG brain region as stratified by CDR. E-G
illustrate the validation of ATP6V1A expression change in MSBB BM36-PHG brain samples using western blot
(E-F) and qRT-PCR (G) analyses. E, Representative western blot of ATP6V1A protein level. (Student’s t-test.
*p < 0.05. **p < 0.01. ***p < 0.001. ****p < 0.0001. NS, no significance.). NL, normal control.
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Fig. 4. Repression of ATP6V1A leads to neuronal malfunction in human NGN2-neurons and Aβ42
transgenic flies. A, Schematic diagram of the ATP6V1A gene editing by CRISPR/dCas9-KRAB system. Six
different sgRNAs are designed for targeting the ATP6V1A promoter. B, qRT-PCR analysis (n = 4 biological
replicates) confirms the decreased ATP6V1A RNA by sgRNA candidate 1 & 2 (i1 and i2) in two independent
NGN2-neuron cell lines (i.e. C1 and C2). C-D, Representative western blot and quantitative analysis (n = 4) of
ATP6V1A protein level in NGN2-neurons. β-Actin is a loading control. E-F, Representative raster plots of
spike events over 10 min and analysis (n = 6~45 wells) of day 21 (D21) NGN2-neurons. G, Current-voltage (I-
V) plot for inward sodium (INa) and outward potassium (IK) currents. Current density (pA/pF) is shown.
Holding potential was -80 mV. H, Representative examples of putative inward voltage-gated sodium current at
0 mV. I, Bar plot shows mean inward sodium current densities at 0 mV for ATP6V1A KD neurons (n=17) and
control neurons (n=18), (*p = 0.0151; unpaired t-test). J, Box plots show fraction of neurons that displayed a
full action potential (AP), spikelets, or no events with a current injection step (0.1 nA) positive to threshold for
control and KD neurons. Inset shows representative examples of AP & spikelet. K, Representative confocal
microscopic images of synapse plasticity-related proteins (SYN1, red; HOMER1, green) and pan-neuronal
marker MAP2 (blue). Bar, 20 µm. L, Analysis of SYN1 and HOMER1-immunoreactive puncta numbers (n =
3). M-N, Representative western blot and quantitative analysis (n = 4) of SYN1 and HOMER1 levels. O-P,
Multi-electrode array after exposure to 5 µM beta-amyloid at 24 hours. O, plate map of total spike events; P,
analysis of spike events (n = 12 wells). (t-test and ANOVA; *p < 0.05; **p < 0.01; ***p < 0.001, n.s., no
significance; Error bars represent SE.) Q, mRNA expression levels of Vha68-1and Vha68-2 were decreased in
the heads of flies carrying Aβ42 transgene. mRNA levels were analyzed by qRT-PCR. n = 4, **p < 0.01 and
***p < 0.001. R, Knockdown of Vha68-1 in neurons exacerbated locomotor deficits caused by Aβ42 as
revealed by climbing assay. Average percentages of flies that climbed to the top (white), climbed to the middle
(light gray), or stayed at the bottom (dark gray) of the vials. Percentages of flies that stayed at the bottom were
subjected to statistical analyses. n = 5 independent experiments except for 7 days (n =2), *p < 0.05, **p < 0.01
and ***p < 0.001 by Student’s t-test. S, Neuronal knockdown of Vha68-1significantly worsened
neurodegeneration in the neuropil region in Aβ42 fly brains. Representative images show the central neuropil
in paraffin-embedded brain section with hematoxylin and eosin (HE) staining from 33-day-old flies. Scale
bars: 50 μm. Percentages of vacuole areas (indicated by arrows in the images) were subjected to statistical
analyses. n = 12-24 hemispheres, ***p < 0.001 by Student’s t-test. The genotypes of the flies were: (Control):
elav-GAL4/Y, (Aβ): elav-GAL4/Y; UAS-Aβ42/+, (Aβ/mcherryRNAi): elav-GAL4/Y; UAS-Aβ42/+; UAS-
mcherryRNAi/+, and (Aβ/Vha68-1 RNAi): elav-GAL4/Y; UAS-Aβ42/+; UAS-Vha68-1RNAi/+. T, mRNA
expression levels of 16 selected genes related to synaptic activities were significantly reduced in Aβ42-
expressing files with neuronal KD of ATP6V1A/Vha68-1. mRNA levels were analyzed by qRT-PCR (n = 4).
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Fig. 5. RNA-seq analysis reveals that ATP6V1A KD impacts neuronal function related pathways and
ATP6V1A KD signatures are enriched in ATP6V1A regulated networks in human LOAD brains. A,
Summary of top MSigDB GO/pathway gene sets and human AD signatures, including the present MSBB
BM36-PHG DEGs and public AD DEGs, which were significantly enriched in molecular profiles from the
perturbations of NGN2-neurons. Plus (+) and minus (-) symbols denote the sign of enrichment scores as
computed by gene set enrichment analysis (GSEA). Brown color in the x-axis of the left panel highlights
the neuronal and synaptic related terms. Cyan color in the x-axis of the two panels to the right highlights the
down-regulated signatures. B-C, Analysis of synergistic effect between ATP6V1A KD and Aβ treatment in
NGN2-neurons. B, Summary of the functional categories that are likely to be impacted by the synergistic
effect between ATP6V1A KD and Aβ treatment in NGN2-neurons. C, Pie chart in the top panel shows
percentages of genes that exhibit similar or more moderate differential expression (grey) following
combinatorial treatment in comparison with the expected additive model, as well as genes that are more
downregulated (blue) and more upregulated (red). Heat-map in the bottom panel shows over-representation
analysis of those “more down” and “more up” genes with significant synergistic differential expression
(FDR < 10%), ranked by significance. “More down” genes did not exhibit significant enrichment in any
category. D, Genes within a path length of 3 from ATP6V1A on the BM36-PHG BN were enriched for
down-regulated signals of Aβ-KD vs V-WT (GSEA normalized enrichment score = 2.3, adjusted P value =
8.3E-6). Node fill color denotes the expression change in demented brains and node border color gradient
denotes the magnitude of expression change (t-statistics from -3 to 3) induced by ATP6V1A KD in Aβ-
treated NGN2-neurons. Genes with known symbols are labeled.
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