
Materials and Methods 
GTEx data  
All human donors were deceased, and informed consent was obtained via next-of-kin consent 
for the collection and banking of deidentified tissue samples for scientific research. The 
research protocol was reviewed by Chesapeake Research Review Inc., Roswell Park Cancer 
Institute’s Office of Research Subject Protection, and the institutional review board of the 
University of Pennsylvania. We used the RNA-sequencing, allele-specific expression, and 
whole-genome sequencing (WGS) data from the v8 release of the GTEx project and assessed 
expression data across the 49 biological tissues with at least 70 samples. Sample size varied 
across tissues, with average missingness of ~50%. Self-reported ancestry for these individuals 
spanned three of the major continental populations with the majority (n=714 with WGS) 
comprising individuals of predominantly European ancestry, 121 individuals with African 
ancestry, 11 with Asian ancestry, and 12 unknown or other. The generation of these data are 
described in the supplementary information of (The GTEx Consortium 2019, in submission). 
 
Rare variant annotations 
We retained all SNVs and indels that passed quality control in the GTEx VCF, variant calling 
described in (The GTEx Consortium 2019, in submission), using the hg38 genome build. 
Structural variants were called according to (33) on the subset of individuals available from V7 
with GenomeSTRiP (34) GSCNQUAL set to limit the false discovery rate (FDR) for each variant 
type. Genome STRiP’s IntensityRankSumAnnotator was used to evaluate FDR based on 
available Illumina Human Omni 5M gene expression array data. GSCNQUAL was limited to ≥ 1 
for GenomeSTRiP deletions and ≥ 8 for multi-allelic copy number variants, corresponding to an 
FDR of 10%. The GSCNQUAL cutoff for GenomeSTRiP duplications was set at ≥ 17, the point 
where the FDR plateaued at 15.1% and did not fluctuate more than ±1% for over 50 steps in 
increasing GSCNQUAL score. Additionally, the Mobile Element Locator Tool (MELT) version 
2.1.4 (35) was run using MELT-SPLIT to identify ALU, SVA, and LINE1 insertions into the test 
genomes. MELT calls that were categorized as “PASS” in the VCF info field, had an ASSESS 
score ≥ 3, and SR count ≥ 3 were retained. SV calls were then lifted to the hg38 genome build 
using liftOver from the Genome Browser (36). 
 
We defined rare variants as those with < 1% MAF within GTEx and, for SNVs and indels, also 
occurring at < 1% frequency in non-Finnish Europeans within gnomAD (37). Novel variants were 
those that occurred in GTEx but were not found in gnomAD. GTEx singletons had an average 
allele frequency of 0.0030 in gnomAD and doubletons had an average frequency of 0.0096. 
 
Annotation of protein-coding regions and transcription factor binding site motifs was generated 
by running Ensembl VEP (version 88). Loss of function (LoF) annotation was generated using 
loftee. Conservation scores (Gerp, PhyloP, PhastCons) were downloaded from UCSC genome 
browser and CADD scores were extracted from a pre-compiled annotation file 
(https://cadd.gs.washington.edu/download) using variant scores from the hg38 genome build.  
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Expression outlier calling 
Within each tissue, we log2-transformed the expression values (log2(TPM + 2)), where TPM is 
the number of transcripts per million mapped reads, generated by RNA-SeQC (38) using the 
GENCODE v26 gene annotation, available through the GTEx portal. We subsetted to autosomal 
lincRNA and protein-coding genes and restricted to genes with at least 6 reads and TPM > 0.1 
in at least 10% of individuals. We scaled the expression of each gene to mean of 0 and 
standard deviation of 1 to avoid the deflation of outlier values caused by quantile normalization. 
As we expected unmeasured technical confounders to impact expression, for each tissue we 
estimated hidden factors for the transformed expression matrix using PEER (39). The number of 
PEER factors retained was based on sample size and matched the values chosen in the GTEx 
eQTL analyses (The GTEx Consortium 2019, in submission), which were 15 for sample sizes 
less than or equal to 150, 30 for less than 250, 45 for less than 350, and 60 otherwise. We 
obtained expression residuals by regressing out PEER factors, the top three genotype principal 
components, sex, and the genotype of the strongest cis-eQTL per gene in each tissue using the 
following linear model: 
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where  is the transformed expression of gene , μg is the mean expression level for theY g g  
gene,  is the nth PEER factor,  are the top k genotype principal components,  is the sexP n Gk S  
covariate, and  is the genotype of the strongest cis-eQTL for gene . We then re-scaled theQ g  
expression residuals εg for each gene, to obtain corrected expression Z-scores for each 
individual per gene per tissue. 
 
For each gene, we calculated an individual’s median Z-score across all tissues for which data 
were available, restricting to individuals with measurements in at least five tissues. To account 
for situations where widespread extreme expression might occur in an individual due to 
non-genetic influences, we excluded 39 individuals where the proportion of tested genes that 
were outliers at a threshold of |median Z-score| > 3 exceeded 1.5 times the interquartile range 
of the distribution of proportion outlier genes across all individuals. We then use the median 
Z-scores per individual to determine eOutliers and used a threshold of 3 to determine the outlier 
set of genes. Controls were defined as any individual with a |median Z-score| of less than 3 (or 
another threshold as indicated) for the same set of genes as those with any outlier individual. 
We allowed a gene to have multiple outlier individuals and an individual could be an outlier for 
multiple genes. Code for generating outlier calls was modified from the scripts available at 
https://github.com/joed3/GTExV6PRareVariation. 
 
Split read count quantification and processing 
LeafCutter (40) provided an annotation-free approach for RNA splicing quantification allowing us 
to capture split reads overlapping rare exon-exon junctions. Junctions were extracted from 
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WASP-corrected BAM files with a modified version of the “bam2junc.sh” script from LeafCutter 
that only retained reads that passed WASP filters (The GTEx Consortium 2019, in submission). 
Next in each tissue separately, junction reads were clustered using the “leafcutter_cluster.py” 
script from LeafCutter, with the options  “--maxintronlen 500000” and “mincluratio 0”. LeafCutter 
assigns exon-exon junctions into mutually exclusive sets, termed clusters. Each exon-exon 
junction in a cluster had to share a splice site with at least one other exon-exon junction in that 
cluster, but could not share a splice site with an exon-exon junction from another cluster. A 
cluster had to contain at least two exon-exon junctions.  
 
Next, in each tissue separately, we applied the following series of custom filters to the 
LeafCutter results in order to remove exon-exon junctions with low expression while retaining 
rare exon-exon junctions: 

1. Removed exon-exon junctions where no sample has >= 15 split reads 
2. Re-defined LeafCutter cluster assignments after removal of exon-exon junctions 

(according to the above filter) and removed exon-exon junctions that no longer shared a 
splice site with any other exon-exon junction. 

3. Removed all exon-exon junctions belonging to a LeafCutter cluster where more than 
10% of the samples had less than 3 reads summed across all exon-exon junctions 
assigned to that LeafCutter cluster. 
 

Next, we merged LeafCutter cluster assignments across all 49 tissues to make a specific 
LeafCutter cluster comparable across multiple tissues. For this, we re-defined LeafCutter cluster 
assignments using the union of all exon-exon junctions that passed the above filters across 49 
tissues. Lastly, we mapped our LeafCutter clusters to genes by intersecting splice sites, defining 
a Leafcutter cluster with splice sites of annotated exons. We limited to genes used in expression 
outlier calling (described in “Expression outlier calling” section).  If an annotated splice site was 
in a LeafCutter cluster, we considered the LeafCutter cluster mapped to the gene. It was 
therefore possible for a LeafCutter cluster to map to multiple genes. We filtered LeafCutter 
clusters, and their corresponding exon-exon junctions, to those that were mapped to at least 
one gene. Finally, we removed any LeafCutter clusters with more than 20 exon-exon junctions 
due to computational limitations of SPOT.  
 
SPOT: Overview 
sOutliers were identified separately for each LeafCutter cluster in each tissue using Splicing 
Outlier deTection (SPOT). For a given LeafCutter cluster in a given tissue, we defined a matrix, 

 (dim NxJ), where each row corresponds to one of  samples, each column corresponding toX N  
one of  exon-exon junctions, and each element was the number of raw split read countsJ  
corresponding to that row’s sample and that column’s exon-exon junction. We were able to 
compute a p-value representing how abnormal a given sample’s splicing patterns were for the 
given LeafCutter cluster as follows: 

1. Fitted parameters of Dirichlet-Multinomial distribution based on observed data  inX  
order to capture the distribution of split read counts mapping to this LeafCutter cluster 



2. Used fitted Dichlet-Multinomial distribution to compute the Mahalanobis distance for 
each of the N samples 

3. Computed Mahalanobis distance for 1,000,000 samples simulated from the fitted 
Dirichlet-Multinomial and use these 1,000,000 Mahalanobis distances as an empirical 
distribution to assess the  significance of the  real Mahalanobis distancesN  

 
SPOT: Dirichlet-Multinomial parameter estimation 
We defined a Dirichlet-Multinomial (DM) probability distribution based on data from  samplesN  
to capture the probability that a split read would map to each of the  junctions in the LeafcutterJ  
cluster: 
Let be the raw number of split reads mapped to the jth junction in the nth sample andxnj  

be the total number of split reads mapped to any junction in this LeafCutter cluster intn = ∑
J
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xnj  
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We used the following non-informative Gamma prior distribution to stabilize optimization: 
~ αj amma(1 1e , 1e )G +  −4  −4  

We then performed maximum likelihood estimation (via LBFGS as implemented in STAN) to 
learn the optimal parameter settings of and ( and ) from, ... , αα1   J , ... , cc1   J , ... , αα1 ˆ   Ĵ , ... , cc1̂   Ĵ  
the N samples. We were able to also deterministically compute the optimal values of each  (pj

) from each .pj ˆ cĵ  
 
SPOT: Mahalanobis distance 
The Mahalanobis distance is the multivariate generalization of how many standard deviations a 
point is from the mean taking into account the covariance structure. After learning the 
parameters of the Dirichlet-Multinomial distribution for a specific LeafCutter cluster (ie 

and ; see “SPOT calling: Dirichlet-Multinomial parameter estimation”), we, ... , αα1 ˆ   Ĵ , ... , cc1̂   Ĵ  
were able to  compute the mean vector ( ) and covariance matrix ( ) for a specific sample μn Σn n
, according to the Dirichlet-Multinomial. Using and we were able to  compute theμn Σn  
Mahalanobis distance of sample  ( . The covariance matrix of the Dirichlet-Multinomial (n D )M n

) is of rank  because one of the dimensions is always a linear combination of the otherΣn J − 1  
 dimensions. As such, we approximated with the pseudo-inverse of whenJ − 1 Σn−1 Σn  

computing the Mahalanobis distance. 
 
SPOT: Empirical distribution to assess significance 
For a given LeafCutter cluster, we have already computed the Mahalanobis distance of each of 
the  samples according to the fitted Dirichlet-Multinomial distribution for that LeafCutterN  
cluster. However, the Mahalanobis distance is biased by the dimensionality of the space (i.e. the 
number of junctions assigned to the LeafCutter cluster). In order to convert the Mahalanobis 
distance to a test statistic that was not biased by dimensionality, we simulated an empirical 



distribution of Mahalanobis distances for each LeafCutter cluster. Specifically, for one 
LeafCutter cluster we drew 1,000,000 random samples from the fitted Dirichlet-Multinomial 
distribution assuming each of these random samples has 20,000 reads mapped to the 
LeafCutter cluster . We then computed the Mahalanobis distance of each of theset 0000)( n = 2  
1,000,000 samples and used the 1,000,000 Mahalanobis distances as an empirical distribution 
that converted our N Mahalanobis distances (from the real data) into p-values.  
 
SPOT: Gene level correction 
To compute a splicing outlier p-value for a gene associated with  LeafCutter clusters, we firstC  
computed minimum p-value across all  clusters for the gene. However, the minimum of a listC  
of p-values is not a valid p-value. To address this, we computed the probability of observing a 
minimum p-value according to a probability density function defining the minimum across C  
independent uniform random variables between 0 and 1: 
 

(min(pvalue , ... , pvalue ) = z) 1 (1 )p 1   C <  =  −  − z C  
 
This approach made the conservative, simplifying assumption that all clusters mapped to a 
gene were independent of one another. 
 
We excluded individuals (global outliers) where the proportion of tested genes that were outliers 
(at a threshold of median p-value < .0027) exceeded 1.5 times the interquartile range of the 
distribution of proportion outlier genes across all individuals. 
 
ASE outlier calling 
Allelic expression (ASE) data was produced as described in (Castel, et al, 2019, in submission). 
We used the Analysis of Expression VAriation Dosage Outlier Test (ANEVA-DOT; (16)) to 
identify genes in each individual that showed an excessive imbalance of ASE, relative to the 
population.  Briefly, ANEVA-DOT relies on tissue-specific estimates of genetic variation in gene 
dosage, VG, derived by Analysis of Expression VAriation (ANEVA) on a reference population 
ASE data to identify genes in individual test samples that are likely affected by rare variants with 
unusually large regulatory effects. We calculated reference VG estimates from GTEx v8 data 
from 15,201 RNA-seq samples spanning 49 tissues and 838 individuals with WGS data (16, 
17). Across all analyzed tissues we estimated VG a total of 2,727,867 times using all available 
autosomal aeSNPs (variants used to assess allelic expression) with at least 30 reads in 6 
individuals. These estimates are publicly available at 
https://github.com/PejLab/Datasets/tree/master/Reference_Vg_Estimates. We used the 
ANEVA-DOT tool R package (https://doi.org/10.5281/zenodo.3406690) to calculate a p-value 
for every gene-individual pair with allelic expression data and a corresponding VG estimate (Fig 
S5). The p-value can be interpreted as the result of a binomial test of allelic imbalance, that is 
overdispersed for each gene individually according to its expected dosage variation in a given 
tissue in the population. Genes with significant ANEVA-DOT p-values are referred to as 
aseOutliers in this text. We tested all tissues available for each GTEx v8 individual, using only 
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genes with a minimum coverage of 8 reads spanning an aeSNP and with VG estimates available 
(49 tissues, median genes per tissue = 4899, Fig S4). For each gene expressed we considered 
the aeSNP with the highest coverage in an individual.  
 
For all single-tissue analyses, we removed global outlier genes and individuals from each tissue 
group independently, based on the lists of ASE blacklisted genes and individuals available at 
https://github.com/PejLab/Datasets/tree/master/ANEVA_DOT_frequencies. These genes are 
likely to have poor VG estimates due to the presence of different ASE patterns within the gene or 
other global biological factors. Global outlier lists were derived from lists of FDR-corrected 
p-values. In all analyses unless otherwise specified, we did not apply an FDR control procedure 
and instead imposed a higher threshold for declaring significance, to be consistent with 
expression and splicing outliers. For cross-tissue analyses, we calculated median ANEVA-DOT 
p-values for genes which were expressed in more than 5 tissues, without removing known 
global outliers first. Therefore, to account for genes with poor VG, we applied the filtering steps 
described in (16) on the resulting individual-level median p-values. Briefly, we removed 
individuals with too few genes tested (n<Q1-1.5IQR), removed individuals with too many outliers 
(n>Q3+1.5IQR), and removed genes which appeared as outliers too many times across 
individuals with a score available (genes that are likely to be called as outliers in more than 1% 
of cases, Fig S4) . For consistency with the other outlier detection methods we declared 
significance at p < 0.0027, equivalent to |Z| > 3.  
 
Correlation-aware expression outlier calling 
We subsetted to a set of individuals and tissues with < 75% missingness, leading to 762 
individuals and 29 tissues. We imputed missing expression values to improve our estimate of 
the tissue-by-tissue covariance matrix per gene that would be used in outlier calling. We used 
K-nearest neighbors in the impute R package (41) with k = 200 to impute values for missing 
tissues per individual on a gene by gene basis. We chose the value of k by comparing 
reconstruction error across k = [1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 80, 90, 
100, 200, 300] on a set of 1000 randomly selected genes with 5% of individuals held-out for 
evaluation. We tested several other potential imputation methods and saw similar performance 
(Fig S16), which included a multivariate normal expectation-maximization (EM),  mean 
imputation (MEAN), soft thresholded iterated SVD imputation (SVD), and penalized matrix 
decomposition (PMD). For these additional imputation methods, we used the following 
parameters, determined in the same way as described above: EM - max iterations = 3 and 
tolerance = 1 x 10-6, SVD - lambda = 20 and rank = 20, and PMD - lambda = 1 and rank = 5.  
 
From the imputed matrix, we estimated the tissue covariance matrix, , for each gene. WeΣ

︿

 
calculated the Mahalanobis distance for each individual-gene pair as follows: 

Σ x , d  d2 = xgT
︿

g
−1

g  2 ~ χ2
p  

  
Where  is the vector of observed expression values for gene  across tissues, is thexg g  Σ

︿

g  
estimated covariance matrix for gene  We assigned a p-value to each gene-individual from.g  
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the chi-squared distribution with degrees of freedom  equal to the number of tissues availablep  
for that individual. We used a two step correction procedure, first correcting via Bonferroni for all 
genes tested within an individual and then applying Benjamini-Hochberg correction across all 
tests with p < 0.0027. When assessing nearby rare variant enrichments, we removed genes that 
had an extreme number of outlier individuals, based on 3*IQR, as compared to the total set of 
tested genes. For the set of tissue-specific correlation outliers, we subsetted to outliers driven 
by a single tissue, requiring remaining available tissues for that individual to have a |Z-score| < 2 
for the outlier gene. 
 
Enrichment calculations 
We calculated relative risk enrichments as the proportion of outliers with a given variant type 
nearby the outlier gene over the proportion of non-outlier individuals with the given variant type 
nearby the same set of genes. We included 95% confidence intervals estimated via a normal 
approximation. When assessing rare variant enrichments overall and by category, we used a 
10kb +/- window around the gene body. When considering variant categories per outlier, if more 
than one rare variant was present nearby the outlier gene, we assigned each gene-individual to 
a single variant category based on the following ordering: duplications (DUP), copy number 
variations (CNV), deletions (DEL), breakend (BND), inversions (INV), transposable elements 
(TE), splice, frameshift, stop, transcription start site (TSS), conserved non-coding, coding, or 
other non-coding, and subsetted to the 527 individuals with structural variant calls. Unless 
otherwise specified, we used a threshold of median p-value < 0.0027 (chosen to match |median 
Z-score| > 3) to define outliers. When considering variants in different windows upstream from 
the gene, we constructed exclusive distance ranges from each gene, beginning with the gene 
body + 10kb window used previously, and then we intersected rare variants with windows 
1bp-200kb, 200kb-400kb, 400kb-600kb, 600kb-800kb, and 800kb-1Mb upstream from the set of 
outlier genes. 
 
Alternative splicing enrichment calculations 
We performed several enrichment analyses specific to sOutliers. For all of these analyses, we 
used sOutlier calls at the LeafCutter cluster level (instead of the gene level) in order to get more 
accurate enrichments. We excluded individuals identified as global outliers at the gene level 
(see “SPOT: gene level correction”). We also used a stringent median p-value threshold of 1 x 
10-5 to identify outlier clusters and limited enrichment analysis to SNVs. 

1. Relative risk of rare variant in window around splice site. We computed the relative 
risk of rare variants being located at various windows around splice sites for outlier 
clusters relative to non-outlier clusters (splice enrichment 1a). For example, if the 
window was [0,2], we mapped a variant to a cluster if that variant were less than or equal 
to two base pairs away from observed donor and acceptor splice sites ([D-2, D+2] and 
[A-2, A+2] based on notation in Fig 2C) for that cluster. Relative risk was then calculated 
as the proportion of outlier (LeafCutter cluster, individual) pairs with a mapped rare 
variant over the proportion non-outlier (LeafCutter cluster, individual) pairs with a 
mapped rare variant, while limiting analysis to LeafCutter clusters with at least one 



outlier individual. We included 95% confidence intervals estimated via a normal 
approximation. 

2. Relative risk of rare variant at position relative to splice site. We first mapped rare 
variants to clusters if the rare variants were less than or equal to 1000 base pairs from 
an observed donor or acceptor splice site ([A-1000, A+1000] and [D-1000, D+1000] 
based on notation in Fig 2C). We then mapped each variant to its nearest splice site in 
that cluster and calculated its position relative to that splice site. Then, to compute the 
positional relative risk at position D-1 (for example), we computed the fraction of outlier 
variants mapped to a donor splice site that were at position D-1 over the fraction of 
non-outlier variants mapped to a donor splice site that were at position D-1. We added a 
constant of 1 to all counts in the contingency table to stabilize enrichments. We included 
95% confidence intervals estimated via a normal approximation. 

3. Junction Usage for splicing median p-value outliers. We used the “junction usage” 
statistic to quantify whether an individual used a splice site more or less than the 
background population. A positive junction usage value intuitively means the individual 
uses the splice site more than the background population, while a negative junction 
value means an individual uses a splice site less than the background population. More 
concretely to compute the junction usage for an individual  and junction j, we firsti  
computed the following ratio in each tissue (in which that individual  is expressed)i  
separately: Fraction of  reads in cluster mapping to junction j for individual i

F raction of  reads in cluster  mapping to junction j for non−outliers individuals   
We added a constant of 1 to the above contingency table to stabilize enrichments. The 
“junction usage” statistic is simply the natural logarithm of the median of the above 
statistic across all tissues in which  individual  is expressed.i  

 
Enrichment of outlier pairs within a given window 
To test if nearby genes were more likely to share outlier status, we counted how many times two 
consecutive genes within a given genomic distance (defined based on the gene start position) in 
a given individual were both reported outliers. We considered multi-tissue outliers and analyzed 
each class of outliers independently. To derive the expected number of such occurrences, for 
each individual we used sampling without substitution to produce a random set of genes of the 
same size. Samples were drawn from a list of all genes that had been reported as an outlier at 
least once across all methods to avoid skewing the statistic by genes never reported as outliers. 
The expected value for each given window size was derived by averaging over all individuals. 
To ensure the stability of enrichment estimates at each window size, the sampling process was 
repeated until Monte Carlo error dropped below 10% of the expected number of outlier 
co-occurrences. For sOutliers this procedure was repeated once with all outlier genes included 
and once after removing 80 genes sharing a cluster with another outlier gene, see “Split read 
count quantification and processing”. 
 
We annotated all outliers occurring in a given window with the set of nearby rare variants for 
each gene in the pair. For each included variant category, defined above, we calculated a 
relative risk by taking the proportion of outlier pairs within the window for which one or both 



genes had a rare variant in that category near the gene over the proportion of control individuals 
for which the same was true for the same gene, restricting to individuals with genetic data 
available. We included 95% confidence intervals estimated via a normal approximation, and we 
defined controls as individuals who were outliers for only one of the genes in the outlier pair.  
 
Single-tissue rare variant enrichment 
We tested for enrichment of rare variants near single-tissue gene expression outliers using the 
same variant list and relative risk enrichment definition as for cross-tissue outliers and with all 
individuals with both an expression outlier score and genotype information available. Under this 
definition of an eOutlier, a gene is only considered in one tissue at a time, i.e. without 
aggregating the gene's score across all tissues in an individual where it is expressed. Among 
ASE and splicing outliers, we removed tissue-specific global outlier genes prior to performing 
enrichment analysis. We converted expression Z-scores to a two-tailed z-test p-value for direct 
comparison to the other outlier methods. We tested for enrichment of rare variants at 
increasingly stringent significance thresholds for each individual tissue, then reported the range 
of enrichment scores across all tissues, separated by outlier type and significance threshold.  
 
Tissue-specific enhancer enrichments 
We obtained tissue-specific enhancer annotations for 12 tissues from Epigenomics Roadmap 
(42) and mapped to GTEx tissues (Table S1). We subsetted to the tissue-specific correlation 
outliers that occurred in one of the 12 mapped tissues. To calculate the relative risk of a rare 
variant, including both SNVs and indels, in a tissue-matched enhancer, we took controls as all 
individual-gene pairs that were not correlation outliers and randomly assigned them to the same 
set of tissues as in the outlier group, matched by gene. We used any enhancer region 
annotated to a given tissue within a 500kb window around the outlier gene to capture the 
majority of potential enhancers, which can act at longer distances (18). We calculated matched 
enhancer enrichments as the proportion of tissue-specific outliers for which a rare variant fell 
within a nearby tissue-matched enhancer over the proportion of control individuals for which the 
same was true. For unmatched enhancer enrichments, we calculated the proportion of 
tissue-specific outliers with a rare variant falling in any tissue-specific enhancer region across 
the 12 tissues considered, without regard to the tissue driving the outlier call, within a 500kb 
window over the proportion of controls with a rare variant in any enhancer region within the 
same window of the same gene set. 
 
Watershed model overview 
Watershed is a hierarchical Bayesian model that predicts regulatory effects of rare variants on a 
specific outlier signal based on the integration of multiple transcriptomic signals along with 
genomic annotations describing the rare variants. Watershed models instances of (gene, 
individual) pairs to predict the regulatory effects of rare variants nearby the gene. The 
Watershed model for a particular (gene, individual) pair, assuming  outlier signals, consists ofK  
three layers (Fig 4a): 

1. A set of variables G representing the P observed genomic annotationsG , ..., G=  1   P  
aggregated over all rare variants in the individual that are nearby the gene. 
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2. A set of binary latent variables Z = representing the unobserved functional, .., ZZ1 .  K  
regulatory status of the rare variants on each of the K outlier signals. Let be the set ofZs  
all possible values that Z can take on. The size of is .ZS 2K  

3. A set of categorical nodes E = that represents the observed outlier status of, .., EE1 .  K  
the gene for each of the K outlier signals. We allow for missingness in E. 

A fully connected conditional random field (CRF) (43) is defined over variables  given ,Z G  
where we let W represent the set edges among . Variables Ei are each connected only to theZ  
corresponding latent variable Zi.  Specifically, the following conditional distributions together 
define the full Watershed model: 

 
A.  | G Z CRF (α, β , ..., β , θ)~   1   k   
B. Categorical| Z  Ek k ~ ϕ ) ∀ k  ( k ∈ K  
C. Dirichlet  ϕk ~ C, .., )( . C  
D. Normalβk ~ 0, )(  λ

1  
where, 

● are the parameters defining the contribution of the genomic∀ k βk ∈ RP  ∈ K  
annotations to the CRF for each outlier signal ( )k  

● are the parameters defining the intercept of the CRF for each outlier signal ( )α ∈ RK k  
● are the parameters defining the edge weights between pairs of outlierRθ ∈  (Kchoose2)  

signals (Notational note: )θθtq =  qt  
● are the parameters defining the categorical distributions of each outlier∀ k  ϕk ∈ K  

signal  
● and are hyper-parameters of the modelC λ  

 
Explicitly, our CRF probability distribution is defined as: 

(Z | G, β , .., β , α, θ) exp( Z  θ Z Z G Z  A(G, θ, β , .., β )P  1 .  K   =  ∑
 

k∈K
αk k +  ∑

 

(t,q)∈W
 tq t q + ∑

 

k∈K
βk k −    1 .  K  

where (G, θ, β , .., β ) log( xp ( Z  θ Z Z G Z ))A   1 .  K =  ∑
 

Z ∈Z  * S
e ∑

 

k∈K
αk *

k
 +  ∑

 

(t,q)∈W
 tq

*
t

*
q + ∑

 

k∈K
βk *

k  

 
Because Z is unobserved, the Watershed log-likelihood objective over instances :, ..,n = 1 . N  
 

og (E , G , Z  | β , ..., β , α, θ, ϕ , ..., ϕ )∑
N

n=1
l ∑

 

Z ∈ Z*
 

S
P n  n  *

 1   K    1   K  

 
is non-convex. We therefore optimize model parameters using Expectation-Maximization (EM) 
as described in the following sections. 
 
Watershed exact inference optimization routine 
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When the number of outlier signals ( ) is small (an approximate rule being 4 or less),K  
Watershed parameters can be optimized using exact inference updates within EM as follows: 
 
In the E-step for instances : we compute posterior distributions over the latent, ..,n = 1 . N  
variables ( ), conditioned on the current model parameters ( ) andZ (n)

 , ..., β , α, θ, ϕ , ..., ϕ  β1   K    1   K  
the observed data ( and ).  For example, the joint posterior probability of  forG(n)

 E(n)
 ZZ (n) =   

the nth instance can be computed as: 

(Z  Z) exp( (α Z G Z  (E )log(P (E | Z )) θ Z Z  ω(n) (n) =  =  ∑
 

k∈K
k

 
k + βk

(n)  
k

 
+ I k

(n)
k

(n)
k

 + ∑
 

(t,q)∈W
 tq t q  

  )A(G , E , θ, β, α, θ, ϕ  −  (n)  (n)       

(G , E , θ, β, α, ϕ) log( xp ( (α Z G Z  (E )log(P (E | Z ) ) A (n)  (n)     =  ∑
 

Z ∈Z  * S
e ∑

 

k∈K
k

*
k + βk

(n) *
k + I k

(n)
k

(n) *
k

  
 

                                           θ Z Z ))     +  ∑
 

(t,q)∈W
 tq

*
t

*
q  

where, 
 is an indicator function for whether is observed. Given the joint posterior probability(E )I k

(n) Ek
(n)  

distribution, we can marginalize (sum over) specific dimensions (outlier signals) to obtain: 
1. Marginal posterior distributions for each dimension  (where is the set of all possiblei ZW  

values that Z can take on excluding dimension ):i  

  (Z ) (Z ) ω(n)
single i = ∑

 

Z ∈Z* W
ω(n) *  

2. Pairwise marginal posterior distributions for each pair of dimensions  (where is,i j ZW  
the set of all possible values that Z can take on (excluding dimension  and dimension i j
)): 

(Z , Z )  (Z ) ω(n)
pair i  j = ∑

 

Z ∈Z* W
ω(n) *  

Both the marginal posterior distributions and the pairwise marginal posterior distributions are 
used in the M-step as follows. We update , , and by optimizing the conditional random fieldβ α θ  
as follows: 
 

rgmax og(P (Z  | G , β , α, θ))a β, α, θ ∑
N

n=1
∑
 

Z ∈Z* S
l * (n)     (Z ) ||β||  ||θ||ω(n) * −  2

λ
2 −  2

λ
2  

Here  is an L2 penalty hyper-parameter derived from the Gaussian priors on and . Weλ β θ  
optimized this objective function by running L-BFGS on the closed-form gradient updates. 
 
In the second part of the M-step, we update as follows:∀ k  ϕk ∈ K  
 

(s, t) (E t) ω (Z  s) Cϕk  =  ∑
N

n=1
I k

(n) =  (n)
single k

(n) =  +   

 



where,  
 is an indicator operator, is the categorical value of expression , is the possible binaryI t Ek

(n) s  
values of , and  is the hyperparameter based on the Dirichlet prior on .Zk

(n) C  ϕ    
 
Once the EM algorithm has converged, we use the marginal posterior distributions for each 
dimension  in each instance  ( ) as estimates of probability that the nth (gene,i n (Z )ω(n)

single i = 1  
individual) pair has a nearby variant that has a functional effect on the gene (with respect to 
outlier dimension i). 
 
Watershed approximate inference optimization routine 
When the number of outlier signals ( ) is large (an approximate rule being 5 or more), itK  
becomes computationally intractable to optimize Watershed parameters using exact inference 
updates, so we use approximate inference updates within EM as follows: 
 
For the E-step, we wish to compute approximate estimates of the following posterior probability 
distribution: 

(Z ) exp( (α Z G Z  (E )log(P (E | Z )) θ Z Z  ω(n) (n) = Z =  ∑
 

k∈K
k

 
k + βk

(n)  
k

 
+ I k

(n)
k

(n)
k

 + ∑
 

(t,q)∈W
 tq t q  

  )A(G , E , θ, β, α, θ, ϕ  −  (n)  (n)       

(G , E , θ, β, α, ϕ) log( xp ( (α Z G Z  (E )log(P (E | Z ) )A (n)  (n)     =  ∑
 

Z ∈Z  * S
e ∑

 

k∈K
k

*
k + βk

(n) *
k + I k

(n)
k

(n) *
k

  
 

                                        θ Z Z ))           +  ∑
 

(t,q)∈W
 tq

*
t

*
q  

To approximate this function , we use the Mean-Field Approximation (a subclass of(Z )ω(n) (n)  
Variational Inference) (44) and optimize  to minimize the KL-divergence between(Z )q(n) (n)  

 and (Z ) q(n) (n) (Z )ω(n) (n)  
where,  

where (Z ) (Z )q(n) (n) =  ∏
 

k∈K
qk (n)

 k
(n) (Z ) ) (1 )qk (n)

 k
(n) = (μk

(n) zk
(n)

− μk (n) (1−z )k
(n)

 

To minimize the KL-divergence for a given sample , we perform coordinate descent on eachn  
while holding all other dimensions (values of ) constant. Given that represents theμk (n) μj (n) (k)N  

set of all nodes that share an edge with node , the variational update for each is then:k μk (n)  

 where μk (n)(update) = exp(a  + I(E )log(P (E  | Z =1)))k k
(n)

k
(n)

k

exp (I(E )log(P (E | Z =0)) + exp(a  + I(E )log(P (E  | Z =1)))k
(n)

k
(n)

k k k
(n)

k
(n)

k
G μak = αk + βk

(n) + ∑
 

j∈N (k)
θkj j

(n)  

More specifically, for one instance , we iteratively do the following until convergence:n  
1. Loop through all  dimensions in a random order, and update each given the mostK μk (n)  

recent values of . Since coordinate ascent is not guaranteed to reach∀ j (k) μj (n) ∈ N  
the global optimum, we used damped updates for each in order toμk (n)  k ∀ ∈ K  
decrease the chance of getting stuck at a local optimum: 

a. (1 )  (η)μk (n)(iter i+1) =  − η * μk
(n)(iter i) +  * μk (n)(update)  
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b. We use a damping value ( ) of 0.8.η   
2. Compute the average difference, across all  dimensions, between the values of K μk (n)

from the current iteration and values of  from the previous iteration. Converge if theμk (n)  
average difference is less than 1x 10-8. 

Using the same notation as in “Watershed exact inference optimization routine”, Mean Field 
allows us to approximate the following expectations using converged estimates of :μk (n)  

1. (Z ) ω(n) (n) ≈  ∏
 

k∈K
) (1 )(μk

(n) zk
(n)

− μk (n) (1−z )k
(n)

 

2. (Z , Z ) ) (1 )  (μ ) (1 )  ω(n)
pair i

(n)  j
(n) ≈ (μi

(n) zi
(n)

− μi(n) (1−z )i
(n)

j
(n) zj

(n)
− μj (n) (1−z )j

(n)
 

3. (Z ) ω(n)
single i

(n) ≈ ) (1 )(μi
(n) zi

(n)
− μi(n) (1−z )i

(n)
 

 
We use both the approximate marginal posterior distributions and the approximate pairwise 
marginal posterior distributions in the M-step. However, when the number of dimensions ( ) isK  
large, optimization of the parameters ( , , and ) defining the conditional random fieldβ α θ  
becomes intractable. Therefore, we approximated the CRF objective function with the 
Pseudolikelihood (45) of the CRF. Given variational estimates of for all values of(Z ) μi(n)

i
(n)  

dimensions ( ) and all samples ( ), the (log) Pseudolikelihood objective function (includingi n  
priors on coefficients) is given by: 
 

) (α μ  G μ  μ μ  A(k, n, θ, β, α)∑
N

n=1
∑
 

k∈K
k k

(n) + βk
(n)

k
(n) +  ∑

 

j∈N (k)
θkj k

(n)
j
(n) −      ||β||  ||θ||−  2

λ
2 −  2

λ
2  

(k, n, θ, β, α) log( xp(α z G z  z μ ))A     =  ∑
1

z=0
e k + βk

(n) +  ∑
 

j∈N (k)
θkj j

(n)  

We computed closed form gradient updates of the above objective function and then optimized 
it using L-BFGS. 
 
In the second part of the M-step, we update as follows:∀ k  ϕk ∈ K  
 

(s, t) (E t) ω (Z  s) Cϕk  =  ∑
N

n=1
I k

(n) =  (n)
single k

(n) =  +   

 
Where  is an indicator operator, is the categorical value of expression , is the possibleI t Ek

(n) s  
binary values of , and  is the hyperparameter based on the Dirichlet prior on .Zk

(n) C  ϕ    
 
Once the EM algorithm has converged, we use marginal posterior distributions for each 
dimension i, in each instance n ( ) as estimates of probability that the nth (gene,(Z )ω(n)

single i = 1  
individual) pair has a nearby variant that has a functional effect on the gene (with respect to 
outlier dimension ).i  
 
GAM and RIVER 
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The genomic annotation model (GAM) is L2-regularized logistic regression using genomic 
annotations (G) as features and the binary outlier status of a specific outlier signal as the 
response variable. One GAM model was trained for each outlier signal. 
 
The only difference between Watershed and RIVER is that in RIVER is fixed to be a vector ofθ  
zeros. This allows RIVER to be optimized precisely as described in “Watershed exact inference 
optimization routine” assuming is fixed to be zero. It is important to note that RIVER hasθ  
changed slightly since its initial development (15) in the following way: we now use a categorical 
distribution ( ) with three categories instead of two to model . This change in RIVER was ϕ  | ZE  
made in order to make it directly comparable to Watershed. 
 
Applying Watershed to jointly model ASE, splicing, and expression  
We first applied Watershed to the GTEx V8 data using 3 outlier signals: median ASE, splicing, 
and expression. Recall, Watershed requires a set of genomic annotations (G) and a 
corresponding set of categorical outlier signals (E) over (gene, individual) instances. We first 
limited to a set of (gene, individual) pairs that passed the following set of filters in all 3 outlier 
signals: 

1. The individual was not a global outlier 
2. The gene has measured outlier signal for the corresponding individual 
3. The gene has at least one individual that is an outlier (median p-value < .01) 

This yielded a set of 36,702 (gene, individual) pairs that we used for training and evaluating the 
Watershed framework.  
 
To generate the genomic annotations (G) for each (gene, individual) pair, we limited to SNVs 
that fell within the gene body or +/- 10kb of each of the gene and then extracted 47 genomic 
annotations (Table S4) describing each of the SNVs including regulatory element annotations, 
conservation scores, and derived genomic scores from other models such as CADD. If a (gene, 
individual) pair had more than one SNV mapped to the gene, the genomic annotations were 
aggregated across the SNVs with simple transformations to generate gene-level genomic 
annotations (Table S4). The resulting gene-level genomic annotations were standardized (mean 
0 and standard deviation 1) before running Watershed. 1.93 x 10-5 
 
We generated the categorical outlier signals (E) for each (gene, individual) pair using 3 
categories per outlier signal. It is important to note that because of the filters described above 
there is no missingness in E. For aseOutliers and sOutliers, we assigned a gene with median 
p-value ( ) to:p  

1. Category 1 if og (p 10 ) 1− l 10 +  −6 <   
2. Category 2 if  = og (p 10 ) 41 <  − l 10 +  −6 <   
3. Category 3 if og (p 10 ) = 4− l 10 +  −6 >   

For eOutliers, we assigned a gene with median p-value ( ) and median Z-score (z) to:p  
1. Category 1 if and z < 0og (p 10 ) − l 10 +  −6 > 1  
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2. Category 2 if og (p 10 ) = 1− l 10 +  −6 <   
3. Category 3 if and z > 0og (p 10 ) − l 10 +  −6 > 1  

 
To train and evaluate Watershed, we identified the 3,411 cases where two or more individuals 
had the same rare SNV(s) near a particular gene. We held out those instances and trained 
Watershed on the remaining instances. For training, we set the hyperparameter  equal to 30,C  
motivated by the number of training instances. To select the hyperparameter , we trained andλ  
evaluated GAM on the training data for each outlier signal independently(assigning a sample an 
outlier label if outlier p-value < .01) with 5-fold cross validation while running a gridsearch on  λ
=.1,.01,.001. We selected the  with the largest median area under the precision recall curveλ  
(AUPRC) across the 5 folds. Each precision recall curve aggregated predictions across the 
three outlier signals. The optimal was found to be 0.001. Before running Watershed, weλ  
initialized and to be the intercept and slope parameters, respectively, of GAM (whenαk βk  

) trained on the full training data for outlier signal . was initialized to all zeros. .001λ = 0 k θ  ϕk
was initialized using the MAP updates described in “Watershed exact inference optimization 
routine”, except we used the GAM (when ) posterior probabilities to approximate.001λ = 0  

.(Z  s)ω(n)
single k

(n) =   
 
We evaluated various trained models (Watershed, RIVER, GAM, CADD) using the 3,411 cases 
where two individuals had the same rare SNV(s) near a particular gene (we will refer to these 
instances as N2 pairs). Specifically, we estimated the posterior probability of a functional rare 
variant (according to each of the models) in the first individual from the pair, allowing Watershed 
to use all data available for that individual.  We then used the outlier status of the second 
individual as a ‘label’ for evaluation. In order to make the fraction of outlier instances 
comparable between different outlier signals, we defined a (gene, individual) pair to be an outlier 
for a specific outlier signal if its outlier p-value was ranked amongst the 1% most significant 
p-values for that outlier signal (across training and N2 pair instances).  For an N2 pair, we did 
this evaluation in both directions: predict on the first individual and evaluate on the second, as 
well as predict on the second individual and evaluate on the first.  Importantly, none of the N2 
pairs were used in training any of the models. 
 
Applying Watershed to jointly model outlier signals from each tissue (tissue-specific 
Watershed) 
Next, we trained three independent tissue-specific Watershed models (one each for ASE, 
splicing, and expression) where each model considered effects in all tissues, giving 49 
phenotypes, corresponding to 49 Z and E variables each. In order for these models to be 
comparable to the model described in “Applying Watershed to jointly model three outlier types”, 
we used the same set of (gene, individual) pairs. We therefore used the same extracted and 
processed genomic annotations (G).  
 



We generated the categorical outlier signals (E) for each (gene, individual) pair in a particular 
tissue (for a particular outlier signal) using 3 categories. It is important to note that, unlike the 
first application of Watershed to three median signals, there is now missingness in E as a (gene, 
individual) pair does not have measured outlier signal across all 49 tissues in GTEx. For ASE 
and splicing outliers, for a particular tissue, we assigned a gene with p-value ( ) to:p  

1. Category 1 if og (p 10 ) 1− l 10 +  −6 <   
2. Category 2 if  = og (p 10 ) 41 <  − l 10 +  −6 <   
3. Category 3 if og (p 10 ) = 4− l 10 +  −6 >   

For expression, outliers, for a particular tissue, we assigned a gene with p-value ( ) andp  
Z-score (z) to: 

1. Category 1 if and z < 0og (p 10 ) − l 10 +  −6 > 1  
2. Category 2 if og (p 10 ) = 1− l 10 +  −6 <   
3. Category 3 if and z > 0og (p 10 ) − l 10 +  −6 > 1  

 
To train and evaluate Watershed, we identified the 3,411 cases where two individuals had the 
same rare SNV(s) near a particular gene. We held out those instances and trained Watershed 
on the remaining instances. For training, we set the hyperparameter  equal to 10, motivatedC  
by the number of training instances with observed outlier calls. We selected based on.001λ = 0  
cross-validation in “applying Watershed to jointly model three outlier types”. We initialized andαt  

to be the intercept and slope parameters, respectively, of GAM (when ) trained onβt .001λ = 0  
the full training data from tissue t. was initialized to all zeros. was initialized using the MAPθ  ϕt  
updates described in “Watershed exact inference optimization routine”, except we used the 
GAM (when ) posteriors to approximate ..001λ = 0 (Z  s)ω(n)

single k
(n) =   

 
We took a very similar approach as described in “Applying Watershed to jointly model ASE, 
splicing and expression” to evaluate various trained models (Watershed, RIVER, GAM). In this 
setting however, both model predictions and outlier labels were in a single tissue as opposed to 
the median across tissues. As E contains missingness in this setting, we required both 
individuals in the N2 pair to have observed outlier signal for the gene of interest in the 
corresponding tissue. 
 
UKBB GWAS 
We assessed GWAS summary statistics from the UK Biobank (UKBB) phase 2, as made 
available by the Neale lab (http://www.nealelab.is/uk-biobank/). We subsetted the variants, 
either genotyped or imputed, in UKBB phase 2 to those SNVs that also appeared in any GTEx 
individuals and had a frequency of < 1% in GTEx, which resulted in 45,415 SNVs, filtered to 
those not flagged as low confidence due to very low allele counts. Because we are targeting 
rare variants occurring at  frequencies too low to obtain a trait association with genome-wide 
significance, we focused on the effect size estimates and did not filter by p-value. We defined 
outlier variants in this context as any rare variant appearing near an eOutlier, sOutlier, or 
aseOutlier in GTEx and also appearing in UKBB. We defined non-outlier variants as rare GTEx 

http://www.nealelab.is/uk-biobank/


variants appearing in UKBB, but not falling near an outlier of any type, though within 10kb of a 
gene for which any individual was an outlier. We subsetted to 34 traits tested for colocalization 
between the UKBB GWAS and GTEx eQTL/sQTL studies. When filtering to colocalized regions, 
we included as a colocalization event any gene that had a colocalization posterior probability > 
0.5, for both eQTLs and sQTLs (The GTEx Consortium 2019, in submission). We combine both 
enloc (46) and coloc (47) results for eQTL colocalization and enloc results for sQTL 
colocalization. This resulted in 4,787 variants across 1,323 genes and 34 traits with any 
significant co-localization in an included UKBB trait (Table S2). We transformed the |effect sizes| 
to percentiles, based on all rare GTEx SNVs that also appear in any UKBB samples tested for 
the included traits. When showing actual beta values for binary traits, we scaled according to 
the case-control ratio  for the given trait, dividing the effect size estimates by .μ 1 )μ * ( − μ  
 
We filtered the set of GTEx rare variants in UKBB to those in colocalized regions, defined as 
being in a colocalized gene or within 10kb, and by the maximum Watershed posterior for that 
variant-gene combination across all data types (ASE, splicing, expression) and all tested 
individuals. We compared this to a genomic annotation based metric, CADD. We obtain an 
effect size  for both Watershed posterior and CADD score in predicting variant effect sizeβ  
percentiles in co-localized regions using the following model: , where  is a vectorX  ε P ~ β +  P  
of variant effect size percentiles and  is a vector of either Watershed posteriors or CADDX  
scores for the same variant set. 
 
We calculated the proportion of resulting variants that fall in the top 25% of effect sizes within 
colocalized regions for the associated trait across a range of posterior thresholds. We compared 
that proportion to the set we would obtain if filtering by a CADD score chosen to return an equal 
number of variants, prior to intersecting with colocalized regions. Additionally, we took 1000 
random samples from the set of rare variants of an equal number to the actual number obtained 
by filtering at each threshold and assessed the proportion of random variants that fall in the top 
25% of effect sizes for each colocalized trait. For replication in the Million Veterans Program, we 
obtained summary statistics for a 250kb region on either side of the variant of interest for four 
lipid associated traits. We calculated the |effect size| percentile for all rare variants (gnomAD AF 
< 0.1%) in that region and plot the absolute effect sizes vs the gnomAD allele frequency. 
 
Watershed predictions for UKBB variants 
We used the Watershed model that was previously trained on the 34,837 (gene, individual) 
pairs described in “Applying Watershed to jointly model ASE, splicing, and expression” to make 
Watershed predictions on the 45,415 SNVs described in “UKBB GWAS”. To make genomic 
annotations comparable, the genomic annotations describing the 45,415 UKBB SNVs were 
standardized according to the mean and standard deviation of the genomic annotations from 
“Applying Watershed to jointly model ASE, splicing, and expression”. It is important to note that 
the Watershed model was trained across (gene, individual) pairs and predictions were made 
across (gene, SNV, individual) triplets.  
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Supplementary Materials: 

Supplementary Figures 

 
Figure S1. Outlier distribution and effect of eQTL correction. (A) Number of outliers per 
individual across each population defined by self-reported race, at a threshold of p < 0.0027. (B) 
Number of eOutliers split by direction of the expression effect. (C) Effect of correcting for 
strongest cis eQTL per gene on nearby rare variant (SNV+indels) enrichments for eOutliers. 
 
 
 



 
Figure S2. sOutlier split read count processing. The number of unique (A) junctions, (B) 
LeafCutter clusters, and (C) genes that are found in each tissue (rows) after split read count 
quantification and processing. 
 



 
Figure S3. SPOT gene level correction. (A) Scatterplot showing the sOutlier p-valuesog− l 10  
in Muscle-Skeletal tissue at the gene level before the gene-level correction (x-axis) and after the 
gene level correction (y-axis) for the number of LeafCutter clusters mapped to each gene 
(color). (B) The distribution of sOutlier p-values in Muscle-Skeletal tissue at the gene level 
before the gene level correction (teal) and after the gene level correction (salmon) for the 
number of LeafCutter clusters mapped to each gene. 
 



 
Figure S4. Quality control for ASE processing. (A) Average number of tests per individual 
tissue sample ± range. The total number of VG scores available per tissue is shown above in 
green, with the total samples available per tissue. (B) The total number of times a gene was 
tested by considering its median ANEVA-DOT p-value vs the number of times it was called as 
an outlier. We call global outliers by drawing a 95% binomial confidence interval around the 
outlier frequency for each gene, and flagging all genes where the interval contains 1% or 
greater. Global outlier genes were removed from downstream analysis. (C) Distribution of 
median number of scores available across all three outlier methods, limiting to coding genes 
above, and coding genes with a median TPM > 10 across all individuals and tissues below. 
 



 
Figure S5. ANEVA estimates of genetic variance in gene expression (VG). (A) Comparison 
of VG estimates for an example tissue (Adipose subcutaneous) derived from GTEx v8 dataset 
compared to that of  v7. The red line represents x=y. (B) Distribution of the spearman 
correlation coefficient between VG estimates from v7 and v8 across all GTEx tissues. The lower 
and the upper whiskers indicate 1.5 interquartile range from the first and the third quartile, 
respectively.  (C) The number of genes with VG estimates available across GTEx tissues in each 
version. 
 



 
Figure S6. Comparing outliers across methods. (A) Of the set of individuals and genes 
tested across all data types, the fraction discovered via one method that also meet the outlier 
thresholds (p < 0.0027) in another method. Across all data types, 624 individuals and 8,722 
genes, including 2,281,262 unique combinations, were tested by all methods. (B) The 
proportion of outliers shared across all methods assigned to the given rare variant category 
nearby the outlier gene. Of the 2,209 aseOutliers, 1,385 sOutliers, and 624 eOutliers discovered 
at this threshold among the shared set, 35 individual-gene pairs are found by all three methods, 
encompassing 31 unique genes. (C) Of the set of eOutliers and aseOutliers within this set, the 
distribution of |median Z-scores| for outliers in both types, expression alone, ASE alone, or 
non-outliers for the same set of genes. Blue lines represent the 50th percentile. (D) The 
proportion of aseOutliers with a nearby rare variant of a given type split by the corresponding 
median Z-score bin for the same individual-gene pair. 
 



 
Figure S7. Comparison of variant class enrichments across methods. (A) For each variant 
category, the maximum enrichment across data types over the enrichment for the remaining two 
data types. (B) For each variant category, the proportion of variant occurrences leading to an 
outlier across all categories, with INV removed due to either very low or zero instances. Those 
marked ns indicate that in 1000 iterations permuting outlier status, a proportion greater than or 
equal to the actual proportion was found greater than 5% of the time. 
 
 
 



 
Figure S8. Outliers occurring together within a given window. (A) At varying window sizes, 
the number of observed vs expected outliers occurring together within that window. Expected 
numbers were generated from sampling an equal number of outlier genes from randomly 
chosen individuals. (B) The enrichment, calculated as log2 ratio of the observed number of 
outliers occurring in the same window over expected, across different window sizes. (C) In A 
and B, we filter out any splicing gene pairs that share a cluster, see Supplemental Methods. 
Here, we calculate the enrichments for sOutliers including those gene pairs. (D) For eOutlier 
pairs, the relative risk of one or both genes in the pairs found within a 100kb window having a 
nearby rare CNV, DUP, or TSS variant as compared to individuals who are only outliers for one 
of the genes in the pair.  



 
 
Figure S9. Enrichment of rare variants nearby splice sites in sOutliers. (A) Relative risk 
(y-axis) of rare variants within various window sizes around splice sites (x-axis) for sOutlier 
(median LeafCutter cluster p-value < 1 x 10-5) clusters relative to non-outlier clusters at several 
p-value thresholds (color). (B) Junction usage of a splice site is the natural log of the fraction of 
reads in a LeafCutter cluster mapping to the splice site of interest in sOutlier (median LeafCutter 
cluster p-value < 1 x 10-5) samples relative to the fraction in non-outliers samples aggregated 
across tissues by taking the median. Junction usage (y-axis) of the closest splice sites to rare 
variants that lie within the splicing consensus sequence binned by the type of variant (x-axis). 
 
 

 
Figure S10. sOutlier variants in consensus sequence of splice sites with high junction 
usage. Independent position weight matrices showing mutation spectrums of sOutlier (median 
LeafCutter cluster p-value < 1 x 10-5) rare variants at positions relative to splice sites with 
positive junction usage (ie. splice sites used more in outlier individuals than in non-outliers). 
 



 
 

 
 
Figure S11. sOutlier variants in consensus sequence of annotated and novel splice sites. 
Proportion of sOutlier (median LeafCutter cluster p-value < 1 x 10-5) and non-outlier variants, at 
each position in the splicing consensus sequence, that create the consensus sequence (blue) or 
destroy the consensus sequence (red) where variants are binned by whether the nearby splice 
site is annotated or novel (rows). 
 

 
Figure S12. sOutlier variant type enrichments in PPT. Relative risk for sOutliers relative to 
non-outliers (median LeafCutter cluster p-value < 1 x 10-5) of having a rare variant that is located 
in PPT (5 to 35 base pairs upstream from an acceptor splice site) having a specific mutation 
spectrum (x-axis). Relative risk calculation done separately for annotated (A) or novel (B) splice 
sites.  
 



 
Figure S13. Single tissue sOutlier enrichments. (A) Relative risk, in each tissue 
independently, of rare variants being located in a 6 base pair window around splice sites for 
sOutlier LeafCuter clusters (per tissue LeafCutter cluster p-value < 1 x 10-5)  relative to 
non-outlier clusters. (B, C) Per tissue junction usage of a splice site is the natural log of the 
fraction of reads in a LeafCutter cluster mapping to the splice site of interest in sOutlier (per 
tissue LeafCutter cluster p-value < 1 x 10-5) samples relative to the fraction in non-outliers 
samples, in a single tissue. (B) Per tissue junction usage (y-axis) of the closest splice sites to 
rare variants that lie within the splicing consensus sequence binned by the type of variant 
(x-axis). (C) Per tissue junction usage (y-axis) of the closest splice sites to rare variants that lie 
within a PPT ([A-5, A-35]) binned by the type of variant (x-axis). 
 



 
Figure S14. Outlier status sharing across tissues detail. (A) Percent sharing heatmaps 
where for all outlier individual-gene pairs (nominal p value < .0027) in a discovery tissue, we 



measure the percentage of cases where the same individual-gene pair is also an outlier in a test 
tissue. In the upper row of heatmaps, we limit the analysis to only the genes tested in both 
tissues, to answer the biological question of how consistent the outlier status is across tissues 
that co-express a gene. This is the same figure as in the main text. The lower row of heatmaps 
considers a missing datapoint as a non-shared outlier status, and addresses the utility of each 
method in diagnosing expression outlier status in a tissue of interest using a different tissue as a 
proxy. (B) Median percent sharing across all tissue-tissue pairs (± 95% bootstrap confidence 
interval), with and without considering missing values as “non-shared”. aseOutliers are affected 
the most by missing values. (C) Median replication percentage of aseOutlier status in one 
discovery tissue across all test tissues (top), and median replication percentage of outlier status 
in one test tissues across all discovery tissues (bottom). The black bars indicate the observed 
range of values across all individuals. Here, outlier status is declared when a gene has a 
Benjamini-Hochberg corrected p-value < .05. While for consistency between the three 
transcriptome outlier methods we use a high significance threshold on the nominal p-values in 
all other analyses, the FDR correction is the recommended approach when using ANEVA-DOT 
p-values in most applications. We observe a considerably higher rate of outlier status sharing, 
when considering genes passing false discovery rate correction. (D) The GTEx tissue color key. 
 
 

 
Figure S15. Single tissue eOutlier enrichments across thresholds. Relative risk estimates 
for nearby rare SNVs (A), indels (B) and SVs (C) in single-tissue outliers vs controls using 
|Z-score| thresholds between Z=1 and Z=10, with each point representing a single tissue. 
 
 



 
Figure S16. Comparison of imputation methods and correlation outlier enrichments. (A) 
Reconstruction error across genes when holding out 10% of known expression values for 
various imputation approaches. (B) Reconstruction error across genes for different values of k 
when performing k-nearest neighbors imputation per gene, with the pink box highlighting the 
value with the lowest error. (C) Relative risk of a rare SNV/indel or rare SV nearby correlation 
outliers called using covariance matrices estimated using KNN-imputed expression data across 
varying thresholds, as compared to an equal number of outliers called by estimating the 
covariance matrix from complete entries, without imputation. Many more outliers are identified 
as compared to the median Z-score approach, particularly at the less stringent thresholds. 
 

 
Figure S17. Precision recall curves for Watershed and CADD. Precision-recall curves 
comparing performance of Watershed and CADD (colors) using held out pairs of individuals for 
all three median outlier signals. 
 



 
Figure S18. Watershed confusion matrices. Confusion matrices comparing performance of 
RIVER (top), Watershed with parameters optimized via exact inference (middle), and Watershed 
with parameters optimized via approximate inference (bottom) in jointly predicting outlier status 
of all three outlier signals (class) using held out pairs of individuals. The first element of the 
binary class abbreviations represents median splicing outlier status, the second element of the 
class abbreviations represents median expression outlier status, and the third element of the 
class abbreviations represents ASE outlier status. An observed class of “1 0 1” therefor 
corresponds to a sample that is an outlier for splicing and ASE, but not expression. The 
predicted class of a sample is the class (out of the 8 classes) that has the largest posterior 
probability. Columns each heatmap are normalized to sum to one. 
 



Figure S19. Prioritization of variants that lead to outliers with Watershed. The proportion of 
rare variants, with Watershed posterior probability greater than 0.5 (A), 0.7 (B), 0.9 (C) (right), 
with GAM probability greater than a threshold set to match the number of Watershed variants 
for each outlier signal (center), and with CADD score greater than a threshold set to match the 
number of Watershed variants for each outlier signal (left), that lead to an outlier at a median 
p-value threshold of 0.0027 across three outlier signals (colors). Watershed, GAM, and CADD 
models evaluated on held-out pairs of individuals.  
 
 



 
Figure S20. Comparison of exact and approximate inference in Watershed. (A) Scatterplot 
comparing Watershed (applied to median ASE, splicing, and expression outlier signals) 
genomic annotation coefficients ( ) when model was optimized using exact inference (x-axis)β  
compared to when model was optimized using approximate inference (y-axis) colored by which 
outlier signal the coefficient predicted. (B) Precision-recall curves comparing performance of 
RIVER, Watershed optimized via exact inference, and Watershed optimized via approximate 
inference (colors) using held out pairs of individuals for all three median outlier signals. 



 



Figure S21. Tissue-specific Watershed edge weights. Learned tissue-specific Watershed 
edge weights ( ) between pairs of tissue-specific outlier signals after training Watershed onθ  
ASE (top), splicing (middle), and expression (bottom) outliers across single tissues. 
 

 
Figure S22. Area under precision recall curves in single tissues. Area under precision recall 
curves (AUC (PR); y-axis) in a single tissue (x-axis) for Watershed (blue) and RIVER (red) when 
applied outliers across single tissues for all 3 outlier types (rows). Precision recall curves in each 
tissue generated using held out pairs of individuals where both individuals share the same rare 
variant and have observed outlier signal for the gene of interest. We limit to tissues that have at 
least 5 held out pairs of individuals that have outlier labels in ASE, splicing, and expression. 
 



Figure S23. Area under precision recall curves in single tissues. Area under precision recall 
curves evaluated on outlier calls in a single tissue (x-axis) for each of the three outlier types 
(rows) based on a Watershed model trained across single tissues (blue) and a RIVER model 
trained on the median outlier signal (green). Precision recall curves in each tissue generated 
using held out pairs of individuals where both individuals share the same rare variant and have 
observed outlier signal for the gene of interest. We limit to tissues that have at least 5 held out 
pairs of individuals that have outlier labels in ASE, splicing, and expression. 
 
 
 
 



 
Figure S24. High CADD and Watershed variants in UKBB. (A) Distribution of the maximum 
Watershed posterior per variant for the set of variants in co-localized regions tested by 
Watershed and in UKBB. (B) Distribution of CADD scores per variant for the same set of 
variants in co-localized regions tested by Watershed and in UKBB. (C) The maximum 
Watershed posterior vs. CADD score for the tested variants in UKBB. The blue lines represent 
cut-offs of watershed posterior > 0.5, and the matching CADD threshold, 2.3, to obtain the same 
number of variants. (D) Of the high watershed and CADD variants in colocalized regions, the 
proportion of Watershed variants belonging to a specific category over the proportion of CADD 
variants in the same category. The y-axis is log-scaled, so bars below 1 indicate the category is 
more common in high CADD variants, and vice versa. (E) Filtering by the CADD score that 
returns the same number of variants as the Watershed posterior on the x-axis, and returning the 
proportion that fall in the top 25% of effect sizes across traits in co-localized regions (red), and 
the proportion obtained by selecting a random set of tested variants equal in size (black). 
 



 
Figure S25. Distribution of rs564796245 effect sizes in UKBB and MVP. (A) The UKBB MAF 
vs. absolute value of the effect size on self-reported high cholesterol for all variants within 10kb 
of the high Watershed variant, in pink, rs564796245. (B) All variants within a 250kb window of 
the same variant tested for four related traits in the MVP cohort. The variant has a minor allele 
count of 11 in MVP, and for the set of rare variants tested in this window with a gnomAD 
non-Finnish European AF < 0.1%, it falls in the 99th percentile for HDL, 95th for LDL, 97th for 
Total Cholesterol, and 95th for Triglycerides. 

Supplementary Tables 

Supplementary Table 1. Tissue mapping for Roadmap to GTEx. Table mapping tissues 
collected in GTEx to equivalent tissues assayed in the Epigenomics Roadmap project. This 
includes 12 unique Roadmap tissues and 14 unique GTEx tissues, with some different GTEx 
tissues mapping to the same Roadmap tissue.  
Supplementary Table 2. UKBB traits and colocalizations. Table of the 34 UKBB traits 
included in our analysis and the number of colocalized genes and rare GTEx variants 
associated with each trait that overlap those tested in the UKBB dataset. 
Supplementary Table 3. High Watershed variants with high effect sizes. Table of the rare 
GTEx variants that had both high Watershed scores and high trait effect sizes for the set of 
UKBB traits tested. This includes the variant, gene, Watershed score, trait, effect size, and the 
effect size percentile. 
Supplementary Table 4. Watershed genomic annotations. Table summarizing the 47 
genomic annotations used in Watershed. This includes a description of each annotation, the 
source of each annotation, the imputation value used for each annotation (if the annotation was 
undefined for a particular variant), and the transformation used to aggregate across all SNVs 
mapped to (gene, individual) pair for each annotation (only applicable if a (gene, individual) pair 
had more than one SNV mapped to the gene). 
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