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Abstract 17 

Xenobiotic exposure activates or inhibits transcription of hundreds of protein-coding genes in 18 

mammalian liver, impacting many physiological processes and inducing diverse toxicological 19 

responses. Little is known about the effects of xenobiotic exposure on long noncoding RNAs 20 

(lncRNAs), many of which play critical roles in regulating gene expression. Objective: to develop a 21 

computational framework to discover liver-expressed, xenobiotic-responsive lncRNAs (xeno-lncs) 22 

with strong functional, gene regulatory potential and elucidate the impact of xenobiotic exposure on 23 

their gene regulatory networks. We analyzed 115 liver RNA-seq data sets from male rats treated with 24 

27 individual chemicals representing seven mechanisms of action (MOAs) to assemble the long non-25 

coding transcriptome of xenobiotic-exposed rat liver. Ortholog analysis was combined with co-26 

expression data and causal inference methods to infer lncRNA function and deduce gene regulatory 27 

networks, including causal effects of lncRNAs on protein-coding gene expression and biological 28 

pathways. We discovered >1,400 liver-expressed xeno-lncs, many with human and/or mouse 29 

orthologs. Xenobiotics representing different MOAs were often regulated common xeno-lnc targets: 30 

123 xeno-lncs were dysregulated by at least 10 chemicals, and 5 xeno-lncs responded to at least 20 of 31 

the 27 chemicals investigated. 81 other xeno-lncs served as MOA-selective markers of xenobiotic 32 

exposure. Xeno-lnc−protein-coding gene co-expression regulatory network analysis identified xeno-33 

lncs closely associated with exposure-induced perturbations of hepatic fatty acid metabolism, cell 34 

division, and immune response pathways. We also identified hub and bottleneck lncRNAs, which are 35 

expected to be key regulators of gene expression in cis or in trans. This work elucidates extensive 36 

networks of xeno-lnc−protein-coding gene interactions and provides a framework for understanding 37 

the extensive transcriptome-altering actions of diverse foreign chemicals in a key responsive 38 

mammalian tissue.  39 

  40 
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Introduction 41 

Many industrial chemicals, drugs, environmental toxicants, and other foreign chemicals, collectively 42 

known as xenobiotics, have adverse effects on humans and other species [1, 2]. Mammalian liver is a 43 

key xenobiotic-responsive tissue: it undergoes major changes in gene expression and the epigenetic 44 

landscape, which impacts many biological pathways and induces diverse toxicological responses. 45 

Many of these responses are mediated by nuclear receptors or other transcription factors that bind 46 

foreign chemicals directly, or whose activity is indirectly altered by xenobiotic exposure [3] or by 47 

other mechanisms of action (MOAs) [4-6]. Elucidation of the gene targets, gene expression networks, 48 

and MOAs of xenobiotics is critical for the evaluation and interpretation of toxicological outcomes 49 

and hazard risk assessment.  50 

Long noncoding RNAs (lncRNAs) comprise a significant fraction of the mammalian transcriptome and 51 

are often expressed in a highly tissue-specific or condition-dependent manner. LncRNAs act by 52 

diverse mechanisms to exert regulatory effects [7], including transcriptional, epigenetic and 53 

translational control of gene expression [8]. Many lncRNA genes are responsive to endogenous 54 

hormones [9, 10] or to environmental factors in mouse liver, as we recently observed in mice 55 

exposed to TCPOBOP, an agonist ligand of the nuclear receptor constitutive androstane receptor 56 

(CAR) [11]. It is unclear, however, whether lncRNAs respond to xenobiotics that activate receptors 57 

controlling other biological pathways, such as peroxisome proliferator-activated receptor  or  58 

(PPARA, PPARG), estrogen receptor (ER), and aryl hydrocarbon receptor (AhR), or to xenobiotics that 59 

act by other MOAs, including DNA damage or cytotoxicity (Scheme 1). LncRNA responses to chemical 60 

exposures may be MOA-specific, or alternatively, lncRNAs may respond in common to diverse 61 

chemicals that act via distinct MOAs. Further, the biological pathways associated with xenobiotic-62 

responsive lncRNAs are almost totally unknown. Gain-of-function [12] and loss-of-function studies 63 

[13] have been used in cell culture screens to identify lncRNAs required for cell growth and drug 64 

resistance [13, 14], but such screens are not readily implemented in intact animal models. Given the 65 

widespread effects that at least some xenobiotics have on lncRNA expression [11], there is a critical 66 

need for a systematic, genome-wide approach to identify lncRNAs that respond to diverse 67 

xenobiotics in vivo, including chemicals that act via different MOAs, and to discover the biological 68 

pathways and pathological responses they may control. 69 

Here, we use RNA-seq datasets from livers of male Sprague-Dawley rats exposed to one of 27 70 

different xenobiotics representing seven distinct MOAs [6, 15] to discover several thousand novel 71 

liver-expressed lncRNAs and elucidate their responses to xenobiotic exposure. We identify 81 MOA-72 

selective lncRNAs, as well as hundreds of lncRNAs that respond in common to xenobiotics acting 73 

through different MOAs. Further, we implement powerful data-driven approaches (Figure 1) for gene 74 

co-expression and network analysis to identify xenobiotic-responsive gene modules enriched in 75 

diverse cellular processes and to discover xenobiotic-responsive lncRNAs that occupy key regulatory 76 

points for important biological pathways commonly perturbed in xenobiotic-exposed mammalian 77 

liver.   78 

 79 

Materials and Methods 80 

lncRNA discovery – 115 RNA-seq datasets from livers of male Sprague-Dawley rats exposed to one of 81 

27 individual chemicals representing 7 MOAs (Table S1) were downloaded from GSE47792 [6]. 82 
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Sequence reads were mapped to the rat genome (rn6) [16] using TopHat2 [17] with default 83 

parameters, including multi-mappable reads. Mapping rates ranged from 65-95% across samples. 84 

Cufflinks and Cuffmerge [18] were used to assemble a transcriptome comprised of both coding and 85 

non-coding transcripts. Transcript annotation for lncRNAs was based on three key features: transcript 86 

length >200 nt, low or no coding potential, and absence of overlap with known protein-coding genes 87 

(PCGs) [19]. Two approaches were used for lncRNAs discovery. Approach 1 [9]: First, transcripts that 88 

do not contain the above three key lncRNA features were filtered out. Thus, the 144,636 rat liver 89 

transcripts generated by Cufflinks were scanned for genes that overlap known RefSeq gene 90 

annotations. Transcripts exhibiting similarities to PCGs based on their coding potential and codon 91 

degeneracy were removed. Transcripts were converted into mature RNA sequences by exon 92 

concatenation, translated using all six open reading frames, then evaluated for the presence of 93 

protein-domain like regions (Pfam) using HMMER [20]. PhyloCSF [21] was used to identify 94 

evolutionary signatures with characteristic alignments of conserved coding regions and to distinguish 95 

PCGs from non-coding lncRNAs based on synonymous codon substitution frequencies and 96 

conservative amino acid substitutions. The coding potential of each genomic region was evaluated 97 

based on a log-likelihood ratio: transcripts with a positive score have an increased likelihood of 98 

coding for a functional protein and were discarded. The second filter excluded transcripts expressed 99 

below a fragment per kilobase length per million sequence reads (FPKM) cutoff tailored for each 100 

RNA-seq sample, which are likely to have truncated gene boundaries [9]. Genes longer than 200 nt 101 

were retained in the final set of rat liver lncRNAs. Approach 2: We used the lncRNA discovery tool 102 

Slncky [22] to identify an initial set of lncRNAs from the same 115 RNA-seq samples, filtered to 103 

remove known pseudogenes, PCGs, and artifacts from transcript assembly, and then assessed the 104 

coding potential for small peptides or novel proteins. Slncky excludes transcripts that overlap 105 

unannotated PCGs or incomplete transcripts that align to untranslated region sequences. Next, it 106 

aligns putative lncRNAs to syntenic non-coding transcripts in other, related species. Slncky then scans 107 

each significant alignment and reports back any aligned open reading frame >30 base pairs, then 108 

calculates it’s non-synonymous to synonymous substitution (dN/dS) ratio. Transcripts with dN/dS >1 109 

have significant coding potential and are excluded. Bedtools [23] was used to determine the overlap 110 

between the lncRNAs discovered using Approach 1 and Approach 2 to obtain a combined set of 5,795 111 

lncRNAs (Table S2), which includes 3,342 RNA transcripts common to both lncRNA discovery 112 

pipelines. 2,164 (37%) of the 5,795 lncRNAs are multi-exonic sequences.  113 

Expression quantification and clustering analysis - The full set of 115 rat liver RNA-seq samples was 114 

analyzed using a standard RNA-seq analysis pipeline. Sequence reads were mapped to the reference 115 

rat genome (rn6) using TopHat2 (v2.0.13). FeatureCounts v.1.4.6 [24] was used for read counting for 116 

both RefSeq genes (PCGs), and exon-collapsed regions of lncRNAs using a custom GTF file, available in 117 

Supplementary Materials (Rat_Liver_lncRNA.gtf). EdgeR [25] was used to identify 2,637 PCGs and 118 

1,447 lncRNAs (xeno-lncs) that showed significant differential expression in any of the 27 chemical 119 

exposure datasets, based on these thresholds: gene up-regulation or down-regulation by at least one 120 

chemical at |fold-change (FC)| > 4, FPKM > 0.5, and Benjamini-Hochberg corrected false discovery 121 

rate (FDR) < 0.05. Differential expression data is available in Table S3A (xeno-lncs) and Table S3B 122 

(PCGs). Hierarchical clustering using Euclidean distance metric and Ward.d2 minimum variance 123 

criterion was used for clustering analysis. 124 

Ortholog discovery and multi-species comparisons - Primary sequence conservation was combined 125 

with syntenic conservation to discover lncRNA orthologs in the mouse and human genome, as 126 

implemented using Slncky [22]. For mouse orthologs, we considered a set of 15,558 mouse liver-127 

expressed lncRNAs [10, 11] plus 18,065 mouse lncRNAs found in GENCODE (version M21) and 87,774 128 
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lncRNAs in NONCODE (v5). For human orthologs we considered 18,151 lncRNAs in GENCODE (version 129 

21), 96,308 lncRNAs in NONCODE (v5) [7], and 662 human lncRNAs involved in cancer (onco-lncs) that 130 

we curated from PubMed. NONCODE (v5) [26] (http://www.noncode.org/) integrates annotations from 131 

LNCipedia [27] (https://lncipedia.org/), lncRNAWiki [28] and manual searches. Slncky uses two metrics 132 

to characterize the conservation properties of lncRNA orthologs: transcript-genome identity (TGI; 133 

percent of identical, aligning nt between a rat lncRNA and a non-transcribed locus in a syntenic region in 134 

the mouse, or human, genome); and transcript-transcript identity (TTI; percentage of identical, aligning 135 

nt present in the exonic regions of lncRNAs in both species). A TGI or TTI threshold of 30% conservation 136 

of the rat lncRNA sequence was used to define lncRNA orthologs. Putative functions for rat lncRNAs 137 

were deduced from GENCODE or NONCODE annotations [29] or from our PubMed searches for the 774 138 

of 1,447 rat liver xeno-lncs that shared orthology with mouse lncRNAs (267 orthologs), human lncRNAs 139 

(179 orthologs), or both mouse and human lncRNAs (328 orthologs) (Table S4). 140 rat-mouse lncRNA 140 

ortholog pairs that respond to CAR or PXR in both species were identified as follows. First, we 141 

considered the set of 2,029 CAR/PXR-responsive rat liver lncRNAs defined at a relaxed threshold of 142 

|FC|>2 at FDR <0.05 (Table S5A). Of these, 381 are orthologous to one of the 15,558 mouse liver-143 

expressed lncRNAs that we described earlier [10, 11]. Next, we identified the subset of these 381 144 

CAR/PXR-responsive rat xeno-lncs that is found in at least one of two sets of CAR/PXR-responsive 145 

mouse liver lncRNAs, which we discovered by analyzing published RNA-seq data for expression of the 146 

above 15,558 mouse liver-expressed lncRNAs. Set 1 = 1,166 mouse liver lncRNAs that respond at |FC|>2 147 

at FDR <0.05 to either pregnenolone 16α-carbonitrile (mouse PXR activator) or TCPOBOP (mouse CAR 148 

activator, after 3 or 27 h) [11]; and Set 2 = 1,339 mouse liver lncRNAs that respond at |FC| >2 and FDR 149 

<0.05 to TCPOBOP or to the human CAR activator CITCO after a multi-day exposure in mice at either 5 150 

or 60 days of age (GSE98666) [30] (Table S5B). A total of 140 CAR/PXR-responsive rat lncRNAs had a 151 

mouse ortholog that responded to CAR or PXR activation in at least one of the mouse datasets (Table 152 

S5C).  153 

Tissue-specific co-expression networks - We used two complementary methods that employ 154 

hierarchical clustering based on gene co-expression data to assign co-regulated rat liver lncRNAs and 155 

PCGs to co-expression network modules. Weighted Gene Co-expression Network Analysis (WGCNA) 156 

[31] uses an agglomerative (bottom-up) clustering approach starting with a similarity matrix S, which 157 

is comprised of Pearson correlation values for each gene pair i and j, defined as sij= |cor(i,j)|. We 158 

transformed the similarity matrix into an unsigned adjacency matrix A by raising the correlation 159 

values to a power (‘soft’ threshold): aij = sβij with β≥1. The power β, which produces a higher 160 

similarity with a scale−free network, was used to emphasize strong correlations and punish weak 161 

correlations on an exponential scale. We selected the parameter β=12 using the pickSoftThreshold 162 

function in the WGCNA R package. Next, the adjacency matrix was converted into a distance measure 163 

(dissTOM = 1-Topological Overlap Matrix), which calculates the edge weight between two nodes 164 

based on its network neighbors and minimizes the effects of noise and spurious associations [32]. 165 

Ultimately, we identified eight rat liver xeno-gene/xeno-lnc co-expression modules (Table S6A) by 166 

applying the branch cutting method dynamic TreeCut [33]. WGCNA is superior in finding biological 167 

relevant modules, but has two major limitations: modules are often large, which complicates 168 

downstream refinement of biological processes; and each gene can only be assigned to a single 169 

module, which may not fully capture the complex biology, where individual genes play essential roles 170 

in more than one biological process. The second method, Multiscale Embedded Gene Co-expression 171 

Network Analysis (MEGENA) [34], addresses these limitations and generates more compact and more 172 

coherent modules, where genes can be assigned to multiple modules. MEGENA uses a divisive (top-173 

down) approach based on the shortest path distance measure and k-medoids clustering, which finds 174 

k optimal clusters at each step by minimizing the distance within each cluster to define a more 175 
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compact gene set. The clustering process continues until no further compact child clusters are 176 

formed. We used the R package MEGENA to discover 89 compact modules using the 2,637 significant 177 

PCGs and 1,447 significant xeno-lncs as input (Figure S1, Table S6B).  178 

Functional enrichment of network modules - DAVID Bioinformatics Resources 6.7 [35] was used to 179 

identify functional features of the co-expression modules discovered using WGCNA (N=8) and 180 

MEGENA (N=89). PCGs from each module were enriched for Gene Ontology terms and KEGG pathway 181 

terms (ES>1.3 and FDR <0.05) to characterize each module. Module enrichment was automated using 182 

RDAVIDWebService [36]. We labeled genes in each gene module to mark oncogenic gene drivers and 183 

tumor suppressor genes, based on a listing of 3,516 such genes that we curated from multiple 184 

sources (Table S7): (1) Introgen [37] collects and analyzes somatic mutations in thousands of tumor 185 

genomes to identify cancer driver genes; we identified 952 drivers with 157 druggable targets, 186 

including 689 drivers of hepatocellular carcinoma; (2) 588 tumor suppressor genes/oncogenes from 187 

Network of Cancer Genes, v6.0 [38]; (3) 1,018 genes from TSGene Database [39]; (4) 2,579 human 188 

cancer genes (allOnco; http://www.bushmanlab.org/links/genelists); (5) Cancer Gene Census 189 

catalogue, which includes genes mutations causally implicated in cancer, yielded 574 drivers or tumor 190 

suppressor genes under tier1 (i.e., gene with documented activity from experiments or literature 191 

relevant to cancers); and (6) list of 34 verified drivers and tumor suppressor genes for hepatocellular 192 

carcinoma [40].  193 

Hubs genes and bottlenecks ranking scheme - Biologically relevant modules based on functional 194 

enrichment results were visualized as networks using Cytoscape (v6.7) [41]. Each PCG or lncRNA is 195 

represented by a node and an edge represents a correlation value. MEGENA uses Fast Planar Filtered 196 

Network Construction [34], where significant gene correlation pairs are retained as an edge based on 197 

FDR < 0.05. For WGCNA, we selected a relatively stringent edge cutoff (|correlation| > 0.8). 198 

Topological properties of the co-expressed network modules were used to identify important 199 

functional features of lncRNAs. Nodes with a high number (high degree) of connections, called hubs, 200 

have increased likelihood of being essential [42, 43]. We also considered a second topological feature 201 

of networks, termed ‘bottlenecks’ or betweenness centrality (i.e., a measure of the number of 202 

shortest paths passing through a node), which are critical in protein networks with functional and 203 

dynamic properties control most of the information flow in a network [44]. We defined hubs as the 204 

top 10% of nodes ranked by degree, and bottlenecks as the top 10% of the nodes ranked by 205 

betweenness centrality. Cytohubba [45], a Cytoscape plugin, was used to score and rank the nodes by 206 

network features and to characterize hubs and bottlenecks for modules with functional enrichment. 207 

Causal Inference Network – Causal inference methodology, such as Parallel IDA, outperforms 208 

methods such as statistical correlation or regression [46] and can be used to construct a lncRNA–209 

mRNA causal network [47]. We implemented parallel IDA to infer the causal effects of xeno-lncs on 210 

target PCGs in each biological module. Parallel IDA uses intervention calculus when the directed 211 

acyclic graph is absent [48] and was used to estimate lncRNA−PCG causal relationships for co-212 

expression modules of interest. Parallel IDA estimates the causal structure from expression data using 213 

the parallel-PC algorithm (step 1) [49, 50]; estimates of causal effects of lncRNAs on PCGs are then 214 

obtained by applying do−calculus (step 2) [51]. Step 1: We used a parallel PC algorithm and 215 

observational data (expression profiles) for the rat xeno-lncs (1,447) and xenobiotic-responsive PCGs 216 

(2,637) to learn the causal structure, which is a completed partially directed acyclic graph (CPDAG). 217 

The analysis starts with a fully connected undirected graph and then determines if an edge is to be 218 

removed from or retained in the graph by conducting conditional independence tests for the two 219 

nodes connected by the edge. We used partial correlations for the conditional independence test 220 
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[52]. The algorithm then orients the CPDAG, which consist of directed and undirected edges, resulting 221 

in the equivalence class of directed acyclic graphs. The pcalg package in R was used to estimate 222 

CPDAG with a significance level (α = 0.01) for the CI test conducted by ParallelPC algorithm. Step 2: 223 

The causal effect of a lncRNA on a PCG was estimated by applying do-calculus, which when given a 224 

directed acyclic graph, estimates the causal effect of one node on any other node using observational 225 

data. Since multiple directed acyclic graphs (described above) resulted from CPDAG, we estimated 226 

causal effects for each one and used the lower bound of all possible causal effect absolute values as 227 

the final output. To construct lncRNA−PCG regulatory networks (see Data Availability), we used a 228 

cutoff of 0.5 for the absolute values of the causal effects to retain edges that show strong causation 229 

(Table S8).  230 

Data availability – Full details for all co-expression networks and causal networks are available for 231 

visualization and query on the Network Data Exchange (NdeX) platform [53] and can be access 232 

through this link: Co-expression and Causal Networks.  233 

Results  234 

Liver xeno-lnc discovery - We reconstructed the transcriptome for xenobiotic-exposed rat liver based 235 

on 115 RNA-seq datasets from male Sprague-Dawley rats given one of 27 chemicals representing 236 

seven distinct MOAs (Table S1). We used two complementary approaches (see Methods) to discover 237 

a total of 5,795 liver-expressed lncRNA genes, of which 37% are multi-exonic genes (Table S2). 1,447 238 

of the lncRNAs showed significant differential expression (|FC| >4 at FDR < 0.05) following exposure 239 

to one or more of the 27 chemicals, and were designated xeno-lncs (Table S3A). We also identified 240 

2,637 PCGs responsive to these exposures (Table S3B). 241 

Xenobiotics grouped by MOA - We implemented hierarchical clustering of the sets of xeno-lncs and 242 

xenobiotic-responsive PCGs to elucidate gene regulatory mechanisms across the 27 chemicals. Each 243 

chemical was assigned to one of seven MOAs [6, 15] (Scheme 1), each represented by at least three 244 

chemicals (Table S1): activation of the nuclear receptors CAR and/or PXR (pregnane X receptor), 245 

considered together because of their overlapping target gene specificities [11, 54]; activation of PPAR 246 

(PPAR or PPAR); activation of ER; activation of AhR; inhibition of HMG-CoA reductase (HMG-CoAR); 247 

non-receptor based cytotoxicity; and non-receptor-based DNA damage. Chemicals linked to PPAR, ER, 248 

and HMG-CoAR clustered tightly within their respective MOAs, whereas chemicals linked to CAR/PXR, 249 

AhR and the non-receptor based MOAs formed incohesive clusters (Figures 2A, 2B). Thus, the six 250 

CAR/PXR activators were separated into three separate clusters, as were the three DNA damage 251 

agents, and the AhR agonist leflunomide induced gene expression changes distinct from those 252 

induced by the two other AhR activators for both lncRNAs and PCGs. This likely reflects the diversity 253 

of mechanisms through which some of these chemicals act, e.g., leflunomide can also activate MAP 254 

kinases and induce endoplasmic reticulum stress [55]. We found 66 PCGs and 32 xeno-lncs that 255 

responded significantly to at least two of the three AhR agonists (Table S3C). Two of the AhR 256 

agonists, -naphthoflavone and 3-methylcholanthrene, often showed responses opposite to those of 257 

chemicals with other MOAs, most notably PPAR activators (Figure 2C). Aflatoxin B1, a potent 258 

hepatotoxin and hepatocarcinogen, also has AhR agonist activity [56] and clustered more closely with 259 

those two AhR activating chemicals than did leflunomide.  260 

Common xeno-lncs targets across multiple mode of actions - Many xeno-lncs were dysregulated by 261 

chemicals representing multiple MOAs. 123 xeno-lncs responded to at least 10 of the 27 chemicals 262 

tested (Figure 2D). Furthermore, five xeno-lncs (rlnc4657, rlnc3088, rlnc715, rlnc1425, rlnc, and 263 
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rlnc2750) were consistently down-regulated by at least 20 of the 27 chemicals (Figure S2A); 13 PCGs 264 

were also dysregulated across ≥20 exposures (Figure 2E, Table S9). Again, gene responses to the two 265 

specific AhR agonists were similar to responses induced by aflatoxin B1 but not leflunomide. Xeno-266 

lncs and PCGs whose expression is dysregulated by multiple chemical exposures with distinct MOAs 267 

may be associated with general responses, such as liver injury or tissue repair stimulated by 268 

xenobiotic exposure. Two of the 13 PCGs, Sult2a2 (Figure S2B) and Ugt1a2, metabolize xenobiotics 269 

and were consistently up-regulated, while 3 other PCGs, Ltc4s (Figure S2B), Stac3, Car1, were down-270 

regulated by all but one of the 20 chemicals. The other 8 multi-xenobiotic-responsive PCGs (Acot1 271 

(Figure S2B), Agpat9, Slc16a5, Colq, Cyp2c24, Akr1b7, Cyp2b1, Rsp9) showed distinct responses to 272 

chemicals with different MOAs. Genes involved in fatty acid metabolism (Acot1) [57], lipid 273 

biosynthesis (Agpat9) [58], transport (Slc16a5), and other non-metabolic functions (Colq) were 274 

induced by most chemicals, but were repressed by the AhR agonists, including aflatoxin-B1. Cyp2c24, 275 

a rat P450, was up-regulated by chemicals with various MOAs, but showed inconsistent responses to 276 

PPAR activators (Figure 2E). Akr1b7, which detoxifies lipid peroxidation by-products [59], was induced 277 

by CAR/PXR agonists but was down-regulated by 5 of 6 PPAR activators and by four chemicals with 278 

other MOAs. Cyp2b1 was up-regulated by nearly all activators of CAR/PXR and PPAR but was 279 

repressed by AhR agonists.   280 

Toxicological marker genes - We used two criteria to identify lncRNAs and PCGs that are MOA-281 

selective markers of xenobiotic exposure: 1) the gene shows a common, robust response (|FC|>4 and 282 

FDR<0.05) to all three chemicals with the same MOA, in the case of ER, HMG-CoAR, and AhR, or to a 283 

majority (>4) of the 6 chemicals for each of the other MOAs: CAR/PXR, PPAR, and cytotoxicity/DNA 284 

damage; and 2) the gene responds in the same direction (at a threshold of |FC|> 3 and FDR <0.05) to 285 

no more than 2 chemicals assigned to other MOAs, provided that the two outlier chemicals do not 286 

both act via the same MOA. We identified 162 such MOA-selective markers (81 PCGs, 81 xeno-lncs) 287 

(Table S10). Examples are shown for each MOA in Figure S3. Ces2a is a top marker for CAR/PXR 288 

activation, consistent with [60], while Acox1 is a strong marker for PPAR activators, all showing >30-289 

fold induction, consistent with findings in mouse and human models [61]. Further, two xeno-lncs 290 

were markers for both CAR/PXR and PPAR. Aldh3a1 was a marker AhR responses, consistent with its 291 

strong induction by hepatotoxic dioxin-like compounds [62]. Finally, Mapk15 was strongly induced by 292 

all three chemicals that target HMG-CoAR, Myom2 was a marker for ER agonists, and CD300lb was a 293 

marker for chemicals that induce cytotoxicity or DNA damage. These marker genes may be 294 

incorporated into toxicological signatures to characterize MOAs of novel xenobiotic exposures.  295 

Identifying functional xeno-lncs by evolutionary analysis - Ortholog discovery and comparative 296 

studies across species are widely used for functional annotation of evolutionarily conserved PCGs. 297 

However, lncRNAs evolve rapidly, and many are not broadly conserved [63]. LncRNAs are, however, 298 

often found in syntenic positions in the genome and share short conserved domains [64]. Here, we 299 

used a combination of sequence identity and synteny between species to identify orthologs of the rat 300 

xeno-lncs and then infer biological functions. Of 5,795 liver-expressed rat lncRNAs, 3,020 (52%) 301 

shared orthology with either mouse or human lncRNAs, including 774 (53%) of the 1,447 rat xeno-302 

lncs (Figure 3A). Some of these orthologs are well-characterized functional lncRNAs. For instance, rat 303 

xeno-lnc rlnc449, which is induced by HMG-CoAR inhibitors and cytotoxicity and DNA damage agents 304 

but is repressed by several activators of CAR/PXR, PPAR and ER, showed 64% sequence identity with 305 

human lncRNA H19, both at the transcript level (TTI) and at the genome level (TGI) (Figure 3B). 306 

LncRNA H19 is important for fetal liver development and is repressed after birth, but is over-307 

expressed in multiple human cancers, including hepatocellular carcinoma, where it enhances tumor 308 

progression [65, 66]. Another rat liver xeno-lnc, rlnc397, which is induced by several nuclear 309 
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receptors agonists and by the hepatoxin carbon tetrachloride, shares 66% TTI with mouse lncRNA 310 

Snhg14 (Figure 3C). Snhg14 is overexpressed in several cancers and potentiates tumor progression, in 311 

humans, by serving as a sponge (endogenous competitor RNA) for multiple microRNAs [67-69]. Table 312 

S4 presents the full set of rat lncRNA orthologs and their inferred functions.  313 

Rat-Mouse ortholog responses to CAR/PXR activators - We identified 140 rat xeno-lncs with mouse 314 

orthologs that responded to at least one CAR/PXR activator in both mouse and rat liver. Two−way 315 

hierarchical clustering of expression data across exposures indicates species is a dominant separation 316 

factor (Figure S4A). Some lncRNAs showed a consistent pattern of dysregulation in both species 317 

(rlnc4048−mlnc4655, both up (Figure S4B); and rlnc4100−mlnc4577, both down (Figure S4C)), while 318 

others showed opposite regulation (rlnc2209-mlnc3859; Figure S4D). Some xeno-lncs were 319 

responsive to CAR activators after multiple days of exposure, e.g., rlnc1448−mlnc2065, which 320 

responded to CAR activators significantly (|FC| >2, FDR <0.05) in both species after a 4-5-day 321 

exposure, but not after 1 day in mouse liver (Figure S4E, Table S5C). Thus, xeno-lncs perturbed by 322 

chemicals with the same MOA can exhibit different responses, depending on species and duration of 323 

exposure.  324 

Functional prediction of lncRNA−PCG relationships using gene co-expression networks - Functional 325 

lncRNAs have been identified using cell-based screens, e.g., for effects on cell growth, however, that 326 

approach is not readily implemented in an intact liver model. Here, in an alternative approach, we 327 

clustered the 1,447 rat xeno-lncs together with the 2,637 xenobiotic-responsive rat PCGs based on 328 

their expression profiles across the 27 chemical exposures. This allowed us to infer rat xeno-lnc 329 

functions from the known functions of PCGs in the same co-expression cluster (guilt-by-association) 330 

[70, 71]. We constructed co-expression networks using two complementary methods: WGCNA, which 331 

uses agglomerative (bottom-up) clustering, resulting in large gene modules [31]; and MEGENA, which 332 

uses divisive (top-down) clustering to discover smaller, coherent network modules and sub-modules 333 

[34]. We identified eight co-expression modules (gene networks) using WGCNA and 89 using 334 

MEGENA (Table S6A, S6B). For each co-expression network, we identified rat lncRNAs whose 335 

orthologs have functional annotations, including oncogenic gene drivers and tumor suppressors. We 336 

also computed module functional enrichments to obtain a primary level of annotation for lncRNA 337 

function. These lncRNA−PCG networks helped us identify many highly connected lncRNAs in each 338 

module, including intra-modular hubs and bottleneck genes, which are at critical nodes controlling 339 

communication among other nodes in the network, as indicated by a high number of non−redundant 340 

shortest paths through the specific node or edge [44]. We discovered co-expressed modules with 341 

striking functional enrichments for genes in multiple biological processes and pathways, including 342 

fatty acid metabolism (MEGENA module C9), lipid and sterol metabolism (module Black), cell cycle 343 

(module C13) and immune response (module C7) (Table S11, Table S12). One module, C10 (68 PCGs, 344 

91 xeno-lncs), did not show any significant biological or pathway enrichment, but contains all 50 ER 345 

marker genes. The eleven xeno-lncs identified as hub or bottleneck genes in this module are 346 

suggested to play a regulatory role in estrogen-based pathways (Figure S5, Table S12A). Highlights of 347 

select gene modules are presented below. 348 

Xeno-lnc hub and bottleneck genes regulating fatty acid metabolism and PPAR signaling - Module 349 

C9 (258 PCGs, 152 xeno-lncs) was strongly enriched for genes involved in fatty acid metabolism 350 

(N=114 genes, Enrichment Score (ES) =18.5, Table S11E). This module is also strongly enriched for 351 

peroxisomal genes (ES=13.0) and harbors 35 of the 39 (90%) PPAR marker genes. Seven xeno-lncs 352 

were either top intra-modular hubs, bottlenecks, or both (Figure 4, Figure S6, Table S12B), which 353 

indicates they have important regulatory roles and their xenobiotic responsiveness may contribute to 354 
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dysregulation of hepatic fatty acid metabolism following chemical exposure [72]. One of these 355 

lncRNAs, rlnc973, is orthologous with human lncRNA AS-RBM1, which enhances RBM1 protein 356 

translation and up-regulates megakaryocyte differentiation and leukemogenesis [73]. 35 xenobiotic-357 

responsive PCGs in this module are also critical hub or bottleneck genes involved in fatty acid 358 

metabolism (Table S12B), and five of these genes (Cyp2j4, Acat1, Acaa1a, Ucp3, Acox1) are PPAR 359 

MOA-selective marker genes (Table S10).  360 

Xeno-lncs associated with cell cycle regulatory genes - Module C13, comprised of 106 PCGs and 6 361 

xeno-lncs, includes 87 PCGs (82%) involved in cell cycle pathways (Figure 5A, Table S12C). The strong 362 

enrichment of this module for cell cycle and cell division genes (ES= 17.7) and for microtubule 363 

binding, spindle, kinesin and related terms (ES=7.6) (Table S11H) implicates the six lncRNAs in this 364 

module in these processes. One, xeno-lnc rlnc3347, is orthologous with NORAD, a human lncRNA that 365 

is up-regulated by DNA damage, maintains chromosomal stability in human cells, and is implicated in 366 

tumorigenesis [74, 75]. 33 of the 87 cell cycle regulatory genes in module C13 are oncogenic drivers 367 

and two are tumor suppressors (Table S13). Five of the six xeno-lncs may be oncogenic (onco-lncs), as 368 

they show significant positive correlation with cancer drivers in the subnetwork, albeit weakly (Figure 369 

S7). Down regulation of the oncogenic drivers and the onco-lncs in module C13 was commonly seen 370 

after exposure to chemicals associated with HMG-CoAR, ER, AhR, PPAR and CAR/PXR (Figure 5B). One 371 

exception was rlnc3587, which was significantly up-regulated by 10 of the chemical exposures (Figure 372 

5B, red arrow). All 35 oncogenic drivers and tumor suppressors were strongly induced by the 373 

hepatocarcinogen N-nitrosodimethylamine (log2|FC| = 2−5), and to a lesser extent by PPAR activators 374 

and CAR/PXR-activating chemicals. The finding of multi-xenobiotic responsive xeno-lncs in this 375 

module highlights the potential cell cycle disruptive actions of the associated xenobiotics.  376 

Immune based responses of xeno-lncs: Module C7 (480 PCGs, 94 xeno-lncs) was highly enriched 377 

(ES=14.2) for immune response and related terms (chemokine, cytokine and MHC processing) (Table 378 

S11D, Table S12D). This module includes 94 xeno-lncs, of which three are hub genes (rlnc2830, 379 

rlnc1130, rlnc1023). rlnc2830 was positively co-expressed with nine PCGs involved in immune 380 

response (Figure 6A). These include factors active in lymphocyte signaling and antigen uptake (Hcls1) 381 

[76], regulatory T cell-mediated suppression of CD4+ effector T cells (Ncf1) [77], modulation of 382 

macrophage functions (Slamf8) [78], and T cell-dependent immunity (Hk3) [79]. N-383 

nitrosodimethylamine, which activates lymphocytes to produce pro-inflammatory cytokines [80] that 384 

induce hepatic fibrosis and liver inflammation [81], induced rlnc2830 and all nine immune genes 385 

(Figure 6B, Table S14A). N-nitrosodimethylamine also up-regulated 112 (64%) of the 125 oncogenic 386 

driver or suppressor genes in module C7 (Table S14B).  The hub gene rlnc1130 was connected to six 387 

genes in module C7, while hub−bottleneck rlnc1023 made connections with a partially overlapping 388 

set of nine genes (Figure 6C). rlnc1023 negatively correlated with Arg1, an immunosuppressive gene 389 

[82], and with Emp2, a tumor suppressor (Li et al. 2013). These two regulatory xeno-lncs were 390 

negatively correlated with Sox4, a heptaocarcinogenic driver [83], and showed positive associations 391 

with Il6R and Mat1a. Miconazole, an antifungal agent and CAR/PXR agonist, significantly repressed 392 

both regulatory xeno-lncs and seven of the PCGs, while strongly inducing three others, including 393 

S100a6 (Figure 6D). Increased expression of S100a6 promotes cell proliferation in human HCC [84]. 394 

Overall, 50 xeno-lncs from module C7 showed either positive or negative associations with 125 395 

oncogenic drivers or suppressors (Table S14B). Chemicals that dysregulate these xeno-lncs are 396 

expected to have a major impact on tumorigenesis.  397 

Regulatory xeno-lncs associated with sterol metabolism and viral response - We used a parallel IDA 398 

algorithm to learn causal structures from expression data and construct lncRNA−PCG causal 399 
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regulatory networks for biologically interesting modules. Xeno-lncs that occupy critical nodes in co-400 

expression modules (i.e., hubs or bottlenecks) often showed strong causal effects. For example, 401 

WGCNA module Black contained 145 nodes (103 PCGs, 42 xeno-lncs). Causal network analysis based 402 

on an absolute value of causal effect cutoff >0.5 reduced the Black module to 90 nodes, including 25 403 

xeno-lncs showing strong causal effects on their predicted gene targets (N=65). This module was 404 

enriched in sterol metabolism (ES=13.7, Table S11K; pink nodes in Figure 7) and encompassed 36 of 405 

63 (57%) HMG-CoAR marker genes (black node border color, Figure 7; Table S12E). A small isolated 406 

sub-network was related to viral response (ES=4.1; green nodes), with rlnc4746 acting as the causal 407 

center. Two regulatory xeno-lncs in the causal network (rlnc2973, rlnc322) have functional orthologs 408 

positively associated with tumorigenesis: Lnc-SC5DL-3:1 (ortholog of rlnc2973) is up-regulated in 409 

triple negative breast cancer [85]; and elevated expression of lncRNA RP11-21L23.2 (ortholog of 410 

rlnc322), is associated with high risk in non-small cell lung cancer [86]. Both xeno-lncs were strongly 411 

induced (log2 FC = 4−6) by all three HMG-CoAR inhibitors (Table S3A).  412 

Xeno-lncs repressed by multiple xenobiotics may be hepatoprotective or hepatocarcinogenic – 413 

Module C14 includes four of the five xeno-lncs consistently down-regulated by ≥ 20 xenobiotics 414 

(rlnc1425, rlnc715, rlnc2750, rlnc3088) (Figure 8A-C). Expression of these xeno-lncs correlates 415 

positively with several oncogenic drivers that are also widely down-regulated following xenobiotic 416 

exposure. The down-regulation of these xeno-lncs is thus a hepatoprotective response. For example, 417 

expression of rlnc1425, a module C14 hub gene that was down-regulated by 22 xenobiotics, showed 418 

positive correlations with oncogenic drivers Ptk6 and Ppard, both associated with hepatotoxicity [87-419 

89] (Figure 8A). However, rlnc1425 also showed casual, negative correlation with metallothioneins 420 

Mt1a and Mt2a, which protect mice from hepatocarcinogen-induced liver damage and carcinogenesis 421 

[90] and are induced in rat liver, up to 16-fold, by the three ER agonists and by leflunomide (AhR) and 422 

econazole (CAR/PXR) (Table S15A). Expression of rlnc715, which was down-regulated by 21 423 

chemicals, showed positive causal associations with cancer driver Ptk6 (X. Chen et al. 2016), and 424 

tumor suppressor gene Npas2; its impact on hepatoprotection vs. hepatotoxicity is thus uncertain 425 

(Figure 8A, Table S15B). 426 

Expression of rlnc2750, which was down-regulated by 21 chemicals, was positively associated with  427 

the tumor suppressors Igfals [91] and Bmf [92] (Figure 8B), which were also down-regulated by 428 

multiple chemicals (Table S15C). Down-regulation of Igfals enhances IGF signaling and thereby 429 

promotes hepatocarcinogenesis [93], while down-regulation of Bmf is associated with hepatocellular 430 

carcinoma progression [94]. rlnc2750 had negative causal association with the pro-apoptotic gene 431 

Hrk, which was up-regulated by 11 xenobiotics and activates apoptosis under stress [95]. rlnc3088 432 

was down-regulated by multiple chemicals, as were its causally associated target genes. These 433 

include the oncogenic driver Socs2 and the hub gene Nrep (P311) (Figure 8C), which plays a key role 434 

in reactive oxygen species-mediated hepatic stellate cell migration during liver fibrosis [96]. rlnc3088 435 

had negative causal effects on Pla2g12a, a phospholipase A2, which was induced by 15 of the 27 436 

chemicals, including the AhR agonist leflunomide (Table S15D).  437 

The fifth lncRNA consistently down-regulated by >20 chemicals, rlnc4657, is in module C12, where it 438 

forms positive causal associations with three PCGs down-regulated by multiple chemicals (Apoc3, 439 

St8sia1, Gimd1) (Figure 8D, Table S15E). Apoc3 contributes to cardiovascular disease risk by 440 

increasing plasma triglycerides via lipolysis of triglyceride-rich lipoproteins [97], and its repression by 441 

PPAR activators is therapeutically beneficial. Gimd1, whose function is unknown, also showed strong, 442 

consistent repression by PPAR activators (log2 FC = -5 to -7) (Table S3B). Beneficial effects of rlnc4657 443 

down-regulation by diverse chemicals are also apparent from the causally associated down-444 
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regulation of St8sia1, a ganglioside D3 synthase that promotes growth and metastasis in triple 445 

negative breast cancer [98].  St8sia1 was repressed by chemicals with various MOAs, including all 446 

three ER agonists, consistent with its repression by estradiol in human breast cancer cells [99]. The 447 

down-regulation of rlnc4657 by many xenobiotics may also have deleterious health effects. Thus, 448 

rlnc4657 showed negative causal association with two PCGs induced by multiple chemicals, one of 449 

which, Cidea, controls lipid storage, lipolysis and lipid secretion [100] and promotes hepatic steatosis 450 

when up-regulated in mouse liver [101]. The second gene, Zmynd12, is a zinc finger protein of 451 

unknown function. Finally, rlnc4657 was co-expressed with Arntl2 (Bmal2), which was repressed by 452 

14 xenobiotics (Figure 8D). Arntl2 is an anti-apoptotic factor that is down-regulated in hepatocellular 453 

carcinoma, where its suppression enhances cell growth [102]. Thus, its repression by xenobiotics may 454 

contribute to hepatocarcinogenesis. 455 

Functional xeno-lnc candidates and predicted cis vs trans interactions with PCG targets – We 456 

identified 67 top candidates for functional xeno-lncs (Table S16A) by integrating multiple datasets 457 

and criteria, including: their roles as causal regulators, or as hubs or bottlenecks in a functional 458 

module; shared orthology with well-characterized human or mouse lncRNAs; and xeno-459 

responsiveness to multiple chemicals, or as a MOA-selective marker. Co-expression data and causal 460 

interactions between these 67 xeno-lncs and their putative PCG targets, combined with chromosomal 461 

location information, was used to predict whether each xeno-lnc regulates its targets in a cis or trans 462 

manner. Putative cis interactions were indicated for lncRNA−PCG pairs falling within a distance of 250 463 

kb (Table S16B). trans interactions are shown Table S16C. The cis and trans PCG target lists were 464 

subdivided into activator and inhibitor effects, based on whether the xeno-lnc—PCG expression 465 

correlation was positive or negative. These analyses provide a basis for hypothesis-driven 466 

experimental studies on the functional roles of individual xeno-lncs and their downstream causal 467 

implications for responses to xenobiotic exposure. 468 

Discussion 469 

LncRNAs regulate a wide range of cellular processes, including chromatin states, transcriptional 470 

output, mRNA stability and protein function [103]. However, the extent to which lncRNAs impact the 471 

toxicogenomic landscape is poorly understood. Little is known about their responses to xenobiotic 472 

exposure, and systematic approaches to deduce their regulatory roles in toxicological responses to 473 

foreign compounds have not been developed. Here we address these issues by introducing an 474 

integrated computational framework that utilizes transcriptomic data for discovery of global effects 475 

of xenobiotic exposure on pathways and mechanisms associated with dysregulation of lncRNA 476 

expression (Figure 1). We applied this framework to a rich toxicogenomic dataset comprised of 115 477 

RNA-seq datasets representing 27 chemical exposures in a rat model [6] to assemble the toxico-478 

transcriptome of liver, a key tissue for xenobiotic metabolism and toxification/detoxification. We 479 

discovered gene and isoform structures for almost 6,000 liver-expressed rat lncRNAs, a majority of 480 

which are novel genes, and established expression patterns for more than 1,400 xenobiotic-481 

responsive lncRNAs (xeno-lncs), many with human and/or mouse orthologs. Further, we used two 482 

powerful data-driven approaches for co-expression analysis, WGCNA [31] and MEGENA [34], to 483 

discover xenobiotic-responsive gene modules enriched in various cellular processes, including fatty 484 

acid and sterol metabolism, cell cycle and immune response. Xeno-lncs occupying key positions as 485 

hubs or bottleneck genes were identified in the derived networks, and causal inference was used to 486 

identify xeno-lncs that causally influence expression of their target genes, i.e., are causal regulators of 487 

the biological network. Thus, we present a comprehensive toxicogenomic analysis of the effects of 488 
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foreign chemicals on the non-coding transcriptome, and we elucidate xenobiotic-responsive 489 

regulatory lncRNAs for key biological pathways commonly perturbed in xenobiotic-exposed liver. 490 

We used two complementary approaches for lncRNA discovery [9, 22] to increase the likelihood of 491 

discovering novel liver-expressed lncRNAs. 1,447 of the 5,795 rat liver-expressed lncRNAs identified 492 

were characterized as xeno-lncs based on their responsiveness to one or more xenobiotic exposures. 493 

We applied a relatively stringent threshold (>4-fold increase or decrease in expression at FDR <0.05) 494 

to reduce false positives resulting from transcriptional noise from lncRNAs expressed at a low level. 495 

The set of 1,447 xeno-lncs discovered here is defined by the transcriptional responses stimulated by 496 

the 27 chemical exposures included in our analyses, and should thus be viewed as a minimal xeno-lnc 497 

gene set. Additional xeno-lncs are very likely to be discovered and their gene structures and isoform 498 

models further refined once expression data for additional xenobiotic exposure datasets become 499 

available and can be integrated into the liver toxico-transcriptome presented here. 500 

We found 81 xeno-lncs and 81 xenobiotic-responsive PCGs that were primarily associated with 501 

chemicals linked to a single MOA (xenobiotic MOA-selective marker genes; Table S10). We also 502 

found, however, that many xeno-lncs responded in common to multiple xenobiotics encompassing 503 

multiple MOAs. For example, 123 xeno-lncs each responded to at least 10 different chemicals (Figure 504 

2D), i.e., they respond via at least two different MOAs. While some of these xeno-lncs respond to 505 

chemicals that activate mechanistically related MOAs with overlapping target gene specificities (e.g., 506 

the nuclear receptors CAR/PXR and PPARA) [104, 105], many individual xeno-lncs respond to multiple 507 

chemicals that act via diverse MOAs. Such xeno-lnc responses are likely to encompass more general 508 

cellular and tissue responses to xenobiotic exposure, such as liver injury and liver repair, or the 509 

activation of hepatoprotective pathways and mechanisms. For example, four of the five xeno-lncs 510 

repressed by at least 20 of the 27 exposures, and encompassing all 7 MOAs, were positively co-511 

expressed with several oncogenic drivers but showed either positive or negative associations with 512 

several tumor suppressors (Figure 8). Similar patterns of response to diverse xenobiotics were seen 513 

with some PCGs. Two PCGs active in xenobiotic detoxification, Sult2a2 and Ugt1a2, were up-514 

regulated by ≥ 20 xenobiotics, while 22 of the 27 chemicals examined (including all MOAs except for 515 

DNA damage agents), strongly down-regulated carbonic anhydrase I (Car1), which like carbonic 516 

anhydrases III and VII, may protect liver from oxidative stress [106]. Leukotriene C4 synthase (Ltc4s) 517 

was also strongly repressed by 22 of the 27 chemicals tested. Ltc4s catalyzes biosynthesis of 518 

leukotriene C4, a potent inflammatory mediator [107], and its down-regulation protects from hepatic 519 

ischemia reperfusion injury [108]. Thus, xenobiotics that work through different MOAs can 520 

dysregulate common sets of lncRNAs and PCGs involved in xenobiotic detoxification and 521 

hepatoprotection. 522 

Agonists of AhR, and the hepatotoxic chemical aflatoxin B1, which also has AhR agonist activity [56], 523 

often showed effects that were opposite of chemicals that act via other MOAs, most notably for 524 

chemicals that activate PPAR (Figure 2C). For example, the xenobiotic-metabolizing P450  enzyme 525 

Cyp2b1 was induced by 5 of 6 PPAR agonists (Table S3C) but was repressed by all three AhR agonists, 526 

while Acot1, a PPAR target and a key player in rodent liver tumorigenesis [109], was up-regulated by 527 

22 chemicals but not by the AhR agonists or by aflatoxin−B1. Similarly, we found five xeno-lncs that 528 

were each down-regulated by at least 20 of the 27 chemicals examined, but did not respond to the 529 

AhR agonists -naphthoflavone and 3-methylcholanthrene. Mechanistic studies will be required to 530 

elucidate the mechanism for these disparate responses to activation of AhR vs. other MOAs. 531 
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In some cases, xeno-lnc orthologs showed significant species-specific responses to chemical 532 

exposures. Thus, many of the 140 orthologous pairs of rat and mouse lncRNAs that responded to 533 

CAR/PXR activators showed species-specific responses. This finding parallels the species difference in 534 

xenobiotic responses sometimes seen for orthologous PCGs (Figure S4), which may reflect factors 535 

such as species differences in the specificity of xenobiotic receptors for agonists and/or their target 536 

genes [30, 110-112]. This potential for species-dependent responses must be considered when 537 

evaluating lncRNA orthologs and their biological activities.  538 

We built gene co-expression networks (gene modules) based on gene co-expression patterns for 539 

xeno-lncs and xenobiotic-responsive PCGs across the 27 xenobiotic exposures, and then used the 540 

associations between xeno-lncs and PCGs within the networks to infer the functions of liver-541 

expressed xeno-lncs (guilt-by-association). Networks were reconstructed using WGCNA, which is 542 

widely used [10, 113-115], and using a complementary approach, MEGENA, which has identified 543 

mutational drivers in non-alcoholic fatty liver disease [116, 117]. Many of the gene modules we 544 

discovered were enriched in specific biological functions, including fatty acid metabolism, cell 545 

division, and immune response pathways. In some cases, MOA marker genes were grouped in a 546 

common module based on their coordinated co-regulation pattern (e.g., ER marker genes in module 547 

C10; Figure S5). We also implemented network modeling to identify hub or bottleneck genes that 548 

may regulate the overall network. Established cell cycle regulators (Bub1b, Prc1, Cdk1) occupied key 549 

positions in the cell division enriched module (Figure 5), and known regulators of fatty acid and lipid 550 

metabolism (Hadhb [118], Elovl6, Acot2, Acot1 [119], Pklr [116]) were top hubs in the network 551 

module enriched for this metabolic pathway (Figure 4). This validation of our approach lends support 552 

for the roles we propose for key xeno-lncs identified as hubs or bottlenecks in these biological 553 

processes and pathways. Key findings include the discovery of novel regulatory xeno-lncs that were 554 

co-expressed with tumor suppressors or cancer drivers in the immune response module C7 (Figure 555 

S8) or that occupied critical positions in networks enriched for fatty acid metabolism (Figure 4), viral 556 

response and sterol metabolism (Figure 7). In many cases, our findings were strengthened by using 557 

Parallel IDA, a causal inference algorithm [120-122], which can help distinguish true, causal regulatory 558 

relationships from simple correlative associations , as summarized in Table S16A.  559 

Ortholog analysis, based on either sequence conservation or synteny [123], can facilitate discovery of 560 

biologically relevant properties of lncRNAs [124]. We used this approach to identify rat xeno-lncs 561 

showing conservation with known oncogenic lncRNAs, including H19 (rlnc449), LINC00665 (rlnc5324) 562 

[125], SNHG20 (rlnc 3767) [126], and Cytor (rlnc1439) [127] (Table S4). Chemicals that dysregulate 563 

these xeno-lncs can be expected to have a major impact on tumorigenesis. For example, 564 

rlnc1439/Cytor, whose up-regulation correlates with hepatocellular carcinoma progression and poor 565 

patient prognosis [127], was strongly induced by the CAR/PXR activators miconazole and 566 

methimazole and by chemicals that induce DNA damage (ifosfamide and N-nitrosodimethylamine) 567 

(Table S14B). Supporting this finding, the module C7 co-expression network containing rlnc1439 568 

(Figure S8B) shows positive correlation between rlnc1439 and S100a11, which is overexpressed in 569 

many human cancers [128], and also with Sox4, which promotes hepatocarcinogenesis by inhibiting 570 

p53-mediated apoptosis [83].  571 

In conclusion, we present a novel approach to discover xenobiotic-responsive lncRNAs and obtain 572 

important insights into their roles in diverse cellular processes, the biological pathways they impact 573 

and their effects on hepatic responses to xenobiotic exposures. The computational framework that 574 

we propose (Figure 1) can help prioritize lncRNA targets for further computational and experimental 575 

analysis, including toxicological risk assessment. These approaches are expected to advance the goals 576 
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of computational toxicology, which requires new integrative approaches to measure, model and 577 

evaluate the toxicological consequences of xenobiotic exposure, including hazard potential and 578 

health risk assessment [129]. Future studies can apply this framework to discover regulatory lncRNAs 579 

in other contexts, including single cell analysis, which may be used to further characterize lncRNA 580 

responses and mechanisms of xenobiotic action across different cell types in liver, including zonated 581 

hepatocytes and endothelial cells [130], and may increase the reliability of co-expression and causal 582 

analysis by increasing the number of data points.  583 
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Figure legends 915 

Scheme 1. Modes of actions (MoA) for 27 xenobiotic exposures. Shown are schematic diagrams of 916 

thre MOA of each set of chemicals, and the numbers of livers included in each dataset. A, CAR/PXR; B, 917 

PPAR; C, ER; D, AhR; E, HMG-CoAR; F, cytotoxoicity and DNA damage agents. 918 

 919 

Figure 1. Computational framework for discovery of regulatory xeno-lncs. 920 

 921 

Figure 2. Clustering of xeno-lncs and PCGs responsive to one or more chemicals. Shown are heat 922 

maps for differentially regulated genes in rat liver that respond to 27 different chemical exposures. 923 

Chemicals are color−coded by MOA, which is indicated following the abbreviated chemical names 924 

(see Table S1). A. 1,447 lncRNAs and B. 2,637 PCGs up-regulated (blue) or down-regulated (red) by 925 

one or more chemicals.   C. 32 xeno-lncs and 66 PCGs that responded significantly (|fold-change (FC)| 926 

> 4, FDR < 0.05) to at least two of the three AhR agonists. D. 123 xeno-lncs that respond to at least 10 927 

of the 27 chemicals. E. 13 PCGs and five xeno-lncs that respond to ≥20 chemicals.  928 

 929 

Figure 3. lncRNA orthology. A. Shown are the number of mouse and human orthologs discovered for 930 

5,975 rat liver lncRNAs and the subset of 1,447 xeno-lncs, based on a TTI or TGI cutoff >30%. B. Rat 931 

rlnc449 is orthologous with human lncRNA H19. Shown is the alignment between the two orthologs 932 

(top) and rat liver expression data for rlnc449 across 27 chemicals (bottom). Colors are used to mark 933 

expression data for chemicals in each MOA. Gene responses (log2 FC values) are shown on the y-axis. 934 

White bars represent non-significant responses (FDR≥ 0.05).  C. Rat rlnc397 aligned with its mouse 935 

ortholog lncRNA Snhg14, and expression data for rat liver rlnc397, as in B. 936 

 937 

Figure 4. Fatty acid metabolism-enriched module C9. Fatty acid metabolism genes are marked with 938 

blue nodes. Network submodules (C−59, C−60, C−61) are represented by other colors, as indicated. 939 

Thirty−five nodes in the network are PPAR marker genes (dark red node border color). lncRNA hubs 940 

or bottlenecks: Three xeno-lncs in the module are hubs (rlnc3428, rlnc788, rlnc787) and four are both 941 

hubs and bottlenecks (rlnc3427, rlnc1514, rlnc973, rlnc1002). The full network is shown in Figure S6; 942 

this excepted segment shows xeno-lncs directly connected to PCGs that are either: involved in fatty 943 

acid metabolism, PPAR markers, or are hub or bottlenecks. The legend (in box) describes nodes and 944 

edge properties in co-expression and causal networks. Nodes represent genes or xeno-lncs, and an 945 

edge shows the relationship between two nodes, with a correlation or absolute value of causal effect 946 

(causation). PCGs and xeno-lncs are represented as network nodes with circle and square shapes, 947 

respectively. LncRNA orthologs (human, mouse, or both human and mouse) are marked using 948 

different symbols.  Edges in the co-expression network correspond to correlation values between the 949 

two connected nodes (genes or lncRNAs), marked as a line. Arrows are used in causal networks to 950 

indicate causality between regulatory lncRNAs and their PCGs targets. Green edges show positive 951 

associations and red edges represent negative associations. Critical nodes (hubs, bottlenecks, or 952 

hub−bottlenecks) are shown using different node shapes and with a node color. PCGs that are either 953 

cancer drivers or tumor suppressors are labelled in red text enclosed in square brackets. The same 954 

legend applies to Figures 5-8. 955 

 956 

Figure 5 – Cell cycle-enriched module C13. A. Shown is module C13 (PCG: 104, xeno-lncs: 6). 957 
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B. Heat map showing two-way hierarchical clustering of gene responses (in log2 FC) for oncogenes 958 

and their connected xeno-lncs from module C13, across 27 chemical exposures. Xeno-lnc rlnc3587 959 

(red arrow) was up-regulated by 10 of the chemicals. 960 

 961 

Figure 6 – Subnetworks involving hub and bottleneck genes in module C7. 962 

A. rlnc2830, a hub gene from module C7, is positively co-expressed with nine PCGs involved in 963 

immune response. B. Responses of rlnc2830 and its PCG partners across 27 chemicals (in log2 FC). C. 964 

rlnc1130, a hub gene connected to six genes in module C7 and rlnc1023, a hub−bottleneck gene with 965 

connections to nine genes. D. Responses of rlnc1130 and rlnc1023 and their PCG partners across 27 966 

chemicals (in log2 FC). 967 

 968 

Figure 7. lncRNA−PCG causal network enriched for different biological processes. Each directed 969 

edge (arrows) represents a causal effect (absolute causal effect value > 0.5) of a xeno-lnc (diamond 970 

shapes) on the expression of a PCG. Ortholog information is represented by different node colors 971 

with node description added for functionally well−characterized lncRNAs.  972 

 973 

Figure 8. Sub-networks containing five xeno-lncs responsive to 20 or more multiple chemicals and 974 

their gene associations in network modules. Shown are sub−network derived from module C14 975 

along with all direct connections and causal relationships (marked by directed edges) for: A. rlnc1425 976 

and rlnc715, B. rlnc2750, and C. rlnc3088. D. Sub−network derived from module C12 showing all 977 

causal and correlation based associations for rlnc4657. 978 

 979 

Supplemental figures 980 

Figure S1. Module and sub−module hierarchy for MEGENA modules. MEGENA uses a divisive 981 

clustering approach and discovers co-expression modules in a multi-layer manner. The innermost 982 

core, C1_1, contains all 2,637 PCGs and 1,447 xeno-lncs, which are clustered into 13 gene modules in 983 

layer 1 (C1_3 to C1_15). Gene modules in layer 1 are further clustered into smaller compact 984 

sub−modules in layer 2. This process continues until no further compact child clusters are formed.  985 

 986 

Figure S2. Gene expression data for xeno-lncs (A) and protein coding genes (PCGs) (B) that are 987 

consistently induced or repressed by >20 of the 27 chemicals examined. Data are shown as log2 fold-988 

change (FC) values along the Y-axis. Bars shown in white, FDR < 0.05. A. Five lncRNAs (rlnc4657, 989 

rlnc3088, rlnc715, rlnc1425, and rlnc2750) showed down regulation in 20 or more chemicals. B. 990 

Sult2a was up regulated by 22 out of 27 chemicals, and Ltc4s gene was down-regulated by 22 out of 991 

27 chemicals. Acot1 was up-regulated by 21 chemicals, but was down-regulated by two of the three 992 

AhR agonists, and by aflatoxin−B1, which also has AhR agonist activity (see text). Bars are colored 993 

according to the MOA of each chemical. 994 

 995 

Figure S3. Gene expression profiles across all 27 chemicals for representative MOA-selective marker 996 

genes, including PCGs (A) and xeno-lncs (B). Gene expression data is in log2 FC values (y-axis), and bars 997 

are colored according to the MOA of each chemical. White bars, FDR < 0.05. 998 
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 999 

Figure S4A. Rat−mouse ortholog responses to xenobiotics that are activators of CAR or PXR.  1000 

A, Heatmap of 140 rat xeno-lncs whose mouse orthologs was significantly dysregulated by a CAR or 1001 

PXR agonists in one of the mouse datasets (see text). Data are displayed by hierarchical clustering 1002 

using Euclidean distance metric and Ward.d2 minimum variance criterion. Each row represents a 1003 

lncRNA rat−mouse ortholog pair and each column represents one gene expression dataset.  1004 

B, Expression data for select rat-mouse xeno-lnc orthog pairs (top) and of four PCGs co-expressed 1005 

with the orthologs pair rlnc2209-mlnc3859 (bottom). 1006 

 1007 

Figure S5. Module C10, which is highly enriched in ER marker genes. Xeno-lncs occupying central 1008 

position as hubs and bottlenecks for module C10 that contained all 50 ER markers. 1009 

 1010 

Figure S6. Complete network of module C9, which is enriched for fatty acid metabolism terms.  Fatty 1011 

acid metabolism genes are represented by nodes shown in blue. Network submodules (C−59, C−60, 1012 

C−61) are represented by different colors. 1013 

 1014 

Figure S7. Oncogenic sub−network derived from module C13. This module includes 35 PCGs with 1015 

cancer−associated roles, either as oncogenic drivers or tumor suppressors (TSGs). Five xeno-lncs are 1016 

connected directly to these genes. 1017 

 1018 

Figure S8A.  Heatmap presenting gene response for oncogenic genes from Module C7, which is 1019 

enriched for immune response genes.  The 125 oncogenes (black text) genes displayed here are 1020 

connected to one or more of 49 xeno-lncs (gold text). We observed a small cluster (marked at the 1021 

bottom as a dotted rectangle) that was robustly down-regulated across all chemical exposures. Xeno-1022 

lnc rlnc4110 (blue arrow) was induced across all conditions. In addition, we identified several known 1023 

lncRNA orthologs (red arrows). B. Oncogenic gene sub-network, excerpted from module C7.  This 1024 

network presents oncogenic genes and their direct xeno-lnc neighbors. Three of the onco-lnc 1025 

orthologs shown, lnc-CYTOR, Linc00941, RP11-405F3.4, are connected to critical node genes in the 1026 

network.  1027 

 1028 
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