
 

 

Population specific reference panels are crucial for the 
genetic analyses of Native Hawai’ians: an example of the 
CREBRF locus 
 
 
Meng Lin1,†, Christian Caberto2, Peggy Wan1, Yuqing Li3, Annette Lum-Jones2, Maarit Tiirikainen2, 
Loreall Pooler1, Brooke Nakamura1, Xin Sheng1, Jacqueline Porcel1, Unhee Lim2, Veronica Wendy 
Setiawan1, Loïc Le Marchand2, Lynne R. Wilkens2,  Christopher A. Haiman1, Iona Cheng3, Charleston W. 
K. Chiang1,4,† 
  
1Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, 
University of Southern California, Los Angeles, California 
2Epidemiology Program, University of Hawai’i Cancer Center, University of Hawai’i at Mānoa,  
Honolulu, Hawai’i 
3Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, 
California 
4Quantitative Computational Biology Section, Department of Biological Sciences, University of Southern 
California, Los Angeles, California 
 
 
†Correspondence: linmeng@usc.edu, charleston.chiang@med.usc.edu 
 
Abstract 
 
Statistical imputation applied to genome-wide array data is the most cost-effective approach to 
complete the catalog of genetic variation in a study population. However, imputed genotypes in 
underrepresented populations incur greater inaccuracies due to ascertainment bias and a lack of 
representation among reference individuals,, further contributing to the obstacles to study these 
populations. Here we examined the consequences due to the lack of representation by genotyping 
a functionally important, Polynesian-specific variant, rs373863828, in the CREBRF gene, in a 
large number of self-reported Native Hawai’ians (N=3,693) from the Multiethnic Cohort. We 
found the derived allele of rs373863828 was significantly associated with several adiposity traits 
with large effects (e.g. 0.214 s.d., or approximately 1.28 kg/m2, per allele, in BMI as the most 
significant; P = 7.5x10-5). Due to the current absence of Polynesian representation in publicly 
accessible reference sequences, rs373863828 or any of its proxies could not be tested through 
imputation using these existing resources. Moreover, the association signals at this Polynesian-
specific variant could not be captured by alternative approaches, such as admixture mapping. In 
contrast, highly accurate imputation can be achieved even if a small number (<200) of 
Polynesian reference individuals were available. By constructing an internal set of Polynesian 
reference individuals, we were able to increase sample size for analysis up to 3,936 individuals, 
and improved the statistical evidence of association (e.g. p = 1.5x10-7, 3x10-6, and 1.4x10-4 for 
BMI, hip circumference, and T2D, respectively). Taken together, our results suggest the 
alarming possibility that lack of representation in reference panels would inhibit discovery of 
functionally important, population-specific loci such as CREBRF. Yet, they could be easily 
detected and prioritized with improved representation of diverse populations in sequencing 
studies. 
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Introduction 
 
Statistical imputation of untyped variants is a crucial step for large-scale genetic investigations of 
complex traits. By comparing to an appropriate reference panel, often based on whole genome 
sequences of individuals, statistical imputation infers the genotype at variant sites not covered on 
genotyping arrays1.Therefore, imputation benefits many study cohorts with its balance between 
budget and coverage of the genome. Nevertheless, inadequacy and inaccuracy of imputed 
markers can impede downstream genetic studies or clinical screening. This problem could arise 
when reference panels are not genetically close to the population of interest, further exacerbated 
by ascertainment bias of existing genotyping array. Today, it is increasingly recognized that 
there has been a severe bias towards studying individuals of European origin in GWAS 2–5, and 
similarly in the largest available reference panel for imputation (e.g. the Haplotype Reference 
Consortium6). The inability to statistically impute diverse populations further hinders progress in 
studying these diverse populations that otherwise are already underserved 7,8.  
 
One of the major obstacles in studying diverse, non-European, populations, particularly for 
indigenous communities such as the Native Hawai’ians, is the inability to accrue large sample 
sizes9. For example, GWAS in European ancestry-based cohorts numbers in greater than 1 
million10; By contrast, there are only ~1.2 million individuals in total living in the United States 
that may derive some part of their ancestry to Native Hawai’ians, according to the US 2010 
census survey (https://www.census.gov/prod/cen2010/briefs/c2010br-02.pdf). Therefore, the 
focus in studying diverse populations is often in (1) evaluating the transferability of findings 
from large-scale European ancestry-based studies, and (2) identifying population-specific 
variants that may contribute to genetic risks in non-European populations. As they are often very 
rare or missing in Europeans, population-specific variants in non-Europeans are usually absent in 
most genotyping arrays. These variants would rely on high quality imputation in order to be 
captured, unless the population of interest is whole genome sequenced at large scale. One recent 
example of a variant that bears important consequences to the health and disease risk of a 
population is the Polynesian-specific missense variant rs373863828 in gene CREBRF. This locus 
was initially detected because of an association signal of a proxy variant, rs12513649, which was 
on the Affymetrix 6.0 array. The missense rs373863828 was then discovered through targeted 
resequencing of a small number of private Samoan sequences, followed by imputation into the 
entire Samoan cohort and validation of the imputed genotypes. Rs373863828 was found to have 
a large effect on body mass index (BMI) as well as on a number of other adiposity, metabolic, 
and anthropometric traits in Samoans 11. Despite an estimated 26% allele frequency in Samoans, 
the derived allele is only segregating in the few Pacific Islands populations and not found 
elsewhere in the world 12–16. Because of a lack in Polynesian haplotypes in publicly accessible 
sequencing databases (e.g. 1000 Genomes Project or Haplotype Reference Consortium), this 
variant could not be directly imputed and studied by researchers with publicly available 
resources.  
 
In this study, we use the CREBRF locus as an example to examine the potential limitations of 
post-imputation analyses in the absence of a proper representation in reference panels. We 
genotyped the variant in Native Hawai’ians from the Multiethnic Cohort (MEC). The Hawai’i 
archipelago in North-East Polynesia was first settled between 1,200 ~1,800 ya 17–20. Historically, 
Native Hawai’ians have remained relatively isolated on the northern Pacific islands, until their 
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recent encounter with inter-continental migrants from Europe around the late 18th century, and 
from East Asia (mainly China and Japan) during the 19th -20th century, followed by minor 
contributions from other populations around the world17,18. Compared to other populations, 
contemporary Native Hawai’ians have higher incidence rate of obesity-related medical 
conditions, such as diabetes and cardiovascular diseases21. Therefore, it is of clinical importance 
to characterize the impact of variants with potentially large effects on adiposity, such as 
rs373863828 in CREBRF, in this population. We demonstrate that despite a strong impact on 
adiposity, the CREBRF locus could not be discovered using conventional mapping methods with 
currently available resources, predicting important challenges for discovering additional variants 
contributing to population-specific genetic risks. However, our findings also suggest that these 
challenges could be mitigated if the representation in reference sequences were improved, even 
quite marginally. 
 
Methods 
 
Study subjects. The Multiethnic Cohort (MEC) is a population-based cohort study that 
examines lifestyle and genetic risk factors for cancer. It consists of 215,251 adult men and 
women from Hawai’i and California (primarily Los Angeles County), with ages ranging from 45 
to 75 at recruitment (1993-1996). The cohort includes mainly five ethnicities: Native Hawai’ians, 
African Americans, Japanese Americans, Latinos, and European Americans. Participants entered 
the cohort by completing a questionnaire on diet, height, weight, demographic information, and 
other risk factors. Participants are followed up with questionnaires every five years, and linked 
with cancer registries annually. More details of the MEC can be found in Kolonel et al. 22 The 
institutional review boards of the University of Hawai’i and the University of Southern 
California approved the study protocol. All participants signed an informed consent form. 
 
Genotyping and QC. In total, 4,990 MEC Native Hawai’ian participants were genotyped by 
genome-wide SNP arrays across different arrays platforms. Among them, 3,940 individuals were 
genotyped on Illumina MEGA array as part of the PAGE consortium3; 307 were genotyped on 
Illumina MEGAEX as part of a collection of additional obesity related anthropometric and 
imaging  measurements of adiposity23; An additional 266, 318, and 492 individuals were 
genotyped on Illumina Infinium Oncoarray, Illumina Human 1M Duo BeadChip, and Illumina 
660W arrays, respectively, in the past for studies of colorectal cancer, nicotine metabolism, and 
breast cancer24–26. In the main text and Table S1, we refer to these past studies using MEC 
Native Hawai’ian samples as PAGE, Obesity, CRC, smokers, and NHBC substudies, 
respectively. In this report, we focused most of the analyses on Native Hawai’ian participants in 
the PAGE consortium as this study had the largest sample size and SNP density, compared to 
other studies.   
 
The genotyping calling process and quality control filtering for all of the genotyped datasets 
above are described in the corresponding references, with exception of the obesity related study 
on MEGAEX. In this dataset, DNA extraction from blood samples for the MEC-Adiposity 
Phenotype Study participants23 was performed using the Qiagen QIAmp DNA kit (Qiagen Inc., 
Valencia, CA). DNA samples were genotyped by the Illumina MEGAEX array. SNPs with a call 
rate <0.95, a replicate concordance <100% based on 39 QC replicate samples, and those with 
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poor clustering after visual inspection were removed. Problematic samples with a call rate <0.95 
or gender/sex mismatches were removed.  
 
We applied additional uniform quality controls as follows: All variant names were updated to 
dbSNP v144; duplicated loci and indels were removed; triallelic variants or variants with non-
matching alleles to 1000 Genomes Project phase 3 (1KGP)27 were discarded; loci with unique 
positions not found in 1KGP were removed from the dataset; alleles were standardized to the 
positive strand by comparing to 1KGP. Finally, a genotype missingness filter of 5% was applied. 
 
Additionally, we genotyped rs373863828 in CREBRF in a total of 4,331 MEC Native 
Hawai’ians using a Taqman Assay; genotypes for 4,214 of these individuals were called 
successfully, 3,693 of which also have genome-wide array data and thus formed the dataset of 
this study. This variant was also genotyped in an additional 407 European Americans, 313 
African Americans, 432 Japanese Americans, and 386 Latinos (both American and non-
American born Hispanics) from the MEC; the variant was monomorphic in all these other 
populations examined. 
 
Phenotypes analyzed. We focused on a total of 30 quantitative and dichotomous traits related to 
obesity, type-2 diabetes, and cardiovascular diseases, chosen because Native Hawai’ians have 
shown to have excess risk for these traits compared to other populations21,28,29. These include 13 
quantitative traits (BMI, hip circumference, waist circumference, adult standing height, waist-hip 
ratio, total cholesterol, fasting glucose, adiponectin, HDL, LDL, hypertension, fasting insulin and 
HOMA-IR) and 2 dichtomous traits (obesity, type-2 diabetes). We also analyzed an additional 10 
adiposity traits measured using whole-body dual-energy X-ray absorptiometry (DXA) and 
abdominal magnetic resonance imaging (MRI) for a subset of 307 individuals23: total fat mass, 
total lean mass, lean mass in leg, lean mass in arm, percentage of total fat, trunk fat mass, 
percentage of liver fat, visceral fat area, and abdominal fat area. Finally, we examined 5 
additional dichotomous disease traits related to cardiovascular outcomes in MEC participants 
enrolled in the Medicare fee-for-service program including: heart failure (HF), hyperlipidemia 
(HYPERL), hypertension (HYPERT), ischemic heart disease (IHD), and stroke/transient 
ischemic attack (TIA). These phenotypes were identified by CMS Chronic Conditions Data 
Warehouse using algorithms that search the Medicare claims data for specific diagnosis or 
procedure codes (https://www2.ccwdata.org/web/guest/condition-categories). 
Please refer to Table S2 for details of the phenotype transformation. 
 
Imputation of rs373863828. In order to impute rs373863828 using a population-specific 
reference panel, we identify MEC Native Hawai’ian individuals with the highest amount of 
Polynesian ancestry to serve as the Polynesian reference panel. Specifically, we first estimated 
the global ancestry proportions of 3,940 subjects from PAGE, using ADMIXTURE v1.330. We 
modeled the Native Hawai’ian ancestry as 4 ancestral components: the majority Polynesian 
component, with recent admixtures from Europeans, East Asians, and Africans. We thus 
included 1000 Genomes Project 27(1KGP; Phase 3) GBR, CEU, TSI, IBS as European 
references; CHB, JPT, CHS, CDX, KHV as East Asian references; YRI and LWK as African 
references. After pruning the dataset to exclude loci with genotype missingness >5% and minor 
allele frequency <1%, we stratified individuals into a group of closely related 1st or 2nd degree 
relatives estimated from KING31 and a separate group of relatively unrelated individuals. We 
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then pruned variants such that no two variants have an LD above r2 of 0.1, per recommendation 
of ADMIXTURE, and conducted an unsupervised run across the unrelated individuals at k=4. 
We then projected the estimated ancestral allele frequency to the related samples to infer the 
genomic ancestries of these individuals. We performed five independent iterations with 
randomized seed numbers, and found no minor mode at k=4. The final result was integrated by 
averaging the estimated proportions after matching ancestry clusters across five runs. From this 
analysis we identified 178 MEC Native Hawai’ian individuals with >90% Polynesian ancestry 
and have a refined kinship coefficient (through PC-relate32, below) < 0.2 among reference 
samples. We further subset to 152 individuals who were genotyped successfully at rs373863828. 
To construct the imputation reference panel, the genotype of the rs373863828 was merged to the 
array genotypes on chromosome 5 for these 152 individuals and merged with the 1KGP, 
assuming that each 1KGP sample carries homozygous reference genotype at rs373863828. We 
statistically phased this constructed reference panel again with EAGLE2, as rephasing was 
shown to improve imputation accuracy6 and we found that rephasing improved genetic ancestry 
inference (Figure S9). We used minimac333 (version 2.0.1) and the constructed reference panel to 
impute the genotype of rs373863828 in Native Hawai’ian individuals with genome-wide array 
data. After imputation, we had genotype dosages of rs373863828 available for all samples, 
covering those phenotyped but not particularly genotyped by Taqman assay, which increased the 
sample size in the refined associations of this locus with all traits available. 
 
Constructing the genetic relatedness matrix. Due to sample relatedness and population 
substructure within the MEC Native Hawai’ians, standard approaches for constructing principal 
components and kinship estimates could each bias one another. Thus, we used PC-air and PC-
relate from GENESIS v2.4.0 package32,34, which performs a principal component analysis robust 
to family structures, and infers genetic relatedness unbiased from unspecified population 
structures, respectively. Based on our initial kinship estimates from KING31, we obtained the top 
10 eigenvectors reflecting ancestry influences at the default unrelatedness cut-off of 2^(-11/2). 
The unbiased eigenvectors were in turn used to refine the kinship coefficients in the genetic 
relatedness matrix (GRM).  
 
Linear mixed model. We used a linear or logistic mixed model (LMM) implemented in 
EMMAX35 to perform all association tests in this study. We used the GRM generated from PC-
relate (above) as a random effect in the model, and the inverse normalized residuals and 
covariates as fixed effects for each trait (Table S2). In association tests of the CREBRF region on 
chromosome 5, only 15,334 markers that were genotyped or had imputation INFO score > 0.4 
were included. In admixture mapping with BMI and T2D, genotyped positions with probabilities 
of being on Native Hawai’ian haplotypes, as inferred from local ancestry inference (below), were 
used as dosages. Bonferroni correction was directly applied to associations conducted in PAGE 
subjects. For the additional 10 adiposity traits in the separate 307 individuals, due to the likely 
correlations among the traits, we determined the number of independent tests as following: we 
decomposed the phenotypic matrix by principle component analysis, and calculated the 
accumulative variance explained by eigenvectors until it surpass 95% of that of the phenotypic 
matrix. We found the corresponding number of PCs surpassed the threshold to be 7, i.e. the 
number of independent tests considered for the associations with the 10 adiposity traits. 
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Local ancestry inference. We used RFMix236 to estimate local ancestry on the rephased 
genotype data of MEC Native Hawai’ians from the PAGE dataset. We used our constructed 
imputation reference panel as reference panel of the four components of ancestry. HapMap237 
pooled recombination rate (ftp://ftp-
trace.ncbi.nih.gov/1000genomes/ftp/technical/working/20110106_recombination_hotspots/) was 
used as the genetic map. We adopted the default parameters of RFMix2 as we found no notable 
difference when enabling expectation-maximization for 5 iterations, or when enabling re-
analysis of reference individuals (data not shown). From the output of RFMix tsv file we also 
computed global ancestry estimates for each person after we excluded tracts with any ancestry 
probability lower than 0.9. The global ancestry proportions estimated from RFMix is highly 
concordant with those from ADMIXTURE (Figure S9); the main deviation is due to individuals 
detectably related to the 178 reference individuals (maximal kinship coefficients with the 178 
internal individuals are significantly higher than the rest; Mann-Whitney (one way) P =5.14E-
58). 
 
Power estimate of single variant association with BMI. We estimated the power of 
discovering a locus rs373863828 via single variant association, using BMI as an example. We 
followed a standard power estimate for quantitative traits: assuming a chi-square model with 
degree of freedom as 1 applies, the power equals to the left tail probability of a chi-square value 
of corresponding alpha probability, but with the non-centrality parameter shifted as the product 
of sample size and heritability explained by the single locus. For rs373863828, 

ℎ"#$% = 2((1 − ()-.#/% 
Where p is the MAF (6%), and -.#/ is the effect size in standard deviation unit (0.248). 
 
Power simulation for admixture mapping. We assumed the following in our power 
simulation: 1) the derived allele frequency of rs373863828 in the ancestral, unadmixed, Native 
Hawai’ians is 13%, as estimated from current individuals who have >90% Polynesian ancestry; 
2) the effect size of the derived allele and the phenotypic standard error are transformed to the 
same units as reported in the discovery cohort in Samoans by Minster et al.11, i.e. 1.36 and  6.9 
kg/m2 ; 3) the percentage of local ancestry at CREBRF region among all samples is similar to the 
average of global ancestry proportions (i.e. no strong selection at the locus) (Figure S4).  
 
Given a target sample size, we assigned the genotype of each individual assuming Hardy-
Weinberg equilibrium and the derived allele frequency of 5.9% (matching the frequency for 
rs373863828 in Native Hawai’ians). Given the genotype, we then assigned the ancestral origin of 
haplotype for each individual. If an individual has: 
 

1) Homozygous derived genotype implies the individual derived both alleles from 
Polynesian haplotypes; 

2) Heterozygous genotype implies the individual carries at least one copy of Polynesian 
haplotype. For the other, non-derived, allele, the probability that this allele derives from a 
Polynesian haplotype is: 

0(0123456784	1:7;74	|	414 − =5:7>5=	822525) = ?$ − ?$ ∗ ($
1 − ?$ ∗ ($
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where ?$is the global Polynesian ancestry percentage, and ($is the derived allele frequency in 
non-admixed ancestral Polynesians (13%). Thus, probability of this individual carries exactly 
one copy of Polynesian haplotype is	1 − 	0(0123456784	1:7;74	|	414 − =5:7>5=	822525). 
 

3) Homozygous ancestral genotype (GG): the number of Polynesian tracts each individual 
carry corresponds to a binomial sampling at the probability of P(Polynesian origin | non-
derived allele) as described, and the number of trials is 2 (diploid). 

 
To simulate phenotypes of individuals given their genotypes, we sampled from a normal 
distribution with mean shifted by 2β, β,	and	0 standard deviations, where β is the reported effect 
size. Given simulated genotype, local ancestry, and phenotype, we tested the association between 
local ancestry and the phenotype to simulate admixture mapping. Power was calculated as the 
number of times a positive association at or below the specified statistical threshold was 
achieved in 500 iterations. 
 
Selection test. We performed nSL scan38 implemented in Selscan39, which identifies ongoing 
positive selection in genome based on phased haplotypes and is robust to recombination rate 
variation, on the 152 internal reference individuals at the CREBRF locus. To standardize the nSL 
score at the CREBRF locus, we constructed the null distribution based on genome-wide nSL 
scores from variants with derived allele frequency between 12-14%. 
 
 
 
Results 
 
The missense variant in CREBRF is correlated with the proportion of Polynesian ancestry 
 
To characterize the functional missense variant, rs373863828-A, in Native Hawai’ians, we 
genotyped this single locus in 3,693 self-reported Native Hawai’ian individuals from the 
Multiethnic Cohort (MEC), in addition to their existing genome-wide array data (Table S1). We 
also genotyped this variant in 1,538 individuals from other continental populations also found in 
the MEC (Methods). Consistent with previous reports that this variant is found exclusively in 
Pacific Islanders11,12, we estimated the derived allele frequency to be 5.9% in Native Hawai’ians, 
but is monomorphic in all other ethnicities we genotyped. As Native Hawai’ians derive a large 
proportion of their ancestry from Polynesians, we also found significant correlations between the 
derived allele frequency (DAF) at rs373863828 and individuals’ indigenous Polynesian ancestry 
proportions (r = 0.98, p = 6.2e-7, Figure S1; ancestry binned in 10 percentage points), and 
between the direct genotypes and individual ancestry proportions (GLM b=2.67, p < 2e-16). 
Individuals who are relatively unadmixed (with estimated Polynesian ancestry >90%) carry the 
allele at the frequency of 12.8% (Figure S1). 
 
The lower frequency (12.8%) among Native Hawai’ian individuals who are relatively unadmixed 
is unexpected, given that the allele has been reported to be under positive selection and is 
segregating at 26% in Samoans11. We attempted to replicate the signal of selection at this locus 
in the Native Hawai’ians using the nSL (ref 38) among the 152 individuals with estimated 
Polynesian ancestry > 90%. Compared to randomly drawn variants throughout the genome 
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matched by derived allele frequency, we found no evidence of rs373863828-A being positively 
selected (nSL = 0.72, p = 0.57, Figure S2). 
 
 
The CREBRF variant is associated with adiposity traits in Native Hawai’ians 
 
The CREBRF variant has been reported to have a large effect on body mass index (BMI) in 
several populations from the Pacific Islands, and significantly associated with height and other 
adiposity traits in Samoans11,40. To explore its impact in Native Hawai’ians, where the derived 
allele is present at a relatively lower frequency compared to the Samoan discovery cohorts 
(26%), we conducted linear mixed association tests for the variant among genotyped individuals 
who also had available a collection of quantitative anthropometric, metabolic, and lipid 
phenotypes (Table S2 and Table S3). After phenotype transformations (Table S2), we replicated 
the increasing effect of the derived allele for rs373863828 on BMI (b=0.214 s.d. per allele, P = 
7.55e-5) and height (b=0.182 s.d. per allele, P = 3.96E-4). Based on these genotyped Native 
Hawai’ians, this variant explains 0.52% and 0.37% of the phenotypic variance in BMI and 
height, respectively. These are much larger than the largest effect loci found in Europeans for 
these traits (in Europeans, rs11642015 in FTO and rs143384 in GDF5 explain 0.25% and 0.2% 
of the variation for BMI and height, respectively, based on ~360,000 individuals studied in UK 
BioBank; http://www.nealelab.is/uk-biobank/). We also found the derived allele was associated 
with increases in waist and hip circumferences (b=0.215 s.d. per allele and 0.206 s.d. per allele, 
P = 8.7E-4 and 0.00127, respectively), but was not associated with waist-hip ratio (Table S4). 
Consistent with the Samoan study, we found no association between rs373863828-A and several 
metabolic and serum lipid traits, including fasting insulin, HOMA-IR, adiponectin, HDL, LDL, 
or triglycerides (Figure 1, Table S4). In addition, we did not find an association of rs373863828 
with total cholesterol or HDL, which was reported otherwise in Samoans11.  
 
We also examined the association for a number of dichotomous disease phenotypes. As expected 
for its large effect on BMI, we found the derived allele to increase the risk for obesity 
(OR=1.096, P = 9.52E-5). In addition, we replicated the variant’s protective effect to risk of 
type-2 diabetes (T2D) (OR=0.935, P = 0.0162). As obesity is a major risk factor for 
cardiovascular diseases and the Native Hawai’ians exhibit excess risk for cardiovascular diseases 
when compared to Europeans28,29, we also tested the effect of the derived allele of rs373863828 
on five traits among the Medicare FFS participants for the same cohort: heart failure (HF), 
hyperlipidemia, hypertension, ischemic heart disease (IHD), stroke/transient ischemic attack 
(TIA), but we found no significant associations regardless of whether or not we controlled for 
BMI in the analysis (Table S5). 
 
Finally, to examine the effect of this allele on more refined measures of body fat distribution, we 
tested the association of the derived allele with ten additional adiposity traits collected on a 
subset of 307 Native Hawai’ian individuals in our study23. While the variant was significantly 
associated with overall fat mass and whole body fat percentage (b=0.69 s.d. per allele and 0.58 
s.d. per allele, P = 0.001 and 0.007, respectively, after multi-trait test correction), the role it has 
on fat distribution is less clear to characterize, as the signals were nominally significant, or 
marginal on nominal significance with lean mass in arms and legs (P = 0.056 and 0.013, 
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respectively), and subcutaneous fat mass (P=0.088), but not associated with other adiposity traits 
(Table 1).  
 
GWAS with current imputation resources or admixture mapping are unlikely to discover the 
CREBRF variant 
 
While we have generally replicated the large effect rs373863828 exerts on BMI and other 
adiposity traits in the Native Hawai’ians, approaches to discover variants like this also 
exemplifies one of the main goals in genetic studies of diverse populations. The derived allele of 
rs373863828 has large effects and is population specific, suggesting that genotype and/or 
ancestry at this locus is important for risk assessment in the Native Hawai’ian and other Pacific 
Islanders. Using CREBRF as a test case, we thus examined whether a similar locus like this 
could have been discovered using currently available resources. If the entire cohort were whole-
genome sequenced, we estimated moderate power to identify this variant: at genome-wide 
significance threshold (i.e. 5E-8), we have 41% power with the current sample size (N=3940). 
The power at the same significance threshold is much greater (75%) with the entire MEC Native 
Hawai’ian group (N~ 5400 individuals), a sample size comparable to the Samoan discovery 
population sample11 that first reported this variant. 
 
However, it is not yet feasible to sequence the whole-genome of all MEC Native Hawai’ians. 
Therefore, statistical imputation is the most efficient strategy for gene discovery. Currently, 1000 
Genomes Project (Phase 3; 1KGP) is the most diverse public sequencing database. Because 
rs373863828 is absent in 1KGP, it cannot be imputed directly. Yet there is the possibility to 
impute a proxy variant nearby that could tag the causal variant. We thus imputed the array 
genotype data in all Native Hawai’ian samples using 1KGP data (Figure S8), and conducted a 
scan for association across the CREBRF locus using the linear mixed model for BMI or type II 
diabetes as examples of quantitative or dichotomous trait. However, we found no hint of 
association around the CREBRF region for either phenotype (+/- 100kb; lowest P = 1.2E-4 and 
2.5E-3 for BMI and T2D, respectively, compared to a significance threshold of 5e-8) (Figure 
S3), suggesting that the current imputation resource is not sufficient for detecting this locus in 
Native Hawai’ians. 
 
We then examined the imputation quality of a known proxy variant rs12513649, with which the 
initial association in Samoans led the researchers to hone in on resequencing the entire CREBRF 
locus11. Rs12513649 is in high LD with rs373863828 (r2 >= 0.988) in the Samoans, and similarly 
in 178 unadmixed Native Hawai’ians (r2 >0.99)(Methods). As this variant segregates in 1000 
Genomes East Asians at ~ 6%, in theory it is reasonably imputable.  However, the overall 
imputation quality at rs12513649 is below standard pre-GWAS QC (MiniMac R2 <0.4). 
Moreover, despite 80% of imputed genotypes at the locus have posterior genotype probability 
(GP) >0.9, this observation of high GP was driven by the homozygous ancestral genotype; the 
confidence of imputed genotype dropped sharply among carriers of derived allele at either the 
proxy (rs12513649) or the missense (rs373863828) variant (14.0% and 52.8%, respectively, 
Table S6).  
 
An alternative approach to discover this locus in the Native Hawai’ians would be to take 
advantage of the recent admixture and conduct admixture mapping. Given locally resolved 
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assignment of ancestry across the genome in an admixed population, admixture mapping tests 
the association of local ancestry with a quantitative or dichotomous phenotype. There is 
reasonable a priori expectation that admixture mapping could successfully identify the CREBRF 
locus for its association with BMI or T2D, given that it is population specific, correlates strongly 
with Polynesian ancestry (Figure S1), and exerts a large effect on BMI, which is differentially 
distributed between ancestral populations. However, we found no significant association via 
linear mixed models with Polynesian ancestry across the gene (P = 0.057 for BMI, 0.452 for 
T2D, compared to a conventional statistical threshold of 5e-5 for admixture mapping). We 
estimated the discovery power for this locus, given the current sample size of 3,940 and other 
assumptions of the allelic effect (Methods), to be as low as 0.2% for a P <= 5E-5 threshold 
(Figure 2, Figure S5). In fact, even at 5% type I rate of replication standard, the power of 
replicating the CREBRF region via admixture mapping is only 18.2% (Figure S6). 
 
Taken together, without an appropriate imputation reference panel for Native Hawai’ians, viable 
alternative approaches currently available could not have efficiently mapped this locus. 
 
Imputation against internally constructed Polynesian reference boosts association signals 
 
The obstacles described so far to conduct genetic analysis in diverse population are much 
attributed to the lack of representation from diverse populations in public whole genome 
sequences. We thus simulated a situation where a small number of individuals were available as 
a part of the reference panel to test if the key variant, rs373863828, could be imputed well and 
mapped in association studies (Figure S7). We selected 152 unrelated, relatively unadmixed (> 
90% indigenous ancestry) individuals who had rs373863828 successfully genotyped to be our 
Polynesian reference, and merged the genotype data with 1KGP. Using this reference panel, we 
imputed the genotype of rs373863828 among all samples on the 5 different array platforms 
(Figure 3, Table S7). Regardless of the platform a dataset was genotyped on, we found the 
imputed dosages highly correlated with the directly assayed genotypes at rs373863828: r2 > 0.92 
in all datasets tested, except for one dataset genotyped on the Oncoarray (0.76; Table S7). Other 
measurements of imputation quality, including concordance rate and allele frequency based 
internal R2 from Minimac33, also supported the high imputation accuracy (Table S7). While we 
included all relatively unadmixed individuals as the reference panel, we also found that 
imputation quality remained largely unchanged (Table S9) when a set of randomly selected 
individuals of the same size were used as reference panel, despite the allele segregating at lower 
frequency (Figure 1).  
 
Refining the associations with traits using imputed dosages of rs373863828, we found the 
statistical evidence for association in traits that were previously significant or marginally 
significant to generally improve: A larger sample size was achieved to include all phenotyped 
subjects, as compared to only a subset of individuals were particularly genotyped on the 
CREBRF missense variant in each study (Table S1). These were reflected mostly in adiposity 
phenotypes, such as BMI (P = 1.5E-7), waist and hip circumference (P = 5.15E-7 and 3.07E-6, 
respectively), and in dichotomous traits, obesity (P = 9.7E-7) and type II diabetes (P = 1.43e-4). 
Fasting glucose, previously non-significant in the genotype association, would now surpass 
nominal significance level after imputation (P = 0.031, Figure 1, Table S4).  
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Discussion 
 
We demonstrated the urgent need of having proper reference sequences in order to explore 
population-specific variants in diverse populations by using rs373863828 in CREBRF as an 
example in this study. We replicated the increasing effect of the derived allele of this variant on 
anthropometric and adiposity traits in Native Hawai’ians, and its protective effect on type II 
diabetes, consistent with reports in other populations from the Pacific Islands11,15,16. When 
examining more refined measure of body fat distribution, we also found the derived allele to be 
associated with increasing total fat mass and whole body fat percentage, even though we only 
have data available on ~300 Native Hawai’ians. Most importantly, using the CREBRF locus in 
Native Hawai’ian as an example, we have shown that even though this locus is exhibiting some 
of the largest effects on BMI observed in humans, its poor coverage in publicly available 
reference database due to the population specificity prevents the efficient mapping of this locus. 
Alternative mapping strategies such as admixture mapping also would not be powered enough to 
identify this locus. Then, without a specific staged study design to investigate diverse 
populations, we would not have been able to identify this variant that might contribute to health 
disparity between populations. 
 
While our findings largely support those reported in the Samoans11,40, we did not replicate the 
reported association with total cholesterol, even after imputing the variant in all individuals with 
phenotype available. For fasting glucose, the association was also only nominally significant 
after imputation. This may suggest that the allelic effect is potentially mediated by environmental 
factors that are found in the Samoans only, or potentially more likely, the sample sizes with these 
traits available in the Native Hawai’ians are still insufficient.  
 
We were also unable to detect the reported signature of natural selection at the CREBRF locus in 
Native Hawai’ians. Consistent with this observation is the lowered derived allele frequency in 
Native Hawai’ians (approximately 13% in relatively unadmixed Native Hawai’ians, vs. 26% in 
Samoans). While the settlement in Polynesia is believed to have occurred in a west-to-east 
direction across the Pacific, the derived allele is also found in lower frequency (~2 to 19%) in 
other populations in Pacific, including Tongans and New Zealand Maori living west of Samoa12–

15. It is unclear whether the difference of allele frequencies among the Pacific Islanders is mostly 
attributed to the differences in selection strength, the bottleneck and genetic drift in the founding 
Polynesians, different admixture histories, or some combinations of the above. A more detailed 
explanation will require a better construction of demographic history of the different groups.  
 
The opposite effect on obesity and type II diabetes, two typically comorbid conditions, suggests 
that rs373863828-A could play a role in fat distribution among different body areas. One 
possible explanation is that the derived allele promotes accumulation of subcutaneous fat mass 
better than that of visceral fat, as the former can lead to obese phenotype, while excess of the 
latter, other than general adiposity, is associated with insulin resistance and contributes to 
peripheral insulin sensitivity41,42. To test this hypothesis, we examined the association with 
subcutaneous and visceral fat measures available in 278 Native Hawai’ians, controlling for their 
total fat mass. We were not powered to identify significant association with either trait, although 
the estimated effect size was larger for subcutaneous fat than for visceral fat. Further 
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investigations are needed to explore the role of rs373863828 in general on fat deposition to better 
understand obesity-related metabolic disease.  
 
Finally, of most immediate concerns is the need to construct population specific reference panels 
to aid further genetic analysis of these populations. Again taking the rs373863828 as an example, 
the variant is not found in either the 1000 Genomes Project or the Haplotype Reference 
Consortium, because the variant is exceedingly rare outside of Polynesia and some other Pacific 
Islands (gnomAD frequency of 3e-5), and neither of the reference datasets contained 
Polynesians. The recent release of the Human Genome Diversity Project43,44 contained Pacific 
Islanders, but the variant was also not found probably due to small sample sizes (N=28). A 
subset of the Samoan cohort was sequenced as part of the TOPMed consortium45; therefore, 
public release of this reference data for imputation will help if we can assume population 
continuity between Samoans, Native Hawai’ians, and their most recent common ancestors. 
Alternatively, another approach to overcome the issue of under-representation for investigators is 
to sequence a small number of individuals within the population of interest; we have shown that 
a sample size less than 200 is likely to be adequate for accurate imputation of this locus. 
Sequencing data, complemented by efforts to expand the cohort, would have the potential to 
detect other population-specific alleles of importance to health disparity. 
 
In summary, there is an urgent need to increase diversity in public genome sequence reference 
panels. The current deficiency could lead to adverse consequences such as failing to discover 
population-specific risk variants. This is particularly important for rare variants with potentially 
large effects, as rare variants tend to be geographically restricted and yet bear a significant role in 
understanding genetic architectures amongst populations3,46,47. As sequencing cost continue to 
decline, it will be more feasible to establish diverse, population-specific references, empowering 
investigations for these functionally important variants like rs373863828 in the CREBRF gene.  
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Figure 1. Association of rs373863828 with adiposity and lipid traits from PAGE cohort in 
Native Hawai’ians. Log-transformed P values from association of rs373863828 with adiposity- 
and lipid related traits. Associations with direct genotypes and imputed dosages are denoted in 
red and blue, respectively. Point size is proportional to the sample size in each test, and also 
shown below the trait.  
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Figure 2. Statistical power of admixture mapping to discover CREBRF with BMI. Power 
was estimated through simulation given a range of allele frequencies in ancestral Polynesians 
and sample sizes. The effect sizes were assumed using rs373863828 as example, and the yellow 
dashed line denotes the empirical allele frequency of rs373863828 in unadmixed Native 
Hawai’ians (Methods). The significance threshold for genome-wide discovery via admixture 
mapping is set at 5e-5. 
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Figure 3. Assessment of imputation accuracy of rs373863828 using internally constructed 
references. The reference panel included 152 unadmixed Native Hawai’ians, and other 
populations from 1000 Genome Project (Methods).  Imputation accuracy was estimated by 
comparing the true genotypes at rs373863828 and the imputed dosages, via different estimation 
methods. Standard errors were obtained through bootstrap. 
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Table 1. Associations of rs373863828 with adiposity traits measured from DXA and abdominal 
MRI. 

Trait Typed genotype Imputed dosages 
Sample 
size 

Effect 
size1 

P value Sample 
size 

Effect 
size1 

P value 

Total fat mass 294 0.69 0.001 298 0.68 0.001 
Fat percentage 294 0.575 0.007 298 0.565 0.008 
Trunk fat 
percentage 

291 0.085 0.672 295 0.08 0.691 

Abdominal fat 291 0.13 0.303 295 0.131 0.301 
Liver fat 
percentage 

276 0.148 0.497 280 0.159 0.465 

Subcutaneous 
fat 278 0.349 0.088 282 0.335 0.1 

Visceral fat 278 0.118 0.571 282 0.12 0.564 
Lean mass in 
arm 283 -0.399 0.056 287 -0.396 0.057 

Lean mass in leg 288 -0.507 0.013 292 -0.507 0.012 
Total lean mass 292 0.233 0.233 296 0.229 0.242 

1Effect size is based on inverse normalized transformation of original phenotypes (Methods), and 
are thus in units of standard deviations. 
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Population specific reference panels are crucial for the 
genetic analyses of Native Hawai’ians: an example of 
CREBRF locus 
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Figure S1. Derived allele frequency at rs373863828 calculated in all individuals genotyped at the 
locus, binned by Polynesian ancestry proportions estimated by ADMIXTURE. 
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Figure S2. nSL summary statistics in 178 unrelated Native Hawaiians with indigenous 
ancestry >90%. The null distribution (blue) was formed by nSL calculated on genome-wide 
derived alleles whose frequencies are between 12%-14%. Red line denotes nSL of rs373863828 
(MAF=13%). Dashed lines represent the 95% confidence intervals.  



 

 

 
 
Figure S3. Locuszoom of CREBRF region (+/- 100 kb) for association with (A) BMI and (B) 
T2D. Imputed dosage using 1KGP as the reference panel was used in association testing. The 
variants with the lowest P value are denoted with their rsID, Red dashed line represents the 
position of rs373863828.  
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Figure S4. Local ancestry inference of (A) the entire Chromosome 5 and (B) the CREBRF 
region, excluding the 178 individuals with Polynesian ancestry > 90% that was used as reference. 
Each row corresponds to a single phased haplotype, and is sorted in (B) by ancestry. Each line of 
haplotype is colored based on its inferred ancestry, where black (“nan”) represents no call, with 
maximum inferred probability < 0.9.  
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Figure S5. Statistical power of admixture mapping to discover CREBRF association with BMI. Power is 
estimated through simulation given a range of allele frequencies in ancestral Polynesians and sample sizes. The 
effect sizes and ancestry proportions were assumed using rs373863828 as example (Methods). The significance 
threshold for genome-wide discovery via admixture mapping is set at 5e-5. 
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Figure S6. Statistical power of admixture mapping to replicate association of CREBRF with 
BMI. Power is estimated through simulation given a range of allele frequencies in ancestral 
Polynesians and sample sizes. The effect sizes and ancestry proportions were assumed using 
rs373863828 as example (Methods). The significance threshold for genome-wide discovery via 
admixture mapping is set at 0.05. 
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Figure S7. Analysis design to evaluate the imputation quality of rs373863828 using a reference 
panel containing internally constructed reference panel.    
 



 

 

 
 
Figure S8. Analysis design to evaluate the imputation quality of rs12513649 using 1KGP as 
reference panel. 
  



 

 

 

 
Figure S9. Comparison of global Polynesian ancestry estimated from ADMIXTURE and RFMix 
output (A) before and (B) after rephasing. RFMix calls with ancestry probability <0.9 were 
discarded before summing across the genome to calculate global ancestry. After rephasing, 
individuals with elevated RFMix estimate from that of ADMIXTURE were labeled in red; these 
individuals have elevated global ancestry estimate from RFMix because they are more related to 
the 178 reference individuals (Method).  
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Table S1. Sample size and genotype information across datasets containing Native Hawaiians 
Sample size  

PAGE CRC Smokers NHBC Obesity rs373863828 
PAGE 3940 100 238 123 44 3188 
CRC 100 266 1 1 2 123 
Smokers 238 1 318 14 0 281 
NHBC 123 11 14 492 0 483 
Obesity 44 2 0 0 307 150 
rs373863828 3188 123 281 483 150 3693 

 
Please refer to the Method for descriptions of these datasets. The row rs373863828 reports the 
number of individuals from each genome-wide array dataset that had the CREBRF variant 
directly genotyped. PAGE dataset contained ~1,370K variants; CRC dataset contained ~256K 
variants; Smokers dataset contained ~269K variants; NHBC dataset contained ~152K variants; 
Obesity dataset contained ~1,093K variants. 
 



 

 

Table S2. Phenotype transformation and covariates for linear mixed model associations.  
Traits Phenotype Conversion Outliers removed Fixed covariates 

BMI sex-specific INT adjusted by age beyond 6sd top 10 PCs 

Height sex-specific INT adjusted by age beyond 6sd top 10 PCs 

Waist circ sex-specific INT adjusted by age beyond 6sd top 10 PCs 

Hip circ sex-specific INT adjusted by age beyond 6sd top 10 PCs 

Waist -hip ratio sex-specific INT adjusted by age beyond 6sd top 10 PCs 

fasting glucose INT adjusted by age at glucose draw, sex, age * sex, 
smoking status, bmi  

t2d, no fasting, glucose 
< 7mmol/L 

top 10 PCs 

fasting insulin INT adjusted by age at insulin draw, sex, age * sex, 
smoking status, bmi  

t2d, no fasting, glucose 
< 7mmol/L 

top 10 PCs 

HOMA-IR INT adjusted by age , sex, age * sex, smoking status, 
bmi 

t2d, no fasting, glucose 
< 7mmol/L, diabetics 

top 10 PCs 

Adiponectin sex-specific INT adjusted by age beyond 6sd top 10 PCs, log-
transformed BMI 

total cholesterol  medication adjustment as in Wojcik et al. no fasting  age at lipid draw, sex, 
top 10 PCs 

triglycerides medication adjustment as in Wojcik et al. no fasting  age at lipid draw, sex, 
top 10 PCs 

HDL medication adjustment as in Wojcik et al. no fasting  age at lipid draw, sex, 
top 10 PCs 

LDL medication adjustment as in Wojcik et al. no fasting  age at lipid draw, sex, 
top 10 PCs 

Obesity Adult > 32 kg/m2 BMI na age, sex, top 10 PCs 

Diabetes na controls with glucose > 
7 mmol/L 

age at diabete, sex, 
bmi, top 10PCs 

total fat mass sex-specific INT adjusted by age beyond 6sd top 10 PCs 



 

 

lean mass in legs sex-specific INT adjusted by age beyond 6sd top 10 PCs, total lean 
mass 

lean mass in arms sex-specific INT adjusted by age beyond 6sd top 10 PCs, total lean 
mass 

total lean mass sex-specific INT adjusted by age Beyond 6sd top 10 PCs 

total fat percentage sex-specific INT adjusted by age beyond 6sd top 10 PCs 

percentage of trunk fat sex-specific INT adjusted by age beyond 6sd top 10 PCs, total fat 
percentage 

liver fat percentage sex-specific INT adjusted by age beyond 6sd top 10 PCs, total fat 
mass 

visceral fat sex-specific INT adjusted by age beyond 6sd top 10 PCs, total fat 
mass 

subcutaneous fat sex-specific INT adjusted by age beyond 6sd top 10 PCs, total fat 
mass 

abdominal fat sex-specific INT adjusted by age beyond 6sd top 10 PCs, total fat 
mass 

HF na na age, sex, top 10 PCs, 
(bmi) 

Hyperlipidemia na na age, sex, top 10 PCs, 
(bmi) 

Hypertension na na age, sex, top 10 PCs, 
(bmi) 

IHD na na age, sex, top 10 PCs, 
(bmi) 

Stroke/TIA na na age, sex, top 10 PCs, 
(bmi) 

 
For BMI, obesity, hip circumference, waist circumference, waist-hip ratio, type 2 diabetes, total cholesterol, fasting glucose, 
adiponectin, HDL, LDL, hypertension, and fasting insulin, we followed the guideline used in PAGE to transform the phenotypes. For 
HOMA-IR was calculated as HOMA-IR = fasting insulin (microU/L) x fasting glucose (nmol/L)/22.5, and transformed per the 



 

 

guideline in Minster et al1. For the remaining quantitative traits, we generally stratified by sex, adjusted by covariates such as age, and 
inverse normally transformed (INT) the residuals to be used in association studies. 
  



 

 

Table S3. Summary of untransformed quantitative phenotypes used in association analyses 
Traits1 Mean S.D. 
bmi (kg/m2) 29.02 5.96 
height (cm) 168.11 9.40 
waist (cm) 98.59 15.41 
hip (cm) 108.51 13.91 
waist_hip_ratio 0.91 0.08 
glucose (mmol/L) 4.71 0.68 
insulin (uIU/mL) 7.85 6.41 
adiponectin (ng/mL) 6.90 4.94 
total cholesterol (mg/dL) 193.63 39.38 
triglycerides (mg/dL) 122.04 79.72 
hdl (mg/dL) 42.02 15.31 
ldl (mg/dL) 127.62 36.67 
total fat mass (kg) 22.64 7.11 
total lean mass (kg) 15.51 3.85 
lean fat arms mass (kg) 5.74 1.79 
total fat percentage (%) 31.15 7.01 
liver fat percentage (%) 5.80 4.71 
visceral fat area (cm2) 166.59 77.71 
subcutaneous fat (cm2) 235.90 91.27 
abdominal fat (cm2) 375.79 132.83 

1Outliers as defined in Table S2 are discarded.  
 
 
 
 



 

 

Table S4. Associations of rs373863828 with adiposity-related traits from PAGE cohort 
Quantitative traits  

Typed genotype Imputed dosages  
N b P N b P 

BMI (kg/m2) 3185 0.214 7.55E-05 3936 0.248 1.50E-07 
Waist circumference 
(cm ) 

2392 0.215 8.70E-04 3063 0.222 5.15E-05 

Hip circumference 
(cm) 

2392 0.206 1.27E-03 3063 0.254 3.07E-06 

Waist-hip ratio 2392 0.0083
5 

0.209 3063 0.0284 0.617 

Height 3187 0.182 3.96E-04 3938 0.137 2.43E-03 
Fasting glucose 
(mmol/L) 

746 -0.165 0.148 1146 -0.202 0.0307 

Fasting insulin 
(pmol/L) 

951 -0.0265 0.791 1557 -0.0354 0.649 

HOMA-IR 939 -0.0889 0.378 1536 -0.0778 0.322 
HDL (mg/dL) 1230 -0.931 0.493 1909 -0.599 0.578 
LDL (mg/dL) 1225 -1.13 0.739 1897 0.775 0.772 
Adiponectin 1251 -0.122 0.155 1925 -0.028 0.683 
Total Cholesterol 
(mg/dL) 

1233 1.48 0.673 1912 1.56 0.575 

Triglycerides 
(mg/dL) 

1233 -5.65 0.428 1912 -4.81 0.395 

Dichotomous traits  
Typed genotype Imputed dosages  
N (case, 
control) 

OR P N OR P 

Obesity 822, 2364 1.096 9.52E-05 955, 2983 1.106 9.72E-07 
Type II Diabetes 1241, 

1635 
0.935 0.0162 1534, 2019 0.911 1.43E-04 

 
Bold numbers pass Bonferroni correction of multi-trait associations: 2.5E-3 
  



 

 

Table S5. Associations of rs373863828 with cardiovascular diseases from Medicare FFS in 
PAGE cohort  

Typed genotype Imputed dosages 
Without correcting for BMI  

N (case, control) OR P N OR P 
HF 574, 1523 1.019 0.346 666, 1908 1.017 0.312 
Hyperlipidemia 1500, 597 0.997 0.873 1833, 741 0.978 0.194 
Hypertension 1526, 571 0.980 0.262 1861, 713 0.978 0.158 
IHD 886, 1211 

1.044 
0.037 1053, 

1521 1.039 
0.033 

STROKE / TIA 291, 2806 1.001 0.964 349, 2225 0.986 0.334 
Correcting for BMI 

 N (case, control) OR P N OR P 
HF 574, 1523 1.008 0.677 666, 1908 1.004 0.815 
Hyperlipidemia 1500, 597 0.991 0.646 1833, 741 0.970 0.081 
Hypertension 1526, 571 0.972 0.107 1861, 713 0.967 0.034 
IHD 886, 1211 

1.037 0.078 
1053, 
1521 1.030 0.098 

STROKE / TIA 291, 2806 0.997 0.844 349, 2225 0.981 0.185 
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Table S6. Imputation quality of rs15213649 across array platforms  
PAGE CRC Smokers NHBC Obesity 

Overall Performance 

MiniMac R^2 0.35 0.35 0.36 0.31 Genotyped 
Proportion of GP > 
0.9 

0.82 0.79 0.83 0.85 Genotyped  

Proportion of GP > 0.9, stratified by hard called genotype at rs12513649 
anc/anc 0.84 0.82 0.85 0.87 Genotyped 
anc/der 0.16 0.10 0.10 0.00 Genotyped 
der/der 0 NA NA NA NA 

Proportion of GP > 0.9, stratified by direct genotype at rs373863828 
anc/anc 0.87 0.89 0.84 0.86 Genotyped 
anc/der 0.49 0.4 0.69 0.8 Genotyped 
der/der NA NA NA NA NA 
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Table S7. Measures of imputation accuracies at rs373863828 when using 155 NH (with 
estimated Polynesian ancestry > 0.9) + 1KGP as reference  

PAGE CRC Smokers NHBC Obesity* 

r^2  
(s.e.) 

0.977  
(6.7E-3) 

0.757 
(0.1) 

0.913 
(0.046) 

0.933 
(0.036) 

1 
(1.1E-5) 

Minimac R2 0.984  0.96 0.946 0.939 0.995 
Concordance rate 
(s.e.) 

0.974 
(8.9E-4) 

0.912 
(0.016) 

0.947 
(0.0057) 

0.945 
(0.0032) 

0.977 
(7.2E-5) 

*rs12513649 is genotyped. 
Standard errors were calculated from bootstrapping (n=1000). 
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Table S8. Measures of imputation accuracies at rs373863828 when using randomly selected 152 
NH  + 1KGP as reference  

PAGE CRC Smokers NHBC Obesity* 
r^2 
(s.e.) 

0.851 
(0.007) 

0.466 
(0.097) 

0.899 
(0.035) 

0.863 
(0.044) 

1 
(1.1E-4) 

Minimac R2 0.982 0.962 0.956 0.964 0.995 
Concordance rate 
(s.e.) 

0.984 
(9.6E-4) 

0.917 
(0.016) 

0.952 
(0.0043) 

0.949 
(0.0037) 

0.993 
(1.9E-4) 

*rs12513649 is genotyped 
Standard errors were calculated from bootstrapping (n=1000). 
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