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Supplementary Methods for 

 

Massive haplotypes underlie ecotypic differentiation in 

sunflowers 

 

Common garden 

Ten mother plants were randomly selected from each of the 151 populations that were included 

in the common garden experiment. Ten seeds from each of these plants were surface-sterilized 

by immersing them for 10 minutes in a 1.5% sodium hypochlorite solution. Seeds were then 

rinsed twice in distilled water and treated for at least one hour in a solution of 1% PPM (Plant 

Cell Technologies, Washington, DC, USA), a broad-spectrum biocide/fungicide, to minimize 

contamination, and 0.05 mM gibberellic acid (Sigma-Aldrich, St. Louis, MO, USA). They were 

then scarified, de-hulled, and kept for two weeks at 4 ºC in the dark on filter paper imbibed with 

a 1% PPM solution. Following this, seeds were kept in the dark at room temperature until they 

germinated, and then transplanted in peat pots. Seedlings were grown in a greenhouse for two 

weeks and then moved to an open-sided greenhouse for a week for acclimation. Plants were 

transplanted into three separate fields (one for each sunflower species) at the Totem Plant 

Science Field Station of the University of British Columbia (Vancouver, Canada) on the 25th of 

May (H. argophyllus), 2nd of June (H. petiolaris) and 7th of June 2016 (H. annuus). Within each 

field, pairs of plants from the same population of origin were sown using a completely 
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randomized design. Phenotypic data were collected throughout the growing season, as detailed in 

Supplementary Table 1. Morphometric data were extracted from digital pictures using Fiji1,2 and 

Tomato Analyzer3. Plants were grown until the beginning of November, by which point almost 

all the plants had flowered. 

 

DNA isolation, library preparation and sequencing 

Tissue from young leaves was collected from all individual plants, and genomic DNA was 

extracted from leaf tissue using a CTAB protocol (modified from Murray and Thompson, 19804 

and Zeng et al. 20025), the DNeasy Plant Mini Kit or a DNeasy 96 Plant Kit (Qiagen, Hilden, 

Germany). DNA was sheared to an average fragment size of 400 bp using a Covaris M220 

ultrasonicator (Covaris, Woburn, Massachusetts, USA), following the manufacturer’s 

recommendations. 750 ng of sheared DNA were used as starting material to prepare paired-end 

whole-genome shotgun (WGS) Illumina libraries for 719 H. annuus, 488 H. petiolaris, 299 H. 

argophyllus individuals, and twelve additional samples from annual and perennial sunflowers 

(Supplementary Table 1), using a protocol largely based on Rowan et al, 20156, the TruSeq DNA 

Sample Preparation Guide from Illumina (Illumina, San Diego, CA, USA) and Rolhand et al. 

20127. End-repairing of the sheared DNA fragments was performed using the NEBNext End 

Repair Module (NEB, Ipswich, Massachusetts, USA). The fragments were then A-tailed using 

Klenow Fragment (3’-->5’exo-; NEB) and ligated to 24-bp-long, non-barcoded adapters with a 

3’ T-overhang using the Quick Ligation Kit (NEB). After each enzymatic step, the reactions 

were purified using 1.6 volumes of paramagnetic SPRI beads, prepared according to Rohland et 

al. 20127. An enrichment step was then performed using KAPA HiFi HotStart ReadyMix 
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(Roche, Basel, Switzerland) and short, non-indexed primers that do not extend the adapters. The 

reactions were then purified using 1.6 volumes of SPRI beads. 

The sunflower genome contains a very large amount of highly repetitive sequences derived from 

the recent expansion of two retrotransposon families8. In order to reduce the representation of 

repetitive sequences, including plastid DNA, the enriched libraries were treated with a Duplex-

Specific Nuclease (DSN; Evrogen, Moscow, Russia), following the protocols reported in 

Shagina et al. 20109 and Matvienko et al. 201310, with modifications. Depletion conditions were 

optimized for the sunflower genome by quantitative PCR; relative abundance of chloroplast 

DNA and transposable elements before and after depletion was estimated using a primer pair 

recognizing a chloroplast gene, and degenerate primers recognizing one of the most abundant 

transposon families in the sunflower genome, and comparing them to the abundance of the single 

copy HaLFY gene. Libraries were concentrated using SPRI beads to a concentration of 160 

ng/µl. Three µl of libraries were mixed to 1 µl of hybridization buffer (200 mM HEPES pH 7.5, 

2 M NaCl, 0.8 mM EDTA), overlaid with 10 µl of mineral oil, and incubated at 78 ºC for 22 

hours. Five µl of pre-warmed DSN buffer (0.1 M Tris pH 8.0, 10 mM MgCl2, 2 mM DTT) were 

then added to each sample. After a five minutes incubation at 70 ºC, 0.1 U of DSN enzyme was 

added to the samples, and they were incubated for a further 15 minutes at 70 ºC. Digestion was 

stopped by adding 10 µl of 10 mM EDTA. The fragments were then further amplified using 

KAPA HiFi HotStart ReadyMix (Roche, Basel, Switzerland) and primers that completed the 

adapters and added a six-base pair index to the P7 adapter. All adapter and primer sequences are 

reported in Supplementary Table 3. 

After amplification, the libraries were purified with 1 volume of SPRI beads, quantified using a 

QuBit dsDNA Broad Range Assay Kit (Invitrogen, Carlsbad, California, USA) and analyzed on 
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a 2100 Bioanalyzer instrument using a High Sensitivity DNA Analysis Kit (Agilent, Santa Clara, 

California, USA). 

 

Variant calling 

The call set comprised a total of 2392 samples (Supplementary Table 1). Illumina adapters and 

poor quality reads were hard-clipped using Trimmomatic11 (v0.36). Reads shorter than 36 bp at 

this step were dropped. All remaining reads (including orphaned reads with a pair) were then 

aligned to the H. annuus XRQv112 genome (HanXRQr1.0-20151230) using NextGenMap13 

(v0.5.3). The aligner produced three mapped sam files (mapped pairs, mapped unpaired forward 

reads, and mapped unpaired reverse reads), which were converted to BAM, concatenated, and 

then sorted (samtools14,15 v0.1.19). To finalize the alignment, PCR duplicates were marked 

(picard16 MarkDuplicates 2.9.3) and the BAM file was indexed. Some sequencing libraries were 

sequenced in multiple lanes to increase coverage; BAM files for a same individual were merged 

by sample ID (sambamba17 v0.6.6) and PCR duplicates were remarked.  

We implemented the Genome Analysis ToolKit (GATK 4.0.1.2) germline short variant 

discovery pipeline to perform variant calling18. To reduce computational time and improve 

variant quality, we excluded genomic regions containing transposable elements, which represent 

~¾ of the sunflower genome, and to which short reads cannot be reliably mapped. These callable 

regions comprised 1.1 GB of the total 3.6 Gbp of the XRQv1 assembly12; the corresponding bed 

file is included in the code repository (HanXRQr1.0-20151230_allTEs_ubc.non-repetitive-

regions.2017.sorted.bed). All downstream analyses were conducted on this TE-filtered dataset. 

HaplotypeCaller (v4.0.1.2) was used on each sample individually to produce a Genomic VCF 

(g.vcf). Heterozygosity settings for HaplotypeCaller step were increased to mu = 0.01 and st_dev 
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= 0.1. This is 10 fold higher than the default, but better reflects the expected diversity in 

sunflowers compared to humans. 

HaplotypeCaller is a compute-intensive process that can take advantage of parallelism. To speed 

up the HaplotypeCaller phase, the callable regions of the genome were evenly split into 160 

contiguous, non-overlapping genomic intervals. For each sample, those intervals were then 

processed in parallel, according to the number of cores available on the compute node. The 160 

resulting genomic VCFs (.g.vcf) were then gathered into a single per-sample g.vcf, and then 

indexed using tabix and bgzip (v0.2.5-0). Joint genotyping of all samples in the same VCF would 

be ideal, as it allows for greater confidence on low frequency variants and simplifies 

comparisons between groups of samples. An initial attempt to jointly genotype all samples for 10 

random 1-Mbp windows completed; however, given the large number of samples, high levels of 

genetic variation, and large genome size, it would have been computationally difficult to carry 

this operation across the genome given the available resources. Samples were therefore 

subdivided by species in three cohorts: H. annuus, H. argophyllus and H. petiolaris. Each cohort 

was independently genotyped. 

Before further analysis, the g.vcf files were converted into a modified TileDB format19 using 

GATK’s GenomicsDBImport (v4.0.1.2). This step aggregates variants in a genomic region of 

interest from all samples in a cohort, and was found to be necessary to allow the next steps in the 

analysis to proceed. This operation was parallelized over 4 Mbp regions of the genome. TileDBs 

for a given region across a cohort were then converted into an unfiltered VCF using GATK’s 

GenotypeGVCFs (v4.0.1.2) in mode `--use-new-qual`. The new-qual mode is the default mode in 

newer versions of GATK (≥4.1.1.0), and was necessary to allow SNP calling to run on our 

compute nodes (32- or 48-core Intel Skylake, with ≤256GB of RAM). Raw VCF chunks were 
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then gathered into roughly per-chromosome files (17 files, one for each nuclear chromosome, 

plus one bundle file for all “unplaced” chromosome contigs HanXRQChr00c*, chloroplast, and 

mitochondria) using GatherVcfs (v4.0.1.2). 

 

Variant quality filtering 

The resulting raw VCF files contained an extremely large number of variant sites (222, 78 and 

167 million variants for H. annuus, H. argophyllus and H. petiolaris respectively, combining 

SNPs and indels). The proportion of multi-allelic variant sites was strikingly high, varying 

between 24% and 51% across cohorts. We used GATK’s recommended VariantRecalibrator to 

remove low-quality calls and produce a dataset of a more manageable size. VariantRecalibrator 

uses one or more "truth sets" of externally validated variant sites to decide which variants from a 

call set are likely to be real or artifacts. The model computed by the recalibrator attempts to 

define boundaries in the multidimensional site quality space that capture all or most known 

variant sites. Unknown variants that fall within this boundary are included, while those outside of 

the boundary are removed. In this way, stringency is determined by choosing the proportion of 

the known sites to be included in the boundary, which in GATK nomenclature is called the 

tranche. By selecting a smaller tranche (e.g. choosing tranche 90% over tranche 99%), the model 

selects a more stringent boundary and produces a smaller number of more confident sites. As a 

measure of variant quality, GATK measures the transition-transversion ratio for each tranche; 

this value was found to be ~2.1 in humans, although it is known to vary between species and 

between genomic regions20,21 (Note: GATK uses 2.15 as a default target value for this metric). 

While widely validated truth sets are available for humans, no such set exists to date for 

sunflower. We therefore defined a "gold set" using variants from samples in our dataset with the 
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highest sequencing coverage. For H. annuus, this sample set included the top 67 inbred cultivar 

lines from the SAM population22, and for H. petiolaris and H. argophyllus it included the top 20 

wild samples. Variants were then filtered using the following parameters: Mapping Quality > 

50.0, 90% sample coverage for the site, -1.0 > Strand odds Ratio < 1.0, Minor Allele Frequency 

> 0.25, Excess heterozygosity < 5.0 (for non-cultivar lines < 10.0 was used), -1.0 > 

BaseQRankSum < 1.0, Depth of coverage within one standard deviation from the mean and 

Excess Het > -4.5. The gold set was then recalibrated against the set of all variants from the 

entire corresponding cohort, using VariantRecalibrator (v4.0.6.0, with resource parameters 

`known = false, training = true, truth = true, prior = 10.0`). To speed up processing time, and to 

bring memory requirements to practical levels (i.e. < 250GB), it was necessary to pre-process the 

large training set before calibration; we stripped genotype information columns (with 

MakeSitesOnlyVcf) since the genotype columns from the VCF are not consulted by 

VariantRecalibrator. Following recommended practices, an early filtering pass to remove sites 

with extremely unlikely heterozygosity (ExcessHet z-score < 4.5) was also performed. 

The 90% tranche for each cohort was selected for further analyses, based on the trade-off 

between SNP number and improvement to transition/transversion ratio. The full raw set of 

variants for each cohort was hard filtered according to this 90% tranche, and all indels were 

removed. Filtering by tranche retained 13.1%, 24.5%, and 30.7% of the total raw snps for H. 

annuus, H. petiolaris, and H. argophyllus, respectively.  

After filtering for variant quality (i.e. 90% tranche) in each species, we subset samples into 

smaller sets for individual analyses and applied an additional filter. For each subset, variants 

were filtered to retain only bi-allelic SNPs with minor allele frequency ≥ 1% and genotype rate ≥ 
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90%. The samples included in subsets used for different analyses (GWA, GEA) are listed in 

Supplementary Table 1. 

The pipeline described in this section, including its data and software dependencies, were 

programmed into a Snakemake23 (v4.7.0) workflow. To ensure reproducibility, the pipeline also 

makes extensive use of conda package environments, and Docker containers with precise 

versioning. Calling and filtering was computed on Compute-Canada’s High-Performance-

Computing (HPC) Cedar cluster. 

 

Remapping sites to the HA412-HO reference genome 

To remap our variant locations, 200 bp of reference sequence flanking each site in XRQv1 were 

extracted and aligned to HA412-HOv2 using BWA24. These alignments were filtered for 

mapping quality > 40 and the HA412-HOv2 position for the variant site was extracted. Since all 

remapped sites were not in repetitive regions and had passed VQSR filtering, remapping success 

rate was high (96-98%). Whenever mapping suggested two different variants on the XRQv1 

genome were in the same position on the HA412-HOv2 genome, likely due indels and imprecise 

alignment, one site was shifted by one bp so they did not overlap. Remapping was preferred to 

de novo read alignment and variant calling against the HA412-HOv2 assembly because of the 

prohibitive amount of computational time that would have required. To test whether remapping 

improved the representation of linkage patterns across the genome, R2 between all sites within 

200kb on chromosome 2 was calculated using vcftools25.  

 

Phylogenetic analysis 
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Based on the results of the phylogenetic analysis, cases in which samples grouped outside their 

assumed population or species were reassigned if a source of error was confidently identified 

(i.e. mis-labelling during DNA extraction, library preparation or sequence analysis). Otherwise, 

the sample was removed. Note that samples with more intermediate phylogenetic positions were 

not removed, since they could represent admixed ancestry rather than mis-identification.  

 

Genome-wide association mapping 

Samples that were sequenced but were not part of the common garden experiment were removed 

from the variants dataset before filtering for minor allele frequency. Variants used for association 

were initially filtered for VQSR 90% tranche, and then further filtered to only include bi-allelic 

SNPs genotyped in ≥ 90% of samples and with a minor allele frequency ≥ 3%. While initially 

this dataset was mapped to the XRQv1 reference genome, all presented analyses use the 

remapped HA412-HOv2 genome positions. Variants were imputed and phased using Beagle26 

(version 10Jun18.811). Population structure was controlled for by including the first three 

principal components as covariates, as well as an IBS kinship matrix calculated by EMMAX27. 

We ran each trait GWA using EMMAX (v07Mar2010), as well as the EMMAX module in 

EasyGWAS28. EasyGWAS permits the use of different SNP dominance encoding and public 

release of all GWA results in an interactive format (https://easygwas.ethz.ch/gwas/results/xxx/), 

while the command line version of EMMAX allowed for faster batch submission and processing 

of results. Both approaches use the same method and produced comparable results. For every 

SNP/peak above the Bonferroni significance threshold, genes within a 100 kbp interval centered 

in the SNP with the lowest p-value, or within the boundaries of the GWA peak (whichever is 

larger), are reported in Supplementary Table 2.  
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Genome-environment association analyses 

Population structure was estimated by choosing 10,000 putatively neutral random SNPs under 

the BayPass core model29. The Bayes factor (denoted BFis as in Gautier, 201529) was then 

calculated under the standard covariate model to evaluate the association of SNP frequencies 

with 39 geographic, climatic and soil variables. For each SNP, BFis was expressed in deciban 

units [dB, 10log10 (BFis)]. Population PET_30 was removed from GEA analyses of H. petiolaris 

petiolaris, since very divergent haplotypes on two chromosomes made it an extreme outlier in 

the population correlation matrix, which resulted in GEA association values that were overall 

much lower than in the other three datasets. Populations ANN_71 and PET_21 were removed 

from the soil GEA analyses because no soil samples were available for them. 

To calculate a significance threshold for candidate gene identification, pseudo-observed data 

(POD) were employed with the random 10,000 SNPs used for the core model, and a 1% 

empirical threshold was calculated for the observed Bayes factor. This value ranged from 6.7 to 

7.3 depending on the species, and produced an extremely large number of outlier regions. We 

therefore followed Gautier, 201529 and employed Jeffreys’ rule30, quantifying the strength of 

associations between SNPs and variables as “strong” (10 dB ≤ BFis < 15 dB), “very strong” (15 

dB ≤ BFis < 20 dB) and “decisive” (BFis ≥ 20 dB). To produce a narrower set of candidate genes, 

the top ten non-overlapping 50 SNP windows based on the median BFis value were selected for 

each species and variable. A list of all the genes within these windows with at least one SNP 

with BFis ≥ 20 dB within 1 kbp of their boundaries is reported in Supplementary Table 2. 
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Transgenes and expression assays 

Total RNA was isolated from mature leaves and apical meristems using TRIzol (Thermo Fisher 

Scientific, Waltham, MA, USA) and cDNA was synthesized using the RevertAid First Strand 

cDNA Synthesis kit (Thermo Fisher Scientific). 

 

Population genomic detection of haploblocks 

Potential haploblock regions were defined based on MDS plots, and an MDS axis and minimum 

or maximum value that included windows within the region, but excluded the rest of the 

chromosome, were manually selected. Since there was variation in MDS score within each 

region, and an individual window within the region may fall below the cut off, windows that 

were surrounded by selected windows, within a range of 20 windows, were included. In most 

cases this resulted in a single unbroken range, but some regions, mainly H. argophyllus and H. 

petiolaris, were broken into multiple nearly abutting ranges. Furthermore, for H. petiolaris 

several of the regions were broken into unconnected distant regions, which likely reflects 

rearrangements in the H. petiolaris genome relative to the H. annuus reference used (see also 

Extended Data Fig. 6c).  

All SNPs within the regions defined by MDS scores were used to calculate PCAs using 

SNPrelate31. The k-means clustering algorithm in R was used to define three clusters from 

PC132,33. Since sample sizes were often unbalanced between the three potential groups, the 

starting positions for the three clusters were chosen as the maximum, minimum and middle of 

the range of PC1 scores. K-means cluster assignment was used as a preliminary genotype for the 

sample. Observed heterozygosity was also measured in each group. For all retained regions, 
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samples clearly fell into three groups and observed heterozygosity was higher in the middle (0/1) 

group.  

To visualize LD patterns, all SNPs with minor allele frequencies <5% were removed, the 

remaining variants were thinned to one per 100 bp, and genotype R2 values for all sites within a 

chromosome were calculated. Values were grouped into 500 kb windows and the second largest 

R2 value was plotted (Fig. 4e; Extended Data Fig. 4). In each case, regions identified in lostruct 

had high LD. The underlying recombination landscape in haploblock regions was explored by 

subsetting our dataset to samples homozygous for the more common haploblock genotype and 

measuring LD across the region. As before, SNPs with minor allele frequencies <5% were 

removed, variants were thinned to one per 100 bp, and genotype R2 values for all sites within a 

chromosome were calculated. If the signal of high LD is only present when both haploblock 

genotypes are included, then it supports mechanisms that specifically prevent recombination 

between haplotypes. That being said, some haploblocks fall in generally low recombination 

regions and high LD within a haploblock genotype does not preclude recombination suppression. 

 

Synchronizing haploblocks in H. petiolaris subspecies. 

Lostruct was run in SNP datasets containing H. petiolaris petiolaris, H. petiolaris fallax, and 

both subspecies together. Although each dataset produced a collection of haploblocks, they were 

not identical. Some haploblocks were identified in one subspecies, but not the other, and some 

were only identified when both subspecies were analyzed together. In some cases, it was clear 

that haploblocks identified in both subspecies represented the same underlying haploblock 

because they physically overlapped and had overlapping diagnostic markers. We manually 

curated the list of haploblocks and merged those found in multiple datasets. We set the 
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boundaries of these merged haploblocks to be inclusive (i.e. include windows found in either) 

and the diagnostic markers to be exclusive (i.e. only include sites found in both). For this merged 

set of haploblocks, all H. petiolaris samples were genotyped using diagnostic markers.  

 

Hi-C 

Based on our re-sequencing data, a pair of H. petiolaris and a pair H. argophyllus populations 

were selected that diverged for the largest number of haploblocks (PET_47 and PET_08 for H. 

petiolaris and ARG_18 and ARG_23 for H. argophyllus). Several individuals from each 

population were grown and genotyped at diagnostic SNPs for several haploblocks (pet09.01, 

pet10.01, pet10.01 and pet14.01 for H. petiolaris; arg06.01 and arg10.01 for H. argophyllus) 

using cleaved-amplified polymorphic sequence (CAPS) markers or direct Sanger sequencing 

(primers are reported in Supplementary Table 3). Chromosome conformation capture 

sequencing34,35 (Hi-C) was then performed on one individual each from these four populations, 

to compare the structural organization of the different haplotypes at haploblock regions. 

Additionally, three Hi-C libraries sequenced on one HiSeq X lane from H. annuus HA412-HO 

were included in the analysis. This data was used to assemble the current HA412-HOv2 

reference genome36, and is used here as an interaction baseline. 

Hi-C libraries were prepared by Dovetail Genomics (Scotts Valley, CA, USA) using the four-

cutter restriction enzyme DpnII. Given the size and repetitive nature of sunflower genomes, Hi-C 

data could not be used to assemble a full genome; the HA412-HOv2 cultivated sunflower 

assembly was therefore used as a reference, and patterns of interactions were compared between 

samples. Raw sequence data was trimmed for enzyme cut site and base quality using the tool 

trim in the package HOMER37 (v4.10) with the following flags ` -3 GATC -mis 0 -matchStart 20 
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-min 20 -q 15`. Trimmed data were then aligned to the HA412-HOv2 reference genome using 

NextGenMap13 (v0.5.4) and interactions were quantified using the calls `makeTagDirectory -tbp 

1 -mapq 10` and `analyzeHiC -res 1000000 -coverageNorm` from HOMER. This removes PCR 

duplicates based on mapping location, requires reads to have ≥10 mapping quality and 

normalizes interactions in 1 Mbp windows based on the total number of interactions. To 

determine which haploblocks differ between samples, aligned sequence data and samtools 

mpileup15 were used to genotype diagnostic markers and call genotype for each haploblock, as 

described above. 

Interpretation of the HiC patterns was sometimes complicated by the presence of putative 

structural differences between the genome of H. petiolaris and that of the HA412-HOv2 

reference assembly against which reads from the HiC libraries were mapped. To determine what 

HiC patterns would be expected in those situations if haploblocks are associated to large 

inversions, we simulated an interaction matrix where interactions between windows linearly 

decayed based on distance. We then flipped window ordering within a region to simulate an 

inversion, and compare the interaction matrices with the original and flipped ordering. We used 

these basic HiC simulations to produce possible rearrangements between the haploblocks in H. 

petiolaris and the H. annuus reference that fit the observed HiC interaction patterns for three 

representative haploblocks (Extended Data Fig. 7b). 

 

Haploblock phenotype and environment associations 

In order to control for the effect of haploblocks on population structure, a variant file was created 

with all haploblock regions removed; both sites within haploblock regions and sites in close 

linkage (vcftools25 v0.1.14, R2 > 0.5) with haploblock genotypes were removed, in order to make 
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sure that sites that were physically within the haploblock region were removed even if they were 

placed elsewhere due to reference differences. This haploblock-removed version of the genotype 

file was used for calculating PCA and kinship for EMMAX and the genetic covariance matrix 

for BayPass. 

GWA analyses were performed using EMMAX27 (v07Mar2010) for all traits measured in the 

common garden experiment (Supplementary Table 1). For all runs, the first three principal 

components (PCs) were included as covariates, as well as a kinship matrix calculated from the 

haploblock-removed genotype table. Environmental associations were run using BayPass29 as 

previously described (see section “Genome-environment association analyses“), except that the 

10,000 SNPs used to estimate population structure were drawn from the haploblock-removed 

dataset. 

 

Haploblocks phylogenies and dating 

A phylogenetic approach was used to determine the divergence time between haploblocks 

alleles. For each haploblock, five samples homozygous for each haploblock allele were chosen 

(defined as having >85% SNP ancestry from one haploblock allele). Two random samples from 

the other (sub)species, as well as two perennial samples (H. grosseserratus and H. divaricatus) 

were included in the analyses. For H. petiolaris, subsp. petiolaris and subsp. fallax were included 

in the same phylogeny if a haploblock was segregating in both. All genes within the haploblock 

in the HA412-HOv2 genome annotation were extracted, and the corresponding gene regions in 

the XRQv1 assembly were identified using a list of one-to-one orthologs between the two 

assemblies, created using Swiftortho38. For each gene, gVCF files were created from BAM files 

of the samples with GATK’s (v4.0.6.0) HaplotypeCaller and gene sequences in FASTA format 
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were generated using a custom Perl script. Haploblocks with more than 100 genes were down-

sampled to 100 genes to reduce computing time. 
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