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Summary 

Most mutations in human cancer are low-frequency missense mutations, whose 

functional status remains hard to predict. Here we show that depending on the type of 

nucleotide change and the surrounding sequences, the tendency to generate each type of 

nucleotide mutations varies greatly, even by several hundred folds. Therefore, a cancer-

promoting mutation may appear only in a small number of cancer cases, if the underlying 

nucleotide change is too difficult to generate. We propose a method that integrates both the 

original mutation counts and their relative mutational difficulty. Using this method, we can 

accurately predict the functionality of hundreds of low-frequency missense mutations in 

p53, PTEN and INK4A. Many loss-of-function p53 mutations with dominant negative 

effects were identified, and the functional importance of several regions in p53 structure 

were highlighted by this analysis. Furthermore, mutational difficulty analysis also points 

to potential means of cancer prevention. Our study not only established relative mutational 

difficulties for different types of mutations in human cancer, but also showed that by 

incorporating such parameter, we can bring new angles to understanding cancer formation 

and prevention.  
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Introduction 

Gene mutation is a major cause of tumorigenesis. Certain mutations on important 

cancer genes such as KRAS and p53 drive cancer formation(Cheok et al., 2011; 

Kastenhuber and Lowe, 2017). As a result, such mutations are enriched in cancer, and are 

found in numerous cancer samples. It is generally perceived that if a mutation occurs in 

higher number of cancer cases, it is more likely to be a driver mutation(Baugh et al., 2018; 

Brosh and Rotter, 2009). However, the vast majority of mutations in cancer only occurs in 

very small number of cancer cases, and the functional impacts of these mutations are hard 

to predict.  

To address this problem, it is necessary to consider that, the chance of observing a 

mutation in cancer cases is influenced by at least two major factors: 1) how difficult it is to 

generate the mutation; and 2) whether the mutation promotes cancer, therefore it will be 

selectively enriched in cancer cases. If different mutations are initially generated at 

significantly different rates, it will greatly impact the mutational distribution in cancer 

genome database such as COSMIC (Catalogue Of Somatic Mutations In Cancer). Certain 

cancer-driving, but too-hard-to generate mutations may appear exceedingly rare in cancer 

database, yet certain passenger-type mutations may pile up in greater numbers, if the 

underlying mutations are too easy to occur.  

At nucleotide level, there are 12 routes of interchanges between A/G/T/C for single 

nucleotide substitutions, which constitute the vast majority of cancer mutations. The 

chances of generating each kind of mutations are certainly not equal. Many factors 

contribute to such phenomenon. First, different endogenous and exogenous mutagenic 
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events lead to different types of nucleotide substitutions(Alberts B, Johnson A, Lewis J, 

2002; Alexandrov et al., 2013, 2016; Farazi and DePinho, 2006; Kucab et al., 2019). 

Second, the abilities to recognize, repair and tolerate different types of mutations are also 

different(Frigola et al., 2017; Helleday et al., 2014). Third, although difficult to predict, 

different nucleotide sequences surrounding the mutation site may cause local variances that 

physically or chemically affect the ability for mutagens to attack. In addition, certain 

sequences are also more prone to be edited by enzymes such as APOBEC(Buisson et al., 

2019; Nik-Zainal et al., 2012).Therefore, different flanking nucleotide sequences can also 

affect mutation rate(Alexandrov et al., 2013; Hodgkinson and Eyre-Walker, 2011; Ma et 

al., 2010). 

Taken together, the probability to generate different types of nucleotide change may 

vary greatly. If two mutations both change the functional status of an important gene and 

promote cancer, they should be selected for during cancer formation. However, if one of 

such mutation is too difficult to generate at nucleotide level, the number of cancer cases 

carrying this mutation will significantly decrease. Considering this, if we can define the 

relative difficulty to generate each type of nucleotide mutations in cancer, we will be able 

to better estimate the functional importance of cancer mutations.  

Although mutational signatures for ageing, UV, APOBEC, smoking and other cancer 

causes have been established, it is impossible to predict what percentage of cancers are 

influenced by each signature, and to what extent. Therefore, the relative difficulty to 

generate different types of mutation in cancer has not been established. In this report, 

through analysis of mutational data from 26,000 cancer genomes, we established the 
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relative mutational difficulty for different types of cancer mutations, and showed that it can 

help accurately interpret functional importance of cancer mutations. 
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Results 

Defining relative mutational difficulties in human cancer 

Although it is very difficult to construct a mathematical model that could weight in all 

relevant factors to forwardly predict how much more difficult it is to generate one type of 

mutation versus the other, such differences do factually exist, and they collectively 

determined the mutation distributions in human cancer. Therefore, we argue that by 

analyzing large human cancer genome dataset, we can reversely derive the relative 

difficulties for each type of mutations (Fig. S1).  

We retrieved mutation information for all human coding genes from the COSMIC 

database. From the approximately 26,000 cancer samples (Fig. S2) that were subjected to 

exome or whole-genome sequencing, more than 3 million single nucleotide mutations were 

identified on protein coding sequences (Fig. 1A). Considering that some mutations such as 

KRAS G12D and BRAF V600E are selectively enriched during cancer development, 

which could skew our estimation of mutation tendency, we excluded mutational events that 

occur in more than 5 cancer samples (see methods for discussion). This eliminated about 

2% of mutations (Fig. 1A) and the remaining mutations were collated into different groups.  

Overall, the number of C→T mutations and its complementary G→A mutations 

constitute more than half of mutations in cancer (Fig. 1B). The rate of C→T mutation is 14 

folds more than T-G mutation, demonstrating that the chances to generate each type of 

mutations do vary significantly (Fig. 1B). 
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Importantly, to reach a systematic view of how neighboring sequences might affect 

mutational tendency, we performed an extensive analysis, in which nucleotides at -2, -1, 

+1 and +2 position were all taken into consideration. Consequently, mutations were divided 

into 3072 groups (Table S1).  

For example, the most likely to occur cancer mutation is C→T mutation on TTCGT 

sequences, which appeared 10,563 times. There are approximately 575 million TTCGT 

sequences in 26,000 coding genomes. Therefore, the chance of a C→T cancer mutation on 

TTCGT sequences can be calculated as 1.85*10-5 (=10,563/575,000,000), which is about 

200 folds more than the probability of A→C mutation in an ACATC sequence (Fig. 1C). 

In other words, it is 200 times more “difficult” to generate the latter mutation in human 

cancer. Similarly, such “difficulty” indexes were generated for all 3072 types of nucleotide 

substitutions, which showed a wide distribution (Fig. 1C, S3 and Table S1). Analysis of 

these difficulty indexes showed that in addition to nucleotides on -1 and +1 positions (Fig. 

1D), the nucleotides on +2 and -2 positions can also exert significant impacts on mutational 

tendency (Fig. 1E and Fig. S4). This indicates that it is important to incorporate the flanking 

nucleotide sequences into analysis when assessing individual mutations.  

Our analysis shows that different types of mutations are generated at remarkably 

different rates (Fig. 1C).  Given that the chance to generate different types of mutations can 

vary by several hundred folds, it strongly suggests the need to reassess human cancer 

mutations and our dataset will provide a useful tool. 

To more precisely evaluate individual cancer mutations, we also took into 

consideration that certain types of human malignancies, such as melanoma, endometrial 
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and colorectal cancers exhibit significantly higher mutation rates than other types of human 

cancer(Schneider et al., 2017). Therefore, the same type of mutation may be generated at 

significantly different rates in different types of cancer. Considering this, we generated 

cancer type-specific mutational difficulty indexes with similar method (Fig. 1F, Fig. S5 

and Table S2), which will enable precise assessment of cancer mutations.  

Incorporating mutational difficulty to predict loss of function p53 mutations  

We hypothesize that these “difficulty” indexes can serve as a valuable tool to predict 

the functional importance of cancer mutations. For example, if an A→C mutation in an 

ACATC sequence, despite the high difficulty, is still strongly selected for and appears in 

noticeable number of cancer samples, it could indicate that such a mutation is significantly 

enriched during cancer development. Therefore, such mutations may be crucial for cancer 

development. On the other hand, certain easy-to-occur passenger mutations may appear 

more common in cancer database, but their mutation counts may be more of a reflection of 

the high mutational tendency, rather than their importance. 

We applied this method to assess the functional impact of p53 missense mutations. 

Several well-established p53 hotspot mutations account for about 27% of all p53 missense 

mutations and are known to abolish gene function. Most of the less frequent p53 missense 

mutations, although constituting the majority, are hard to predict in terms of their functional 

impact. We factored in the aforementioned “mutational difficulty” to forwardly estimate 

the functional importance of each mutation. For example, the M133R mutation is caused 

by T→G substitution on a GATGT sequence, whose difficulty index is 233. This mutation 

appeared in only 11 cancer samples in the COSMIC database. Given our argument, the 
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frequency of this M133R mutation may have been severely penalized by the high 

mutational difficulty. Considering this, we designated M133R’s original count as 11 and 

revised count as 2563 (=11233). Notably, the revised count for this mutation is 

comparable to that of the hotspot R282W mutation (original count 609, difficulty index 

3.31, revised count 2017). Since such a revised mutation count integrates both the original 

count and mutational difficulty, it reflects the selective pressure for each mutation more 

closely. Consequently, it will provide a better reading of their functional impacts. 

To more precisely assess these p53 mutations, we also took into consideration that the 

same type of mutations is generated at different rates in different cancer types (Fig. 1F). 

Therefore, in our analysis we used cancer type-specific mutational difficulty indexes to 

calculate the revised mutation count for each p53 mutation (see methods) (Table S3). 

The global view of p53 missense mutations is provided in figure 2A. The map of p53 

mutation original count is characterized by seven high peaks at R248 and R273, which are 

crucial for interaction with DNA, as well as R175, Y220, G245, R249 and R282, which 

are crucial for maintaining p53 structure. In the revised mutational count map, many more 

such high peaks appeared, suggesting that other portions of p53 also contain numerous 

amino acid residues that are essential for p53 function (Fig. 2A). Importantly, judging from 

original counts, only a few p53 missense mutations occur more frequently than the hotspot 

R282W mutation (Fig. 2B). After considering the mutational difficulty, more than 130 of 

p53 missense mutations exhibit a higher revised count than R282W (Fig. 2B), suggesting 

that many more p53 missense mutations potentially abolish gene function. 
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 To establish a cut-off value that could help identify p53 mutants that still retain wild 

type function, we compiled revised count values for all p53 synonymous mutations and 

found them to be mostly below 700 (Fig. S6). Therefore, a revised count below 700 may 

suggest wild type function for p53 mutants. We also estimated that a revised count over 

900 might suggest loss of function. We constructed more than 80 low-frequency p53 

mutants with various revised count values to test such hypothesis. The human 

osteosarcoma cell line Saos-2 carries homozygous deletion of p53. It could tolerate hotspot 

p53 mutants but not wild type p53 (Fig. 2C). Consistent with our hypothesis, all p53 

mutants with revised count values of less than 700 behaved like wild type p53 in this assay 

(Fig. 2C), suggesting they do retain gene function as predicted by our method. For example, 

the R282Q mutation (original count 36) is located on the functionally essential amino acid 

residue R282. However, the underlying nucleotide substitution for this mutation is 

relatively easy to occur, and with a revised count of 186, this mutant retained wild type p53 

function. We also noticed that the R158H mutation, although observed in 95 cancer 

samples, is an easy-to-occur mutation, and with a revised count lower than 700, this 

mutation also retained wild type function. The high number of cancer samples carrying this 

R158H mutation may be more of a result of the easiness of generating the underlying 

mutation.  

In contrast, certain high difficulty p53 mutations, although many of which only 

occurring in less than 10 cancer samples, are predicted to be loss of function mutations 

with revised counts over 900. We examined around 50 of such p53 mutations, and they 

were all well tolerated by Saos-2 cells, confirming their loss-of-function status (Fig. 2C 

and Fig. S7). This is consistent with our hypothesis that for certain functionally important, 
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but hard-to-occur mutations, their frequencies in cancer are greatly suppressed. Such 

mutations tend to be overlooked in previous studies. After factoring in mutational difficulty, 

we can predict the functional importance of such mutations. 

We also noticed that, on P177, the P177L mutation (original count 24, revised count 

262) retains wild type function (Fig. 2D). Interestingly, on the same residue is another 

mutation P177R, which exhibit lower original count but much higher revised count 

(original count=18, revised count=2887). Despite it being less frequent than P177L, it is 

actually a loss-of-function mutation (Fig. 2D). Importantly, in our analysis we observed 

multiple such cases that even on the same residue, less frequent mutations could be loss-

of-function, yet mutants with higher original counts retain wild type function. Examples 

include R282Q/P, M160I/L, L130F/R, R158H/L and others (Fig. 2D). Such a reverse 

phenomenon can be explained by their revised mutation counts, again demonstrating the 

validity of our method. 

To examine the biochemical function of these p53 mutants, we introduced them into 

HCT116 p53-/- cell line, and tested whether DNA damage drugs can still induce the 

expression of p21, a well-established p53 transcriptional target(el-Deiry et al., 1994). 

Again, p53 mutants with revised counts lower than 700 behaved similarly to wild p53, 

whereas p53 mutants with revised mutation counts higher than 900 behaved similarly to 

hotspot mutants, failing to upregulate p21 upon DNA damage (Fig. S8) 

Summarized in figure 2E, despite the common perception that high-impact mutations 

appear more frequently in cancer database, the original mutation count is not a reliable 

predictor of functional status. p53 mutants with original counts less than 100 can either be 
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loss of function mutants or retain wild type function. In contrast, the functional status of 

p53 mutants are accurately predicted by their revised mutation counts, with a value lower 

than 700 indicating wild type function, and a value higher than 900 indicating loss-of-

function (Fig. 2F). This shows that by defining relative mutational difficulty, we can 

provide novel tools to accurately assess cancer mutations. 

Dominant negative effects of p53 mutants 

It is known that human p53 hotspot mutations also exert dominant negative effect over 

wild type p53(Willis et al., 2004). To explore whether such dominant negative effect also 

exists for other p53 mutations, and whether our method could predict such dominant 

negative effect, we established an experimental system using the E-Myc;p19Arf-/- mouse 

lymphoma cell line. This cell line retains wild type p53, which can be activated by DNA 

damage to induce cell death(Stott et al., 1998). Expression of hotspot p53 mutant together 

with GFP was achieved in this cell line via retroviral vectors. Hotspot p53 exerts dominant 

negative effects over endogenous wild type p53, and cells could not efficiently elicit cell 

death when treated with DNA damaging drugs. As a result, the percentage of GFP-positive, 

hotspot p53 mutant-expressing cells increased after drug treatment (Fig. 3A and 3B). In 

contrast, expression of wild type p53 in this system moderately sensitized cells to DNA 

damage drugs (Fig. 3B).   

We cloned the murine versions of various human p53 mutants and tested whether they 

exhibit dominant negative function. Importantly, all p53 mutants with revised counts lower 

than 700 behaved like wild type p53 (Fig. 3C), whereas all p53 mutants with revised count 

higher than 900 exhibited dominant negative effect (Fig. 3C). Again, as a predictor of 
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dominant negative effect, revised count performed significantly better than original 

mutation count (Fig. 3, D and E).  

We further tested whether our method can predict cancer-promoting abilities of p53 

mutants in vivo. Using a tail-vein hydrodynamic injection method, together with a 

transposon system(Chen et al., 2007) and CRISPR gene editing (Yang et al., 2014), Myc 

overexpression and PTEN knockout was achieved in the liver of wild type FVB mice. 

Under such condition, no mice developed liver tumor at 3 weeks. Addition of R246S 

murine p53 mutant, which mimics the human R249S hotspot mutation, overrode 

endogenous wild type p53 in mice liver and caused massive tumors (Fig. 3F). Using this 

setting, we tested eight p53 mutants. Consistent with our prediction, four mutants with 

revised counts lower than 700, including the rather frequent R158H mutation (original 

count 95), all behaved like wild type p53 and caused no tumors. In contrast, four p53 

mutants with high revised mutation counts all caused massive liver tumors in mice (Fig. 

3F), indicating they were able to override endogenous wild type p53 to promote cancer. 

Functional importance of several regions on p53 structure highlighted by our method 

Our results suggest there are many low frequency p53 mutations with significant 

functional impacts. To better understand their general distribution, using the revised counts 

of p53 hotspot mutation sites as controls, we mapped these high-impact mutations on the 

three-dimensional structure of p53. Known p53 hotspot mutations are located on the 

interfaces that are crucial for p53 structure and interaction with DNA. We first noticed that 

many residues adjacent to hotspot sites, such as V173, H178, M246, V274 and A276, 

although with rather low original mutation counts, showed very high revised counts (Fig. 
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4A and Fig. S9A). This observation suggests that many residues surrounding hotspot sites 

are in fact also essential for p53 function. These crucial sites are rarely mutated in cancer, 

because their mutation frequencies are severely penalized by high mutational difficulty.   

In addition to these residues, several other regions of p53 stood out with high revised 

mutation counts. One of such rarely-mutated, high impact region is residues 130 to 138, 

which form a β strand and loop structure that lays closely to a β strand-loop-helix domain 

(amino acids 270-282), which host several hotspot mutations and are responsible for DNA-

interaction(Eldar et al., 2013; Follis et al., 2014) (Fig. 4B). Other high impact amino acids 

identified by this method are five β strands that formed the central β-barrel of p53. On the 

three-dimensional structure of p53, such amino acids are also very close to AA173-179 

and AA244-249, both hosting hotspot mutations(Walker et al., 1999) (Fig. 4C and Fig S9B). 

Colony formation assays in Saos-2 cells confirmed that many rare, but difficult-to-generate 

mutations on these sites disrupt p53 function (Fig 4D). Such mutations were also tested in 

the E-Myc;p19Arf-/-  system and exhibited dominant negative effects over wild type p53 

(Fig 3C). Taken together, our method is able to regroup p53 mutations by integrating 

mutational difficulty, and points to additional regions that are crucial for the function of 

p53.  

Predicting the functional status of PTEN and INK4A mutations 

Next, we asked whether this method could be applied to other established cancer genes 

such as PTEN and INK4a. We cloned about 20 low-frequency PTEN and INK4A 

mutations and expressed them in PTEN or INK4A deficient cancer cell lines to see whether 

such mutations abolish gene function. As predicted by our method, those mutations with 
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low revised counts retained wild type function, whereas those mutations with high revised 

counts caused gene loss of function (Fig. 5A-C).  

For example, high difficulty mutations including PTEN Y27N, C124S and I135K, 

although each only occurring in 5 cancer samples in COSMIC, could not suppress AKT 

signaling, proving that they all abolish PTEN function (Fig. 5A). In contrast, the PTEN 

R173C and R173H mutations, despite being the fifth and sixth most common PTEN 

mutations and occurring in 47 and 36 cancer samples, both retained wild-type function (Fig. 

5A). According to our method, both are low-difficulty mutations, which explains why they 

did not disrupt PTEN function despite being detected in significantly more cancer samples. 

This observation, together with finding that p53 R158H mutation (original count 95, 

revised count 673) also retains wild type function, demonstrate that our method not only 

help identify rare mutations that promotes cancer, it can also point out high frequency, 

passenger type mutations in cancer database. 

Potential implications for cancer prevention 

In addition to establishing a method that could help evaluate individual cancer 

mutations in a sequence- and cancer type-specific manner, we also asked whether our 

method can help understand cancer etiology in general. In our analysis of human cancer 

mutations, we noticed that the vast majority of common mutations on tumor suppressors, 

such as p53, PTEN, FBXW7 and SMAD4 are low-difficulty mutations (Fig. 6A). 77% of 

these common, low difficulty mutations are C to T or its complementary G to A mutations 

on CpG sequence, which could be the results of spontaneous deamination(Rideout et al., 
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1990). From a cancer prevention point of view, it will be rather hard to prevent such type 

of deleterious events on tumor suppressors.  

In contrast, except for IDH1/2 and AKT1, common mutations on oncogenes such as 

KRAS, BRAF, CTNNB1, PI3KCA and JAK2 are typically high-difficulty mutations (Fig. 

6A’). Only 14% of common cancer-promoting mutations on oncogenes are C to T or G to 

A mutations on CpG sequences. About half of common cancer-promoting mutations on 

oncogenes require purine to pyrimidine changes or vice versa. Such type of changes cannot 

be caused by simple chemical reactions such as deamination of the nucleobase. Rather, 

Strong exogenous carcinogenic events are probably needed to damage DNA to eventually 

create such types of mutation. Limiting the exposure to environmental carcinogens, as well 

as managing long-term inflammation, among many potential measures, may significantly 

reduce the chance of obtaining activating mutations on oncogenes in general. This will 

significant deplete the driving force of cancer and impede cancer development. Therefore, 

even though two third of mutations in human cancer are caused by spontaneous events  

(Tomasetti et al., 2017), avoiding environmental carcinogenic factors holds great promises 

to significantly reduce the incidence of many types of cancer.  

On the other hand, certain types of cancers will still be hard to prevent. For example, 

the driver mutations on the oncogenes IDH1 and IDH2 are both low-difficulty, C to T or 

G to A mutations (Fig. 6A’). Therefore, cancer cases associated with such mutations, for 

example subtypes of glioblastoma, cholangiocarcinoma and acute myeloid leukemia 

(Borger et al., 2011; Dang et al., 2010) may be hard to prevent. Similar to the argument by 

Tomasetti et al (Tomasetti et al., 2017), for these types of cancer early detection holds more 

promise than cancer prevention methods.  
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Lastly, it is apparent that low difficulty, spontaneous mutations on tumor suppressors 

contribute to human cancer, most significantly through several easy-to-mutate sites on p53 

(Fig. 6A). From a pure theoretical point of view, it is possible to introduce synonymous 

mutations to these sites to render them more resistant to deleterious mutations. We 

analyzed the potential benefits of changing the nucleotide coding sequence on p53 hotspot 

sites. For example, changing the p53 R273 sequence from R(CGT) to R(AGA) will reduce 

the chance of generating loss of function mutations on this site by seven folds (Fig. 6B). 

For four other mutational hotspots on p53, similar codon changes can also significantly 

reduce the chance of generating loss of function mutations (Fig. S11) and are projected to 

greatly reduce cancer cases involving these hotspot sites (Fig. 6C-D). If theoretically, 

spontaneous low-difficulty mutations on p53 can be limited by such measures, and high-

difficulty mutations on oncogenes and other sites of p53 can be thwarted by avoiding 

environmental carcinogens, it may dramatically reduce cancer incidence.  

Discussion   

Significant differences of mutational difficulties in human cancer 

The functional importance of a mutation to cancer can be reflected by its selective 

enrichment in cancer samples. However due to the lack of understanding of relative 

mutational difficulty in cancer, most studies use mutation frequency in cancer database to 

directly calculate selective pressure. Our analysis shows that, depending on the type of 

nucleotide substitution and the surrounding sequences, the chances of generating different 

types of mutations can vary by as much as 400 folds (Fig 1C). Such a drastic difference 
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highlights the need to re-approach how we calculate the selective pressure for each cancer 

mutation, and consequently how to interpret the functional importance of such mutations.  

Many factors contributed to the fact that different types of nucleotide substitutions are 

created at rather different rates(Alberts B, Johnson A, Lewis J, 2002). Given the complex 

nature of these processes, relative mutational difficulties for different types of mutations, 

as well as their impact on how to interpret human cancer genome have not been established.  

In this report, through analysis of large number of human cancer genomes, we reversely 

derived the relative difficulties for each type of mutation. We also established such 

numbers in a cancer type-specific manner. Such dataset will be a useful tool to understand 

cancer genome. 

For most genes, close to 30,000 cancer samples have been analyzed and deposited in 

the COSMIC database. Certain easy-to-occur mutations may simply accumulate in a 

number of cancer samples without provide advantages for cancer development. In the 

future, when increased number of cancer genomes are deposited to COSMIC database, it 

is expected that more and more easy-to-occur passenger mutations will pile up on the 

mutation histogram. Without considering relative mutational difficulty, these seemingly 

“mutational peaks” may lead to erroneous assumptions that they are cancer-driving 

mutations. 

To functionally estimate the importance of novel cancer mutations, the cancer types 

that host such mutations should also be taken into consideration. As illustrated in figure S2, 

for many types of mutations, it is much easier to generate them in skin, colorectal and 

endometrial cancers. On the other hand, some types of mutations are more difficult to 
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generate in these cancer types (Fig. S3A). Therefore, if the original count of a cancer 

mutation is primarily contributed by skin, colorectal and endometrial cancer samples, such 

mutations should be viewed with caution. However, they should not be automatically 

devalued either.  

Functional landscape of p53 mutations in human cancer 

Our results suggest that, in addition to hotspot mutation sites, there are numerous 

other amino acid residues also crucial for p53 function. Mutations on these residues are 

rare because it is too difficult to generate inactivating mutations on them. By 

incorporating relative mutational difficulty, we can re-establish the functional importance 

of such sites and discover many rare, but cancer-promoting p53 mutations. We also 

observed dominant negative effects for many p53 missense mutations (Fig. 3C), which is 

consistent with recent findings by Boettcher et al(Boettcher et al., 2019). This led to 

recognitions of amino acid residues and structural regions crucial for p53 function (Fig. 

4), which will help further understand this important tumor suppressor. 

Based on our analysis, we estimate that out of the 1219 types of missense p53 

mutations in COMIC database, 27% are loss of function mutations and 70% retain wild 

type function. In addition, out of the 19598 p53-mutated cancer samples in COSMIC 

database, 83% contain loss of function p53 mutation and 15% retain wild type p53 

function.  

The FATHMM(Functional Analysis through Hidden Markov Models) 

method(Shihab et al., 2013), which estimate functional impact based on sequence 

conservation and the overall tolerance of the protein/domain to mutations, has been 
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commonly used to predict cancer-driving mutations. Such a method is used by COSMIC 

to annotate cancer mutations. With regards to p53 mutations, comparison of our 

prediction results with FATHMM method showed only 50% overlap (Fig. S10 and Table 

S4).  

Interestingly, in a recent publication, thousands of different types of p53 mutants 

were introduced to cancer cells, and the functional status of these p53 mutations were 

assessed by whether these mutations were tolerated by cells under different 

conditions(Giacomelli et al., 2018). Such dataset provides direct experimental readout of 

p53 mutations. Our predictions of the functionality of p53 mutations are highly similar to 

these experimental results, with a 88% overlap (Fig. S10). The 12% p53 mutations that 

are differently predicted (Table S5) may have come from wrong predictions by our 

method, or from small inaccuracies of such pool-based large-scale studies.  

In the Giacomelli et al report, integrating mutational signatures of aging, 

APOBEC, smoking, UV, mismatch repair deficiencies and alatoxin, a model was trained 

to fit the mutational landscape of p53 in human cancer. In that model, for each p53 

mutation, different sets of weights were assigned for each signature. Our analysis, by 

defining relative mutational difficulties, provides an straightforward method to predict 

the funtional importance of p53 mutations. This method can also be readily applied to 

PTEN, INK4A (Fig.5) as well. 

In summary, our study provided estimates of relative mutational difficulties in human 

cancer. Such information may help further understand cancer formation, bringing new tools 
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for discovering cancer-promoting mutations. Moreover, such kind of analysis may also 

yield additional perspectives on cancer prevention. 
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Methods and Material 

Data acquisition. Mutation data from 26,154 cancer genomes were retrieved from 

COSMIC website in January 2018. If a gene has multiple isoforms, only the major form 

was included in our analysis such that mutations on the same sites are not counted multiple 

times. For 19,940 genes, 3,101,161 single nucleotide substitutions were identified. In order 

to calculate the natural mutational tendency, we first eliminated mutational events that 

occur more than 5 times in the dataset. These mutations may have been selectively enriched 

during cancer development and may interfere with our calculation. A total of 65,594 

mutational events involving 6,019 sites were removed, which represent 2% of mutations. 

Detailed analysis of this point is provided in figure S2. 

To assess the influence of neighboring sequences on mutational tendency, sequences of the 

coding genome corresponding to the 19,940 genes were downloaded from Ensemble 

(GRCh38.p10). For each nucleotide mutation, -2, -1, +1, +2 nucleotides were extracted 

from the corresponding coding sequence.  

Types of mutations. At the central position, there are 12 routes of interchange between 

A/G/T/C. The permutations at -2, -1, +1, +2 nucleotides amount to 44. Therefore, we 

collated all mutations into 1244=3072 groups. 

Calculation of Mutational tendency. For the aforementioned 3072 groups, we first 

counted how many mutations from the 26,154 cancer genomes belong to each group. Next, 

we counted how many times each penta-nucleotide sequence appears in coding sequences 

of the 19,940 genes. For example, there are 10,389 C→T mutations on TTCGT sequences 

in 26,154 coding genomes.  There are 21446TTCGT sequences per coding genome. 
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Therefore, the mutational tendency of C→T on TTCGT is approximately 10389/ 

(2144626154) =1.85 10-5, which is the highest amongst all 3072 combinations. We set 

the “difficulty” score for such a mutation as 1. The mutational tendency of A→C mutation 

in a CGATG sequence is 0.9310-7, and its relative difficulty score is calculated as 

1.8510-5/0.9310-7 = 200. Difficulty scores for all other combinations were generated 

accordingly.  

In the above analysis, we aim to estimate the natural mutational tendency for each type of 

mutation in human cancer. Certain cancer-promoting mutations on genes such as KRAS 

and BRAF are strongly selected for during cancer formation. The number of such 

mutations are significantly increased in the dataset, not because they are easy to generate, 

but because they are strongly enriched by the tumorigenesis process. Therefore, their 

presence in the dataset may skew our estimation of the natural mutational tendency for 

each type of mutation. Considering this, in the above calculation, we excluded mutations 

that occur in more than 5 cancer sample, in order to achieve a closer estimate of mutational 

tendency. Of note, about 2% all of mutations in the 26,000 cancer genomes (Fig. 1A) occur 

in more than 5 cancer samples and were excluded in our analysis.  

Fig.S3 shows the comparison of mutational difficulties calculated with and without 

excluding such recurrent mutations. In Fig.S3A, if no mutations are excluded, the 

mutational difficulty scores for KRAS G12R, BRAF V600E and HIF1A K213Q, among 

many others, will be significantly lower. In Fig. S3B, if only excluding mutations that occur 

in more than 20 samples, the mutational difficulty scores for TP53 V157G, NOTCH1 

D573A, CDKN2A A36G, among others, will still be significantly lower. In Fig. S3C, if 
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only excluding mutations that occur in more than 10 samples, the mutational difficulty 

scores for TP53 Y126D, KDM6A T794P, PIK3CA V344G, among others, will still be 

noticeably lower. Based on this, we calculated mutational difficulty after excluding 

mutations that occur in more than 5 samples. 

Lastly, the numbers of different penta-nucleotides in the coding genome vary greatly. For 

example, in the coding genome there are 3,001 TAGCG sequences and more than 100,000 

TGGAG sequences. Therefore, it is necessary to divide the number of mutations by the 

number of available sites to accurately understand the relative mutational difficulty. 

Cancer type-specific mutational difficulty. To generate cancer type-specific mutational 

difficulty scores, mutations were first grouped by cancer types, from which mutation rates 

were calculated using similar methods. For example, we observed 1,195 C→T mutations 

on TTCGT sequences in 296 endometrial cancer samples, and the mutational tendency of 

C→T on TTCGT is approximately 1.8810-4 in endometrial cancer. Since in previous 

calculation we set the mutational difficulty score as 1 for a mutation rate of 1.85 10-5, we 

can calculate the relative mutational difficulty for C→T on TTCGT as 0.1 (=1.85 10-

5/1.8810-4) in endometrial cancer. This method was also used to calculate mutational 

difficulty for other cancer types. 

Analysis of p53, PTEN, INK4A mutations. Mutational data for p53, PTEN and INK4A 

was last acquired from COSMIC on January 2018. At the time, p53 was sequenced in 

130,448 cancer samples, PTEN in 72,199 samples and INK4A in 72,566 samples. Current 

numbers in COSMIC database have slightly increased due to website updates. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 1, 2019. ; https://doi.org/10.1101/789313doi: bioRxiv preprint 

https://doi.org/10.1101/789313


25 

 

Of note, the CDKN2A locus contains two genes, INK4A and ARF. Previous studies 

showed that recurrent mutations on the CDKN2A locus do not change the function of the 

ARF gene(Quelle et al., 1997). In addition, U251 cells, which deleted the CDKN2A locus, 

could tolerate ARF expression, but not INK4A expression. Therefore, for later 

experimental validation, we cloned and analyzed INK4A mutants in this study.  

For each mutation, we first extracted the penta-nucleotide sequence surrounding the 

mutation site, and matched it with relative mutational difficulty scores. For mutational sites 

that are adjacent to intro-exon junctions, the genomic sequence was used to extract the 

nucleotide sequences surrounding the mutational site. 

Next, we calculated the revised mutational count based on original mutation count and 

cancer type-specific relative mutational difficulty. For example, if a p53 mutation occurs 

in 10 colorectal cancers and 5 lung cancers, and the relative mutational difficulties for the 

mutation is 1 and 3 in colorectal and lung cancer respectively, the revised count for such a 

mutation can be calculated as 101 + 53 = 25. 

Figure S6 shows the distribution of revised mutation counts for all p53 synonymous 

mutation based on COSMIC data. For most of these synonymous mutations, the revised 

counts are below 700. Therefore, we estimate that those missense p53 mutations with 

revised count below 700 retain wild type p53 function, which were validated with further 

experiments. In Figure S6, we also observed that the revised counts of several p53 

synonymous mutations exceeded 700. This is due to the fact that certain p53 synonymous 

mutations abolish p53 function. For example, the p53 T125T mutation (c.375 G to A/C/T) 

disrupts the adjacent intron-exon splice site, and abolishes gene function(Supek et al., 
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2014). The revised count for T125T is 1353, and is predicted to be a loss of function 

mutation by our method.  

Table S3 listed the original and revised counts of p53 mutations based on COSMIC 

database. If a mutation’s revised count is lower than 700, it is predicted to retain wild type 

function. If a mutation’s revised count is higher than 900, it is predicted to be loss of 

function mutation. A few exceptions exist and are explained below.  

In the COSMIC database, the S149F mutation on p53 is caused by single nucleotide 

substitution in 5 samples, and the revised count is lower than 700. However, in one 

additional cancer sample, a CC to TT nucleotide change also caused the S149F mutation. 

Because of the rarity of such double mutations, we did not assign relative mutational 

difficulty score to such double mutations. Therefore, we cannot make functional prediction 

for this mutant, and a "*" is marked in the “revised count” column for S127F. Such 

phenomenon also occurred for S166L, V218M and R158C, and these mutations are labeled 

similarly with a “*” in Table S3. Several other mutations (for example R282W) also 

exhibited such double nucleotide substitution, however their revised counts calculated 

from single nucleotide substitutions already exceeded 900. Therefore, such mutations are 

predicted to be loss of function mutations in Table S3. 

GFP-based cell survival competition assay to determine sensitivity change caused by 

p53 mutants. The experiment was carried out with a protocol modified from(Bruno et al., 

2017). Briefly, Eμ-Myc p19Arf−/− cells are infected with retrovirus that express GFP and 

mutant p53, such that 20-50% of cells are GFP positive. Cells are treated with DNA 

damage drug at doses that would kill 80-90% of uninfected Eμ-Myc p19Arf−/− cells. In 
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this assay, if p53 mutant exerts dominant negative effects on endogenous wild type p53 in 

Eμ-Myc p19Arf−/− cells, after DNA damage drug treatment the GFP positive, p53 mutant-

expressing cells will be relatively more resistant than GFP negative cells that only express 

wild type p53. At 72 h, treated and untreated cells are analyzed by flow cytometry. GFP 

percentages of live (PI-negative) cells are recorded and used to calculate relative resistance 

index.  

Calculation of relative resistance/sensitivity from GFP-based cell survival 

competition assay.  

The value of relative resistance index (RI) can be calculated as RI=(G2-G1*G2)/(G1-

G1*G2). G1 means how many percentages of cells are GFP positive before drug treatment. 

G2 means how many percentages of cells are GFP positive after drug treatment. The 

explanation for such calculation was provided in (Jiang et al., 2011).  

Relative resistance index larger than 1 means the corresponding p53 mutant displayed 

dominant negative effect, protected cells from DNA damage, and the rate of GFP+ cells in 

surviving cells increased after drug treatment. Relative resistance index smaller than 1 

means the corresponding p53 mutant displayed wild type function, sensitized cells to DNA 

damage, and the rate of GFP+ cells in surviving cells decreased.  

Cell lines and drugs. Eμ-Myc p19Arf −/− cell was cultured in B-cell medium (45% 

Dulbecco's modified Eagle's medium and 45% Iscove's modified Dulbecco's media, 

supplemented with 10% fetal bovine serum, L-glutamate, and 5 μM β-mercaptoenthanol). 

Phoenix, HCT116 p53-/-, Saos-2, U251, A549, 293T and 293A were cultured in 

Dulbecco's modified Eagle's medium supplemented with glutamate and 10% (v/v) FBS. 
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786-O cell was cultured in RPMI medium supplemented with glutamate and 10% (v/v) 

FBS. 

Saos-2, HCT116 p53-/-, U251, 786-O cells were obtained from the Cell Bank, China 

Academy of Sciences (Shanghai, China). Doxorubicin was purchased from Selleck. 

Antibodies. Antibodies against Phospho-Akt (Thr308) (D25E6) (Cell signaling, #13038), 

Akt (pan) (C67E7) (Cell signaling, #4691), Phospho-GSK-3β (Ser9) (D84E12) (Cell 

signaling, #5558), Phospho-PDK1 (Ser241) (C49H2) (Cell signaling, #3438) , PTEN (pan) 

(Y184) (Abcam, #32199) were used for Western blot analysis. 

Cloning of p53, PTEN and INK4A mutants. Wild-type p53, INK4a and PTEN 

expression vectors were constructed as follows. The full-length open reading frame of p53, 

INK4a and PTEN cDNAs were amplified by PCR using KOD plus neo DNA polymerase 

(Code No.KOD-401 Lot No.646300) and a pair of primers with EcoRI and XhoI sites. The 

PCR product was cloned into the EcoRI/XhoI sites of the pMSCV-IRES-GFP 

vector. cDNAs with missense mutations were constructed by overlap extension PCR. All 

of the plasmids were sequenced to confirm that the appropriate mutations had been 

incorporated and that no additional mutations were generated. 

All p53, INK4a and PTEN mutants tested in this study are listed in Table S6. 

Colony formation assay.  To test the functional status of p53 mutants, retrovirus that 

expresses p53 mutants, puromycin resistance gene and GFP was used to infect Saos-2 cells. 

Cells are infected with similar virus MOI such that 30-50% of cells are GFP positive for 

all experimental groups. 5000 GFP-positive Saos-2 cells were resuspended in medium 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 1, 2019. ; https://doi.org/10.1101/789313doi: bioRxiv preprint 

https://doi.org/10.1101/789313


29 

 

containing 10% FBS and plated in 6-well plates. After 24 hours, they were treated with 

2ug/ml puromycin. 24 hours later, puromycin-containing medium was replaced with fresh 

complete culture medium. 5 days later, 2ug/ml puromycin was again used to treat cells for 

24h before removal. Cells are cultured for an additional 10 days. Colonies were then fixed 

with 4% paraformaldehyde and stained with 0.1% crystal violet for 30 min. Stained cell 

colonies were washed with phosphate buffered saline (PBS) for three times and dried. 

Images were obtained by a digital camera. Similar protocols were used to test INK4a 

mutants in U251 cells. 

Mouse liver cancer model. Myc cDNA and p53 mutants were cloned into a transposon 

system using the PT3 vector(Chen et al., 2007). Such plasmids were mixed with sgPTEN-

Cas9 plasmid(Yang et al., 2014), together with Sleeping Beauty transposase-expressing 

plasmid in PBS. Gene mixture was delivered to mouse by tail vain hydrodynamic injection. 

A rapid tail vein injection protocol, which delivers 2ml of PBS-plasmid solution in 7 

seconds, introduced these plasmids into mouse liver cells. Under such conditions, PTEN is 

disrupted by sgPTEN and Cas9, and cDNAs of Myc and p53 mutants are integrated into 

host cell’s chromosomes by the transposon system. Concentrations of Sleeping Beauty 

transposase and Myc-expressing plasmids were at 0.5μg/ml and 1.25μg/ml, respectively. 

Other plasmids or corresponding empty vectors were used at 5μg/ml. Wild type FVB mice 

were used in this experiment. 

Cell cycle analysis. U251 cells expressing wild type or mutant forms of INK4a were 

analyzed. When grew to proper density (about 70-80%), cells were collected and fixed 

overnight in 70% ethanol. Cells were then treated with 0.2% Triton X-100, 50 μg/ml 

propidium iodide and 100 μg/ml RNase A for 40 minutes, and analyzed by FACS. 
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Quantitative real-time PCR assay(qPCR). RNA was purified using GeneJET RNA 

Purification Kit (thermo scientific) and qPCR was performed on a StepOne real-time PCR 

machine (BIO-RAD) using SYBR Green PCR master mix (Promega). mRNA level of actin 

was used as control. Primers used for qPCR analysis are listed in Table S8. 

Statistics. Differences of event frequency between two groups were analyzed using 

Student’s unpaired two-tailed T test. p-values <0.01 were marked as *** in figures, p-

values <0.05 were marked as ** in figures. 
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Figure 1. Relative mutational difficulty in human cancer.  
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(A, B) Overview and classification of coding mutations from about 26,000 cancer genomes. 

(C) Rates and relative difficulties of different types of mutations based on 26,000 cancer 

genomes. Depending on the type of nucleotide substitution and the surrounding sequences, 

mutations are divided into 3,072 groups.  

(D, E) The impact of flanking nucleotides on relative mutational difficulty.  

(F) Cancer type-specific relative mutational difficulty.  
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Figure 2. Integrating relative mutational difficulty to predict the functional status of 

p53 mutations. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 1, 2019. ; https://doi.org/10.1101/789313doi: bioRxiv preprint 

https://doi.org/10.1101/789313


39 

 

(A) p53 mutation histogram based on original and revised counts. Different types of 

mutations on the same amino acid residue (e.g. R273H and R273C) are combined to make 

the graph. Red lines indicate hotspot mutation sites such as G245 and R282.  

(B) The original and revised counts of p53 cancer mutations. Red lines indicate hotspot 

mutations such as R282W.  

(C) Expression of wild type p53 suppresses the growth of Saos-2 cells. Genes were 

delivered to cells via lentivral infection. For all colony formation assays in this study, cells 

were infected with low MOI such that 30-50% of cells infected with virus. (C’) p53 hotspot 

mutants are well-tolerated by Saos-2 cells. The original and revised counts are listed below 

each mutant. (C’’) p53 mutants with revised count lower than 700 behave like wild type 

p53 and suppresses Saos-2 growth. (C’’’) p53 mutants with revised count higher than 900 

are loss of function mutants and are well-tolerated by Saos-2 cells. All colony formation 

assay in this study were done in three independent biological repeats.  

(D) Pairs of p53 mutations on the same amino acid. Shown are examples of high-difficulty 

mutations, although appearing in lower number of cancer samples, are loss of function 

mutations instead. 

(E) Original mutation counts do not correlate with functional status of p53 mutants.  

(F) Revised mutation counts correctly predict the functional status of p53 mutants. 
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Figure 3. Integrating relative mutational difficulty to predict dominant negative 

effects of p53 mutations.  
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(A) An experimental system to analyze dominant negative effects of p53 mutations. A 

murine lymphoma cell line that retain wild type p53 is partially infected by retrovirus that 

express p53 mutants and GFP. 

(B) If the p53 mutants exert dominant negative effect over endogenous wild type p53, it 

will render cells more resistant to DNA damage induced by doxorubicin, and the rate of 

GFP-positive cells increases in surviving cell population. Expression of wild type p53 

moderately sensitizes cells to doxorubicin treatment.  

(C-E) Revised counts, but not original counts of p53 mutants correctly predicts whether 

such mutants exhibit dominant negative effects. Murine p53 mutants corresponding to 

human p53 mutants were used in these experiments.  

(F) Revised counts correctly predict whether p53 mutants can promote liver cancer 

formation in vivo. The original and revised counts are listed below each mutant, separated 

by a “/” mark. Murine p53 mutants corresponding to human p53 mutants were used in this 

experiment. Mice are sacrificed 30 days after hydrodynamic delivery of genes in vivo. n=3 

for each experimental group, except I248S for which one of the injected mice didn’t 

recover from hydrodynamic injection.  
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Figure 4. Functionally important amino acid residues and regions in p53.  
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(A-C) On the left panels, original mutation counts of listed amino acid residues are 

indicated by white boxes, whereas revised counts are indicated by red or pink boxes. 

Hotspot mutation sites such as R175 and G245 are included as controls. On the right panels, 

(A’) Functionally important amino acid residues near hotspot mutation sites are labeled in 

purple. Hotspot mutation sites are labeled in blue. (B’) and (C’) Additional regions crucial 

for p53 function are labeled in purple. Regions that mediate DNA binding such as AA270-

282 and AA173-179 are labeled in blue.  

(D) Example of low frequency mutations on amino residues in regions analyzed in (A-C). 

These mutations abolish p53 function and are well tolerated by Saos-2 cells. 
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Figure 5. Integrating relative mutational difficulty to assess the functional status of 

PTEN and INK4A mutations.  

(A) Original and revised counts of indicated PTEN mutants. Expression of wild type PTEN 

suppresses AKT signaling in in 786-O cells, which do not express PTEN. PTEN Mutants 

with low revised counts (in blue) behave like wild type PTEN and are able to suppress 

downstream AKT signaling. PTEN mutants with high revised counts (in black) lose PTEN 

function and cannot suppress AKT signaling. The original and revised counts are listed 

below each mutant. 
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(B) Expression wild-type INK4A suppress growth of U251 cells, in which the INK4A 

locus is deleted. B’) INK4A mutants with low revised counts retain wild type gene function 

and suppressed U251 growth. B’’) CDKN2A mutants with high revised counts are 

defective in gene function and are well tolerated by U251 cells. The original and revised 

counts are listed below each mutant. 

(C) INK4A mutants with high revised counts (in black) cannot induce cell cycle arrest in 

U251 cells. CDKN2A mutants with low revised counts (in blue) behave like wild type 

CDKN2A and induce G1/early S phase arrest in U251 cells. 
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Figure 6. Potential implications for cancer prevention.  

(A) and (A’) Relative difficulties of common mutations on established oncogenes and 

tumor suppressors. Mutations on genes such as KRAS and p53 are collected from the about 

26,000 cancer genomes. Those mutations appearing in more than 30 cancer samples are 

plotted according to their relative mutational difficulties. For example, in (A’) the blue dot 

adjacent to p53 represents how many cancer samples carry common p53 mutations whose 

relative mutational difficulties are between 0 and 5.  

(B) Mutational probability of the p53 R248 original codon R(CGG) and changed codon 

R(AGA). Loss of function mutations are shown in dark grey. Mutations with wild type p53 

function are shown in white.  

(C) Cumulative chances of generating LOF p53 mutations on five hotspot mutation sites, 

based on original and changed codons.  

(D) Number of cancer cases in COSMIC database involving these five p53 hotspot sites, 

and the projected reduction of cancer cases if these sites are changed to hard-to-mutate 

codons. 
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Supplementary information for 

Figure S1 Rationale for reverse calculation of relative mutational difficulty in human 

cancer. 

Figure S2 Composition of the 26,000 cancer samples with genomic sequencing data in 

COSMIC. 

Figure S3 Potential impacts of highly-selected cancer mutations on calculation of 

relative mutational difficulty.  

Figure S4 The influence of +2 and -2 nucleotides on relative mutational difficulty.  

Figure S5 Cancer type-specific mutational difficulties compared with mutational 

difficulties calculated from all cancer types in average.  

Figure S6 Distribution of revised counts of p53 synonymous mutations.  

Figure S7 Saos-2 colony formation assay results for various p53 mutations.  

Figure S8 Transcriptional activities of different p53 mutants. 

Figure S9 Additional functionally important amino acid residues and regions in p53.  

Figure S10 Comparison of functional predictions based on different methods. 

Figure S11 Mutational probability of the original changed codons on hotspot mutation 

sites. 

 

Table S1 Calculation of relative mutational difficulty (All cancer types combined). 

Table S2 Cancer type-specific mutational difficulty.  

Table S3 Original and revised mutation counts of p53 mutations in COSMIC database. 

Table S4 List of p53 mutations whose functionalities are annotated differently by revised 

counts method and FATHMM. 

Table S5 List of p53 mutations whose functionalities are annotated differently by revised 

counts method and PHANTM. 

Table S6 List of p53, PTEN and INK4A mutants analyzed in this study. 
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Table S7 List of primers used for mutagenesis experiments. 

Table S8 List of primers used for qPCR analysis. 
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Figure S1. Rationale for reverse calculation of relative mutational difficulty in 

human cancer. 
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Figure S2. Composition of the 26,000 cancer samples with genomic sequencing data 

in COSMIC. The numbers following each cancer type indicate how many cancer 

genomes of the corresponding cancer type are analyzed. 

h a e m a to p o ie t ic  a n d  ly m p h o id  3 2 0 1

b re a s t 2 2 9 6

la r g e  in te s t in e  2 1 7 2

l iv e r  2 1 3 6

c e n tra l n e rv o u s  s y s te m  1 9 2 1

lu n g  1 7 9 9

p ro s ta te  1 5 1 9

p ancreas  1441

k id n e y  1 2 9 8

oesophagus 1079

s k in  1 0 7 6

o v a ry  6 9 8

u p p e r  a e ro d ig e s t iv e  6 8 7

stom ach 663

th y ro id  6 3 0

bone 559

a u to n o m ic  g a n g lia  4 5 9

u r in a r y  t r a c t  3 9 4

a d re n a l g la n d  3 5 8

b i l i a r y  t r a c t  3 2 7

endom etrium  296

s o f t  t is s u e  2 8 9

c e rv ix  1 9 5

1 4  o th e r  ty p e s  o f  c a n c e r  6 6 1

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 1, 2019. ; https://doi.org/10.1101/789313doi: bioRxiv preprint 

https://doi.org/10.1101/789313


52 

 

 

Figure S3. Potential impacts of highly-selected cancer mutations on calculation of 

relative mutational difficulty. Certain cancer-driving mutations such as BRAF V600E 
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are highly selectively enriched in cancer. The number of such mutations are significantly 

increased in the dataset, not because they are easy to generate, but because they are 

strongly enriched during the tumorigenesis process. Therefore, their presence in the 

dataset may skew our estimation of the natural mutational tendency for each type of 

mutation. In our analysis, we excluded cancer mutations that occur in more than 5 cancer 

samples. The above panels show if no mutations are excluded (A), excluding mutations 

that occur in more than 20 (B) or 10 (C) samples, what is the impact on calculation of 

relative mutational difficulty. For example, if no mutations are excluded, the mutational 

difficulty for T to A substitution on a AGTGA sequence, which underlies the BRAF 

V600E mutation, will appear significantly lower. Several other similar examples are 

marked out in the above panels. 
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Figure S4. The influence of +2 and -2 nucleotides on relative mutational difficulty. In 

the above panels, the y-axis represents relative mutational difficulty. For example, in the 

last column of the lowest right panel, the sixteen * indicate on a NGAGN sequence, how 

16 variations of the nucleotide in the +2 and -2 position will impact the relative 

mutational difficulty for A to T mutation on such NGAGN sequences.  

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 1, 2019. ; https://doi.org/10.1101/789313doi: bioRxiv preprint 

https://doi.org/10.1101/789313


56 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 1, 2019. ; https://doi.org/10.1101/789313doi: bioRxiv preprint 

https://doi.org/10.1101/789313


57 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 1, 2019. ; https://doi.org/10.1101/789313doi: bioRxiv preprint 

https://doi.org/10.1101/789313


58 

 

 

Figure S5. Cancer type-specific mutational difficulties compared with mutational 

difficulties calculated from all cancer types in average. Black dots indicate relative 

mutational difficulty scores calculated from 26,154 cancer genomes (all cancer types 

combined). In the top panel, examples of mutation types that are easier or more difficulty 

to generate in skin cancer are circled out.  
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Figure S6. Distribution of revised counts of p53 synonymous mutations. Synonymous 

p53 mutations were compiled from the COSMIC database. Shown are revised mutation 

counts calculated for each type of synonymous p53 mutation. Certain synonymous 

mutations on p53 are known to be detrimental to the gene. For example, the T125T(c.375 

G to A/C/T) mutation disrupts p53 splicing and causes loss of p53 activity(Supek et al., 

2014). 
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Figure S7. Saos-2 colony formation assay results for various p53 mutations. Shown 

here are experimental results of p53 mutations included in this study, in addition to those 

shown in Figure 2C, 2D and 4D. The original counts and revised counts are listed below 

each mutation. 
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Figure S8. Transcriptional activities of different p53 mutants. Lentivirus encoding 

mutant or wild type p53 was used to infect HCT115 p53-/- cells at 30-40% infection rate. 

A puromycin selection marker in the lentivirus were used to select infected cells. Such cells 

were then treated with doxorubicin for 24 hours, and the transcriptional activity of p53 

mutants were analyzed by extent of p21 upregulation. 
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Figure S9. Additional functionally important amino acid residues and regions in 

p53. Original mutation counts of listed amino acid residues are indicated by white boxes, 

whereas revised counts are indicated by red or pink boxes. Hotspot mutation sites such as 
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R175 and G245 are included as controls. Shown here are functionally important amino 

acids in addition to those shown in Figure 4.  
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Figure S10. Comparison of functional predictions based on different methods. 

FATHMM annotation of p53 mutants are available at individual p53 mutation page on 

COSMIC site. 48% of what our method predicted to be wild type function or loss of 

function mutations are predicted in the same manner by the FATHMM method. PHANTM, 

Phenotypic Annotation of TP53 Mutations (http://mutantp53.broadinstitute.org/) provides 

functional assessment of individual p53 mutant, based on Giacomelli et al 2019. In that 

study, an extensive library of p53 mutants was introduced into cells, which were then 

treated under different conditions. The funtional status of p53 mutants was estimated based 

on whether they are tolerated by cells, as determined by massively parralle 

sequencing.Prediction by our method, which takes relative mutational difficulty into 

consideration, are highly consistent with the PHANTM results, with an 88% overlap. P53 

mutations whose functional status are differently annotated between our method and 

FATHMM or PHANTM are listed in Table S4 and S5 respectively. 
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Figure S11. Mutational probability of the original and changed codons on p53 hotspot 

mutation sites. Original and changed codons for indicated p53 hotspot mutation sites are 

shown in these panels. Loss of function mutations are shown in dark grey. Mutations with 

wild type p53 function are shown in white. Shown here are analysis results for R175, G245, 

R248 and R282, and results for R273 is shown in Fig. 6B. Of note, the high mutation rate 

on G245 is enabled by the preceding codon G244, resulting in a nucleotide sequence 

(GCGGC) that is highly prone to G to A mutation, which causes the G245 (GGC) codon 

to be a hotspot mutation site. Change the G244 codon from GGC to GGT will decrease the 

mutation tendency of G245, without increasing mutation tendency of G244. 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 1, 2019. ; https://doi.org/10.1101/789313doi: bioRxiv preprint 

https://doi.org/10.1101/789313

