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Abstract

Recent evidence suggests that the quantity and quality of conscious experience may be

a function of the complexity of activity in the brain, and that consciousness emerges in a

critical zone on the axes of order/randomness and integration/differentiation. We propose fractal

shapes as a measure of proximity to this critical point, as fractal dimension encodes information

about complexity beyond simple entropy or randomness, and fractal structures are known to

emerge in systems nearing a critical point. To validate this, we tested the several measures of

fractal dimension on the brain activity from healthy volunteers and patients with disorders of

consciousness of varying severity. We used a Compact Box Burning algorithm to compute the

fractal dimension of cortical functional connectivity networks as well as computing the fractal

dimension of the associated adjacency matrices using a 2D box-counting algorithm. To test

whether brain activity is fractal in time as well as space, we used the Higuchi temporal fractal

dimension on BOLD time-series. We found significant decreases in the fractal dimension between

healthy volunteers (n=15), patients in a minimally conscious state (n=10), and patients in a

vegetative state (n=8), regardless of the mechanism of injury. We also found significant decreases

in adjacency matrix fractal dimension and Higuchi temporal fractal dimension, which correlated

with decreasing level of consciousness. These results suggest that cortical functional connectivity

networks display fractal character and that this is predictive of level of consciousness in a

clinically relevant population, with more fractal (i.e. more complex) networks being associated

with higher levels of consciousness. This supports the hypothesis that level of consciousness and

system complexity are positively associated, and is consistent with previous EEG, MEG, and

fMRI studies.

Keywords: Brain Injury, Complexity, Consciousness, fMRI, Fractal, Functional Connec-

tivity
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1 Introduction

Research into the neural origins of conscious experience has suggested that consciousness may be

associated with the complexity of information integration in the brain (Tononi, 2008; Koch et al.,

2016). While complexity, like consciousness, is a difficult thing to define, several measures have

emerged in complex systems science for describing what it means for a system to be complex in

domains such as system architecture, spatial, and temporal dynamics (Mitchell, 2009). In the

context of biology, complexity can refer to how the components of a naturally occurring system

interact and encode information, with a particular interest in emergent properties and self-organizing

behaviour (Baianu et al., 2007). The brain is often considered to be a paradigmatic example of a

complex system, showing many hallmarks of complexity, such as billions of interacting neurons,

which encode information, respond to stimuli, compute information, and give rise to astonishing

emergent phenomena, the most mysterious of which is consciousness.

The Entropic Brain Hypothesis (EBH) posits that consciousness emerges when the brain is

near a critical point between order and randomness, known as criticality, and that to move too far

in either direction will result in a change in the quality of consciousness, and ultimately, loss of

consciousness entirely (Carhart-Harris et al., 2014; Carhart-Harris, 2018). Various studies have used

different metrics to approximate the complexity of brain activity, and the results have been quite

consistent, even across modalities. Studies that estimate the Lempel-Ziv complexity of EEG and

MEG signals have found that the algorithmic complexity of time-series is decreased in both healthy

volunteers and patients who have had their level of consciousness reduced by a range of mechanisms,

including sleep (?), sedation with anaesthetics (Schartner et al., 2015), and brain injury (Sarasso

et al., 2014). Conversely, the complexity of brain signals is increased in volunteers who are under

the influence of psychedelic drugs like LSD, suggesting a corresponding increase in the complexity

of brain activity (Schartner et al., 2017). Studies have also found that alteration to consciousness

is associated with differences in the complexity of functional connectivity networks (Tagliazucchi

et al., 2014; Tagliazucchi et al., 2016; Atasoy et al., 2017; Viol et al., 2017; Pappas et al., 2018),

which may imply that the spatial complexity of brain activity is as important for the maintenance

of consciousness as temporal complexity indexed by MEG and EEG measures.
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A core feature of the EBH is that consciousness emerges, not where algorithmic complexity is

maximal, but in the critical zone, on the boarder between low- and high-entropy states (”the edge of

chaos”). Several publications suggest that the healthy brain operates at, or just below, this area of

criticality (Beggs and Timme, 2012; Cocchi et al., 2017), and there are compelling theoretical reasons

to prefer a critical model of the brain: in neural networks, critical systems show the greatest ability

to perform computations (Shew et al., 2011), store information (Yang et al., 2012), and criticality

maximizes the range of input scales (dynamic range), due to the scale free nature of critical activity

(Shew et al., 2009). These are all qualities that a brain capable of supporting a complex phenomenon

like consciousness might be expected to show. While criticality and complexity, as formalized by

theories such as Integrated Information Theory (Tononi, 2008) are separate; in vivo and in silico

studies have found that they are locally maximal in the same regions (Timme et al., 2016). The

specifics of criticality in the brain have not gone unchallenged (Kanders et al., 2017), however, studies

investigating the relationship between criticality, consciousness, and brain function in disorders of

consciousness may shed further light on the topic.

One of the ”fingerprints” of critical phenomena is the emergence of scale-free, or fractal be-

haviour near the critical point (Beggs and Timme, 2012). While the use of fractal analysis on neural

structures and signals has been significant (Ieva et al., 2014; Ieva et al., 2015), there has been far

less analysis of functional connectivity networks. Gallos et al., (Gallos et al., 2012a; Gallos et al.,

2012b) showed that there was a relationship between the fractal structure of a voxel-level functional

connectivity network and the threshold at which the edges were removed: if only the strongest con-

nections are kept, the network has pronounced fractal character, however, when weaker connections

are incorporated, the fractal character is reduced and replaced by a small-world character. It was

further shown that these weak small-world connections provide near optimal integration of informa-

tion flow between the strong fractal modules. Gallos et al., proposed that this may be a possible

solution to the problem of integration versus modularity: the brain processes many different sen-

sory modalities separately, however, the unified nature of conscious experience requires high-level

integration of sensory and cognitive processes after processing has occurred separately in primary

sensory areas. It may be that functional connectivity networks can be thought of as being divided

into two layers: the ’foundational layer,’ which is made up of the strongest connections forms a
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large world, fractal backbone that is modular, but not particularly well-integrated, where low-level

sensory processing might occur before being bound together by higher, connected layers. The second

layer, the ’integration layer’ is the set of weaker edges that connect the provide integration for the

different modules of the ’foundational layer’ (Gallos et al., 2012a; Gallos et al., 2012b).

Based on these results, we made two hypotheses: (1) functional connectivity networks in the

neocortex would have a measurable fractal character when all of the weaker edges had been thresh-

olded out and (2) that in patients with reduced level of consciousness, this fractal character would

be degraded. To investigate this, we used resting-state fMRI data from healthy volunteers and

patients suffering from reduced levels of consciousness associated with brain injury. We divided

these patients into two subgroups based on clinical diagnosis: minimally-conscious state (MCS) and

vegetative state (VS), based on accepted diagnostic criteria (Laureys et al., 2004). In general, a

higher fractal dimension is associated with a more complex system (Corbit and Garbary, 1995), and

so a decrease in fractal dimension in patients with reduced level of consciousness would suggest that

the neural activity in those subjects was reduced, which would be consistent with the predictions of

the Entropic Brain Hypothesis. To supplement this data, we also used a commonly-used measure

of time-series fractal dimension, the Higuchi temporal fractal dimension algorithm (Higuchi, 1988;

Klonowski et al., 2010) to determine whether the fractal character of temporal activity follows the

same pattern as spatial activity. In EEG studies, the Higuchi fractal dimension has been found

to drop when consciousness is lost in sleep (Klonowski et al., 2005) and anaesthesia (Spasic et al.,

2011), so we hypothesized a similar effect would be seen in BOLD time-series.

2 Materials & Methods

2.1 Calculating Network Fractal Dimension

Since the fractal dimension of most real-world systems cannot be solved analytically, researchers

commonly use a family of algorithms known as box-counting measures to determine the fractal

dimension of a natural system. The box-counting dimension describes how the topology of a surface

changes (or remains the same) at different scales. For any shape, two values are defined: lB which

is the length of an n-dimensional box and N(lB), which is the minimum number of boxes necessary
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to ’tile’ the surface in question. the shape being tiled is a fractal, then:

NB(lB) ∝ l−dB

B (1)

Where dB is the box-counting dimension. Algebraic manipulation shows that dB can be extracted

by linear regression as:

lim
lB→1

−ln(NB(lB))

ln(lB)
∝ dB (2)

A similar logic is used when calculating the box-counting dimension of a graph. For a graph

G = (V,E), a box with diameter lB defines a set of nodes B ⊂ V where for every pair of nodes

vi and vj the distance between them lij < lB . To quantify the fractal dimension of the functional

connectivity networks, a box counting method, the Compact Box Burning (CBB) algorithm, was

used to find NB(lB) for a range of integer lB values 1..10. If G has fractal character, a plot of

ln(NB(lB)) vs. ln(lB) should be roughly linear, with a slope of −dB . Due to the logarithmic

relationship between box-size and fractal dimension, exponentially higher resolutions (in this case,

numbers of nodes) are required to achieve modest increases in the accuracy of the measured fractal

dimension. Computational explorations, where a box-counting method is used to approximate a

fractal dimension that has already been solved analytically, show that the box-counting dimension

converges to the true dimension with excruciating slowness (Joosten et al., 2016), necessitating

largest network that is computationally tractable. In this context, where each node in our network

maps to a specific brain region, we had to segment (parcellate) the cortex into as many distinct

brain regions as we could, in this case, using a parcellation with 1000 ROIs (Schaefer et al., 2017).

We need to note that we are not doing a truly rigorous power-law inference. The question of when

an empirical distribution can be considered to follow a power-law is a rich field of research (Clauset

et al., 2009; Voitalov et al., 2018; Gerlach and Altmann, 2019). To do a statistically rigorous power-

law inference typically requires multiple decades of values to do a maximum likelihood estimate.

Due to the inherent limitations of this box-counting algorithm, such a wide range was impossible.

Consequently, we made no strong claims about how well any condition adheres to a power law, but

rather, are interested in how multi-scale structure changes between conditions.
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2.1.1 FracLac Adjacency Matrix Analysis

Our second test of fractal structure used a two-dimensional box-counting method to analyse the

associated adjacency matrix representations of the functional brain networks. This analysis served

two purposes: primarily, it was meant to replicate the results of the CBB analysis, however we

also hoped that, if it did replicate the initial results, it could be a more computationally efficient

method for estimating the fractal dimension of a brain network. By using a different representation

of the network, we hoped to show that the quality of network fractal dimension is conserved across

isomorphic representations. This would increase our confidence in the CBB results by showing that

our findings are unlikely to be an artefact of that particular algorithm. For a given graph G = (V,E)

with nodes vi and vj , the corresponding adjacency matrix, A(G) is defined:

A(G)ij =


1, if Eij ∈ E

0, otherwise

(3)

In the resulting matrix, every 1 represents an edge between two nodes vi and vj . If the distribution

of edges E ∈ G is fractal, we hypothesized that the distribution of 1’s in the associated matrix A(G)

would also have fractal character. To test this, we used the program FracLac (Karperien, A., FracLac

for ImageJ, version 2015sep09)1, a plugin for ImageJ software (Wayne Rasband, National Institutes

of Health, USA). FracLac uses a simple, 2-dimensional box-counting algorithm to return the fractal

dimension of the distribution of pixels in the image. FracLac returns an upper and lower bound on

the range of the fractal dimension for each image, based on the instantaneous value of dB at every

value of lB . For the purposes of this analysis, we took the mean of those values and defined that

average as the fractal dimension of each image. The adjacency matrices were exported as binary

.jpg images for analysis, and the default values for FracLac’s batch image analysis were used.

We hypothesized that this method, while more accessible and less abstract than the Compact-

Box-Burning algorithm, would be less sensitive to small changes in fractal dimension between con-

ditions, as some information is lost when doing a two-dimensional box counting algorithm on a flat

network representation, rather than operating directly on a graph.

1http://imagej.nih.gov/ij/plugins/fraclac/fraclac.html
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2.2 Higuchi Temporal Fractal Dimension

We used the Higuchi temporal fractal dimension algorithm, widely used in EEG and MEG analysis,

to calculate the fractal dimension of temporal brain activity (Higuchi, 1988; Kesi and Spasi, 2016).

We will briefly describe the method here. The algorithm takes in a time-series X(t) with N individual

samples corresponding to one Hilbert-transformed BOLD time-series extracted from our functional

brain scans (details below). From each time-series X(t), we create a new time-series X(t)mk , defined

as follows:

X(t)mk = xm, xm+k, xm+2k, ..., xm+bN−m
k ck (4)

where m = 1, 2, ..., k.

For each time-series X(t)mk in k1, k2, ...kmax, the length of that series, Lm(k), is given by:

Lm(k) =
(
∑bN−m

k c
i=1 |xim+k − x(i−1)k|) N−1

bN−m
k ck

k
(5)

We then define the average length of the series 〈L(k)〉, on the interval [k, Lm(k)] as:

〈L(k)〉 =
k∑

m=1

Li(k)

k
) (6)

If our initial time-series X(t) has fractal character, then 〈L(k)〉 ∝ k−D. As with the procedure for

calculating the network fractal dimension, the algorithm iterates through values of k from 1...kmax

and calculates ln(〈L(k)〉) vs. ln(k−1), extracting D by linear regression. The various values of k

can be thought of as analogous to the various values of lB used to calculate the network fractal

dimension. The Higuchi algorithm requires a pre-defined kmax value as an input, along with the

target time-series. This value is usually determined by sampling the results returned by different

values of kmax and selecting a value based on the range of kmax where the fractal dimension is stable.

For both DOC datasets, we chose kmax = 64 as this was the largest value that our algorithm could

handle.

The implementation we used was from the PyEEG toolbox (Bao et al., 2011), downloaded from
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the Anaconda repository.

2.3 fMRI Data Acquisition & Preprocessing

2.3.1 Healthy Control Data

Ethical approval for these studies was obtained from the Cambridgeshire 2 Regional Ethics Com-

mittee, and all subjects gave informed consent to participate in the study. Twenty five healthy

volunteer subjects were recruited for scanning. The acquisition procedures are described in detail in

(Stamatakis et al., 2010; Adapa et al., 2014): MRI data were acquired on a Siemens Trio 3T scanner

(Wolfson Brain Imaging Center, Cambridge). T1-weighted were acquired using an MP-RAGE se-

quence (TR = 2250 ms, TI = 900 ms, TE = 2.99 ms and flip angle = 9◦), with an structural images

at 1 mm isotropic resolution in the sagittal plane. Each functional BOLD volume consisted of 32

interleaved, descending, oblique axial slices, 3 mm thick with interslice gap of 0.75 mm and in-plane

resolution of 3 mm, field of view = 192× 192 mm, TR = 2 s, TE = 30 ms, and flip angle 78 deg.

Of the 25 healthy subjects datasets, 10 were excluded, either because of missing scans (n=2), or

due of excessive motion in the scanner (n=8, 5mm maximum motion threshold). For this study, we

only used the awake, control condition described in the original Stamatakis study, ignoring the drug

conditions.

The resulting images were preprocessed using the CONN functional connectivity toolbox (Whitfield-

Gabrieli and Nieto-Castanon, 2012), which uses Statistical Parametric Mapping 12 2 and MATLAB

version 2017a3. We used the default preprocessing pipeline, which includes realignment (motion

estimation and correction), slice-timing correction, outlier detection, structural segmentation and

normalization, de-noising with CompCor (Behzadi et al., 2007) and finally smoothing. A smoothing

kernel of 6mm was applied, and denoising was done using a band-pass filter range of [0.008, 0.09]

Hz.

2SPM12; http://www.fil.ion.ucl.ac.uk/spm/
3http://www.mathworks.co.uk/products/matlab/
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2.3.2 2.4.2 Data from Patients with Disorders of Consciousness

Data was acquired at Addenbrookes Hospital in Cambridge, UK, on a 3T Tim Trio Siemens system

(Erlangen Germany). Ethical approval for testing patients was provided by the National Research

Ethics Service (National Health Service, UK; LREC reference 99/391). A sample DOC patients with

verifiable diagnosis were recruited from specialised long-term care centers. Consent was obtained

from the patient’s legal representatives. Medication prescribed to each patient was maintained

during scanning.” T1-weighted images were acquired with an MP-RAGE sequence (TR = 2300ms,

TE = 2.47ms, 150 slices, 1 × 1 × 1mm2 resolution). Functional images, 32 slices each, were acquired

using an echo planar sequence (TR = 2000 ms, TE = 30 ms, flip angle = 78 deg, 3 x 3 x 3.75mm2

resolution). Subjects were split into two groups: those who met the criteria for being in a minimally

conscious state (MCS, n=10), and those who were in a vegetative state (VS, n=8).

Preprocessing was performed with SPM12 and MATLAB as described above. The first five

volumes were removed to eliminate saturation effects and achieve steady state magnetization. Slice-

timing and movement correction (motion estimation and correction) were performed as above, includ-

ing outlier detection, structural segmentation and normalization, 6 mm FWHM Gaussian smoothing,

and denoising with a band-pass filter with range [0.008, 0.09] Hz. To reduce movement-related and

physiological artefacts specific to DOC patients, data underwent further de-spiking with a hyperbolic

tangent squashing function. Next the CompCor technique was used to remove the first 5 principal

components of the signal from the white matter and cerebrospinal fluid masks, as well as 6 mo-

tion parameters and their first order temporal derivatives and a linear de-trending term (Behzadi

et al., 2007). Functional images were then bandpass filtered to remove low frequency fluctuations

associated with scanner noise [0.008, 0.09] Hz.

2.4 Formation of Networks

After preprocessing, BOLD time-series data were extracted from each brain in CONN and the

cerebral cortex was segmented into 1000 distinct ROIs, using the ”Schaefer Local/Global 1000

Parcellation” (Schaefer et al., 2017)4. Due to the slow-convergence of Eq. 2, and the necessity of

having a network with a wide enough diameter to accommodate a sufficiently wide range of box-

4https://github.com/ThomasYeoLab/CBIG/tree/master/stable projects/brain parcellation/
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sizes, we attempted to strike an optimal balance between network resolution and computational

tractability.

For some DOC patients, there were ROI nodes which mapped to regions that had been so

damaged that no detectable signal was recovered: these time-series were removed from analysis. For

the MCS patients, the average number of removed nodes was 1.2±1.53 nodes (≈ 0.12% of all nodes),

while for the VS patients it was 5.38±7.12 nodes (≈ 0.54% of all nodes). We expect that the removal

of such a comparatively small number of nodes to have a negligible effect on our overall-analysis.

Every time-series F (t) was correlated against every other time-series, using the Pearson Correlation,

forming a matrix M such that:

Mij = ρ(Hi(t), Hj(t))

The correlation matrix has a series of ones that run down the diagonal, corresponding the correla-

tion between each timeseries and itself which, if treated directly as a graph adjacency matrix, would

produce a graph where each node had exactly one self-loop in addition to all it’s other connections.

To correct for this, the matrices were filtered to remove self-loops by turning the diagonal of ones

to zeros, ensuring simple graphs:

Mij =


0, if i = j

Mij , otherwise

Finally, following the findings by Gallos et al., that fractal character was only present at high

thresholds the matrices were binarized with a 95% threshold, such that:

Mij =


1, if Mij ≥ P95

0, otherwise

All surviving values Mij < 0 7→ 0 The results could then be treated as adjacency matrices

defining functional connectivity graphs, where each row Mi and column Mj corresponds to an ROI

in the initial cortical parcellation, and the connectivity between all nodes is given by Eq. 3. To

see samples of the binarized adjacency matrices, see Figure 1. To see a visualization of one of the
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networks, see Figure 2

Figure 1: Three 1000 × 1000 adjacency matrices, representing the three conditions. A is a sample
from the healthy control group, B is a sample from the MCS group, and C is a sample from the
VS group, It is not immediately apparent that the fractal dimension of points in these groups is
different. Below, see the associated structural scans (D is from a healthy control volunteers, E
is from an MCS patient, and F from a VS patient). Note the increasingly cortical atrophy and
expansion of ventricles as severity increases. Structural scans visualized in MRICron
http://people.cas.sc.edu/rorden/mricron/index.html

2.5 Formation of Null Graphs

To contextualize our results in the broader space of possible graphs, we generated synthetic null

networks from a variety of classes to compare our three groups of functional connectivity graphs to.

We generated three types of graph:
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1. Lattices: a highly-ordered type of graph, where every node makes connections to it’s k nearest

neighbours, where k = 2D and D is the embedding dimension of the graph. We tested two-

dimensional and three dimensional lattices, each with 1000 nodes.

2. Random Graphs: A highly disordered type of graph, where every instance of the graph is

selected at random from the space of all possible graphs. A population of 50 random graphs

was generated and the average fractal dimension calculated. Each graph had 1000 nodes, and

an identical number of edges to the natural functional connectivity networks, thresholded at

95%.

All null graphs were generated using the already-implemented graph generators in NetworkX. We

hypothesized that, despite their radically different topologies, both the lattice and random graphs

would have very low fractal dimensions relative to the natural functional connectivity networks when

tested with the CBB algorithm.

2.6 Statistical Analysis

All statistical analysis was carried out using Python 3.6 using the Anaconda Python environment5

and Spyder IDE6. All packages were of the newest stable release, with the exception of the NetworkX

graph analysis package (Hagberg et al., 2008): the implementation of the CBB algorithm required

the use of NetworkX version 0.36. Given the heterogeneous nature, and small size, of the DOC

datasets, a normal distribution was not assumed and all hypothesis tests were non-parametric. The

analysis of variance was done using a one-way Kruskall-Wallis test, and then post-hoc testing was

done using the Mann-Whitney U test. To control for false discoveries, p-values were tested with the

Benjamini-Hochberg procedure with a false-discovery rate of 5% (Benjamini and Hochberg, 1995).

All tests were from the Scipy.Stats package (Jones et al., 2001).

5https://www.anaconda.com/download
6https://github.com/spyder-ide/spyder
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3 Results

3.1 Network Fractal Dimension

The Kruskal-Wallis test found significant differences between the fractal dimension of functional

connectivity networks for all three conditions (H(19.91), p-value ≤ 0.0001). The median value dB

for the healthy control condition was 3.478 (IQR: 3.317-3.531), for MCS patients it was 3.309 (IQR:

3.21-3.438), and for VS patients it was 3.102 (IQR: 2.922-3.281). Post-hoc analysis with the Mann-

Whitney U test found significant differences between each condition: control vs. MCS (U(13), p-

value = 0.0003), control vs. VS (U(3), p-value = 0.0001), and MCS vs. VS (U(20), p-value = 0.042).

For a visualization of these results see Figure 3. All p-values survived the Benjamini-Hochberg FDR

correction. For a table of results see Table 1.

Metric Healthy Control MCS VS

Network Fractal Dimension 3.478 (IQR: 3.317-3.531) 3.309 (IQR: 3.21-3.438) 3.102 (IQR: 2.922-3.281)

Adj. Matrix Fractal Dimension 1.731 (IQR: 1.716-1.742) 1.706 (IQR: 1.697-1.717) 1.693 (IQR: 1.67-1.7)

Temporal Fractal Dimension N/A 0.946 (IQR: 0.927- 0.963) 0.912 (IQR: 0.893-0.952)

Table 1: Table of results describing the how different conditions behaved under each measures of

fractal dimension. Data reported are median (IQR: 25%-75%)

These results are consistent with our hypothesis that level of consciousness is positively associated

with network complexity, as measured by the fractal dimension. This also shows that the direct

network fractal dimension measure is sensitive enough to discriminate between different clinically

useful diagnoses of grey states of consciousness, rather than simply it’s binary presence or absence.

3.2 Adjacency Matrix Fractal Dimension

The Kruskal-Wallis test found significant differences between the fractal dimensions of the adjacency

matrices for the three conditions (H(10.24), p-value = 0.006). The median value for the healthy

controls was 1.731 (IQR: 1.716-1.742), the median value for MCS patients was 1.706 (IQR: 1.697-

1.717), and for VS patients it was 1.693 (IQR: 1.67-1.7). Post-hoc analysis with the Mann-Whitney
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U test found significant differences between the control and MCS conditions (U(33), p-value = 0.01),

and the control and VS conditions (U(18), p-value = 0.0036), but not the VS and MCS conditions

(U(25), p-value = 0.099). To ensure that our measures of network fractal dimension and adjacency

matrix fractal dimension were associated, we correlated these values against each other and found

a significant positive correlation (r=0.58, p-value = 0.0005). All the significant p-values survived

Benjamini-Hochberg FDR correction. For a visualization of these results, see Figure 4.

As with the direct measure of network fractal dimension, these results show that complexity is

associated with level of consciousness. While this method is sensitive enough to differentiate between

healthy controls and patients with disorders of consciousness, unlike the direct measure, it was not

able to discriminate between disorders of consciousness of varying severity.

3.3 Higuchi Temporal Fractal Dimension

Due to the large different in scan-lengths between the Awake and DOC conditions (150 samples

versus 300 samples), for our analysis of temporal fractal dimension, we chose only to explore the two

DOC conditions, as the Higuchi algorithm is sensitive to the length of the time-series being explored.

The median value for the MCS patients was 0.946 (IQR: 0.927- 0.963), and for VS patients it was

0.912 (IQR: 0.893-0.952). Testing with the Mann-Whitney U test found a significant difference

between the MCS and VS conditions (U(17), p-value = 0.023). For visualization of these results,

see Figure 5. We did attempt to compare all three by truncating the VS and MCS time-series to be

the same length as the Awake condition, however, the resulting time-series were too short to return

a meaningful answer. Surprisingly, we found no significant correlation between temporal fractal

dimension and network fractal dimension or the adjacency matrix fractal dimension.

While preliminary, these results are nicely consistent with our initial hypothesis, that level of

consciousness is positively associated with the fractal dimension of brain activity. Furthermore,

these results complement the findings from the network fractal dimension by showing that the

fractal dimension of brain activity’s relationship to consciousness is measurable in temporal, as well

as spatial, dimensions.
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3.4 Null Graph Network Fractal Dimension

As predicted, all the classes of null graphs had much lower fractal dimensions than any of our brain

networks, as calculated by the CBB algorithm. The 2-dimensional lattice graph with 1000 nodes

had a fractal dimension of ≈ 0.15. The 3-dimensional lattice with the same number of nodes had a

fractal dimension of ≈ 0.184. The set of random networks had a higher fractal dimension, although

it was still far lower than any of the real functional connectivity networks, with a median value of

0.279 (IQR: 0.279, 0.2792).

These results show that the fractal dimension measure is distinct from a measure of order/randomness,

as both highly ordered networks and highly random networks return similarly low values as compared

to the functional connectivity networks.

4 Discussion

In this study we found that the complexity of functional connectivity networks, as measured by the

fractal dimension, was significantly associated with level of consciousness in healthy volunteers and

patients with disorders of consciousness of varying severity. When calculated using the Compact

Box-Burning (CBB) Algorithm, the fractal dimension of a these networks differentiates between

healthy volunteers, patients in minimally conscious states (MCS), and patients in vegetative states

(VS). A related box-counting algorithm, when applied to a two dimensional matrix isomorphic to

the original graphs returned a similar result, although with less discriminative power.

The network dimension and matrix dimension results fit nicely with the previously described

Entropic Brain Hypothesis (Carhart-Harris, 2018), which predicts that as the brain moves further

from the zone of criticality, level of consciousness falls. If the fractal character is indicative of

critical behaviour, then these results may show an association between decreased signs of criticality

and disorders of consciousness. This in turn might be associated with decreased computational and

information processing capabilities in the nervous system, which is turn may explain the decrease in

consciousness and behavioural complexity that are the hallmarks of disorders of consciousness. While

fractal dimension and entropy are distinct concepts, entropy, in computational models, positively

correlates with fractal dimension (Zmeskal et al., 2013; Chen, 2016). The benefit of the fractal
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dimension measure, however, is that it goes beyond the order/randomness binary indexed by entropic

measures (Ke, 2013).

To discuss the aetiology of the changes in network fractal dimension, we turn to previous studies,

which have shown that the cerebral cortex has fractal characteristics and that changes to the fractal

dimension of both the grey matter and white matter are associated with changes in cognition and the

presence of clinically relevant conditions (Ha et al., 2005; Im et al., 2006; King et al., 2009; Mustafa

et al., 2012). We hypothesize that the damage done to the physical cortex by brain injury translates

into changes in the fractal dimension of micro-scale structural characteristics of the cortex and that

this alters how individual brain regions are able to communicate. We propose that a future study

that uses this same dataset to quantify changes in the fractal dimension of physical characteristics of

these brains may lend evidence to this hypothesis. Specific areas of inquiry are the fractal dimension

of the folds in the neocortex, which have been previously characterized as fractal, and the network

of white-matter tracts revealed by DTI imaging. It would be very interesting to perform the same

analysis we have reported here on a network of white-matter connections, so long as the resolution

of the resulting network is high enough to support the CBB algorithm.

There are several limitations for this study that are worth considering and suggest a need for

further validation. We acknowledge the comparatively small sample size, particularly in the VS

condition. As previously mentioned, the requirements of fMRI image processing demand images of

brains from individuals with reduced levels of consciousness, but are not so geometrically distorted

as to make registration into MNI space impossible. This puts a limit on the number of brains eligible

for inclusion in this kind of study. There is also the issue of parcellation resolution: we tried several

different parcellations of various sizes, but only the parcellation with 1000 ROIs had a high enough

resolution to return a meaningful result, and even that was still too small to permit more than 10

integer values for lB .

Going forward, we hope that this kind of analysis may one day be useful in a clinical context

for estimating whether consciousness is present in patients who may be unable to give a voluntary

behavioural affirmation of awareness. The fractal dimension measure encodes significant information

about the complexity of a system into a single, easily digestible measure that seems to have predictive

validity in a clinically meaningful population. As, at least in larger hospitals, MRI scans are already
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a routine part of clinical assessments in cases of brain damage, this measure could be incorporated

into the normal course of treatment.

5 Conclusion

In this study, we show that high-resolution, cortical functional connectivity networks have fractal

characteristics and that, in patients with disorders of consciousness induced by traumatic brain

injury or anoxic brain injury, reduction in the fractal dimension is associated with more severe dis-

orders of consciousness. This is consistent with theories that associate the content, and quality, of

consciousness with the complexity of activity in the brain. Furthermore, we believe that, with refine-

ment, this measure may inform diagnosis and stratification in a clinical setting where physicians need

to make judgements about a patients consciousness in the absence of behaviourally unambiguous

indicators.
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Figure 2: A visualization of a healthy, control functional connectivity network. Node size and
darkness indicate a higher degree. Shown here are coronal, axial, and sagittal projections of the
network onto a two-dimensional plane. Image made using Gephi (Bastian et al., 2009)
https://gephi.org/
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Figure 3: A: Visualization of the fractal dimension of functional connectivity networks as determined
by the Compact Box Burning algorithm. Mean dB for the healthy control condition: 3.37 ± 0.22
(n=15), for MCS patients: 3.29± 0.16 (n=10), and for VS patients: 3.07± 0.29 (n=8). Box length
must always take integer values and does not have a regular metric unit. Post-hoc analysis with
the Mann-Whitney U test found significant differences between each condition: control vs. MCS
(H(41), p-value = 0.032), control vs. VS (H(23), p-value = 0.009), and MCS vs. VS (H(20), p-value
= 0.042). B shows the relationship between lB and N(lB) in all three conditions.
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Figure 4: A : Visualization of the fractal dimension of functional connectivity networks as determined
by FracLac analysis of the isomorphic two-dimensional adjacency matrix. Median value for the
healthy controls: 1.731 (IQR: 1.716-1.742), for the MCS patients: 1.706 (IQR: 1.697-1.717), and
for VS patients: 1.693 (IQR: 1.67-1.7). Post-hoc analysis with the Mann-Whitney U test found
significant differences between the control and MCS conditions (H(33), p-value = 0.01), and the
control and VS conditions (H(18), p-value = 0.0036), but not the VS and MCS conditions (H(25),
p-value = 0.099). B: shows the correlation between the network fractal dimension (as calculated
with the compact box burning algorithm), and the associated adjacency matrix fractal dimension
(as calculated with FracLac).
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Figure 5: Visualization of the difference in Higuchi temporal fractal dimension between the MCS
and VS conditions. As expected, the MCS condition had a higher dimension, with a median value
0.946 (IQR: 0.927-0.963) followed by the VS condition, with a median of 0.912 (IQR: 0.894-0.952).
The Wilcoxon signed-rank test found a significant difference between the conditions (U(17), p-value
= 0.023).
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