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11 Abstract
12 Biomass is an important indicator for monitoring vegetation degradation and productivity. This 
13 study tests the applicability of Hyperspectral Remote-Sensing in situ measurements for 
14 high-precision estimation aboveground biomass (AGB) on regional scales of Khorchin grassland 
15 landscape in Inner Mongolia, China. Field experiments were carried out which collected 
16 hyperspectral data with a portable visible/NIR hyperspectral spectrometer (SOC 710), and 
17 collected aboveground net primary productivity (ANPP). Ground spectral models were then 
18 developed to estimate ANPP from the normalized difference vegetation index (NDVI), which was 
19 measured in the field following the same method as that of the Thematic Mapper(TM) from the 
20 Landsat 8 land imager (TM_NDVI). Regression analysis was used to assess the relationship 
21 between ANPP and NDVI based on coefficients of determination (R2) and error analysis. The 
22 estimation of ANPP had unique optimal regression models. By comparing the different spectral 
23 inversion models, we selected an exponential model associating ANPP with NDVI (ANPP = 
24 12.523*e3.370*(0.462*TM_NDVI+0.413), standard error = 24.74 g m-2, R2 = 0.636, P < 0.001). 
25 This study suggests that the model can be used to monitor the condition and estimate the 
26 productivity of grassland at regional scales. The results still show a high potential to map 
27 grassland degradation proxies on the ground hyperspectral model. Thus, this study presents 
28 biomass hyperspectral inversion technology to remotely detect and monitor grassland degradation 
29 and productivity at high precision.

30 Key words: Biomass, Field hyperspectral, Remote sensing, Khorchin

31 Introduction
32 The tools for remotely sensing of vegetation have evolved significantly in recent decades[1], and 
33 spectral imaging has become increasingly popular in remote-sensing research for correlating 
34 spectral data with the biophysical properties of vegetation. Hyperspectral remote-sensing data 
35 have subsequently been widely used to estimate vegetation biomass[2-5], vegetation cover 
36 (VC)[6-7], nitrogen content[8], and the leaf area index of vegetation[1,9].
37 The accurate estimation of aboveground net primary productivity (ANPP) is an active area of 
38 research and can provide valuable information about the productivity and ecosystem service value 
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39 of grassland [10]. ANPP is an important impact factor for desertification and are often used as 
40 indicators for monitoring and evaluating grassland productivity and degradation [11]. The present 
41 study aimed to develop models for estimating biomass and VC based on satellite data, which 
42 allow an assessment over large areas at a low cost [12]. Desertification in the Khorchin grassland 
43 is becoming worse with the rapid expansion of the population, overgrazing and the warmer and 
44 drier trend associated with climate change [13]. The accurate estimation of the biomass of the 
45 grassland over large areas using remotely sensed data is thus very important for monitoring 
46 desertification and for improving the scientific management of grassland ecological resources.
47 Remote-sensing data have been transformed and combined into various spectral vegetation indices 
48 that are used as predictors of parameters, such as the normalised difference vegetation index 
49 (NDVI), ratio vegetation index, perpendicular vegetation index, soil adjusted vegetation index, 
50 and transformed soil adjusted vegetation index [14-17]. Most studies apply NDVI because it 
51 minimises the effects of topography[18] and is more reliable for the estimation of biomass of 
52 ecosystems/habitats dominated by grasses when the grasses are actively growing [9,19]. The 
53 NDVI is thus widely used to characterise grass ecosystems and to estimate biomass and 
54 VC[3,4,19-23].
55 NDVI have been determined from data sets collected by various satellite instruments, such as the 
56 Landsat Thematic Mapper (TM), the National Oceanic and Atmospheric 
57 Administration/Advanced Very High Resolution Radiometer (NOAA/AVHRR), MODIS, 
58 Gaofen-2 and the Moderate Resolution Imaging Spectro radiometer[9,24]. The Landsat 8 with 
59 narrowband indices are highly suitable to be chosen to map AGB accurately, because the 
60 narrowband indices have led to significant improvements in the predictive capability of models, 
61 and hyperspectral data from aerial imagery or field spectrometry have the potential to estimate the 
62 biophysical properties of rangeland or steppe vegetation with a greater accuracy than broadband 
63 indices [3,4,23,25-26].
64 In order to improve the accuracy of biomass estimation, the measurements of ground reflectance 
65 have been used to estimate biomass in grasslands and steppes since the 1970s [27], but ground 
66 spectral reflectance can be influenced by variable factors of the landscape such as the distribution 
67 of plant communities [28], soil colour [29], hydrology[30], and topography[31], and sensor 
68 radiance may be strongly affected by atmospheric scattering[32]. For these reasons, various 
69 regression models have been established for associating vegetation indices with biomass in 
70 different areas. Relationships have been established between remote-sensing data and the 
71 biophysical properties of vegetation, mostly linear or non-linear, that have greatly improved the 
72 accuracy of biomass estimates and that have determined patterns of grassland productivity in 
73 various regions [6,33-37].
74 Taking into account the advantages and disadvantages of the current remote sensing sources to 
75 estimate AGB, In this study, we present a remote sensing approach for estimating and monitoring 
76 AGB in meadows and pastures during the growing season. We used remote sensing of Landsat 8 
77 and ground hyperspectral to calculate the normalized difference vegetation index (NDVI), and 
78 on-field aboveground net primary production (ANPP) measurements to establish an empirica1 
79 exponential model to estimate spatial ANPP across the entire Khorchin grassland.
80 The main objectives of this study are: (i) to analyse the relationship of the ground narrowband 
81 NDVI with ANPP and then to develop the most suitable ground spectral models for evaluating 
82 ANPP over a large area of the Khorchin steppe, and (ii) to use the ANPP model to understand the 
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83 biocapacity of the Khorchin grassland for providing technical support for determining a 
84 reasonable grazing intensity and guiding the development of the livestock industry. 

85 Materials and methods

86 Study area
87 The Khorchin grassland is located in the eastern section of the ecotone between crop production 
88 and animal husbandry, we choose the region of Bairin Youqi in Inner Mongolia of China as the 
89 study area (Fig. 1), which is an important component of the Khorchin grassland and is typically 
90 sensitive and fragile. Bairin Youqi has a semiarid, temperate, continental monsoon climate with 
91 mean annual temperature of 4.9 °C and mean annual precipitation of 358 mm (precipitation is less 
92 than evaporation). From low to high elevations, the distribution of vegetation is meadow, sandy 
93 vegetation, and low mountain grassland respectively. The dominant grassland species include 
94 Achnatherum splendens (Trin.) Nevskia, Stipa capillata Linn., Leymus chinensis (Trin.) Tzvel., 
95 and Agropyron cristatum (Linn.) Gaertn. 
96
97 Fig. 1 Map of Inner Mongolia (left) and the location of the sampling sites in Bairin Youqi (right)
98 This study was carried out in the field of Khorchin grassland which was State-owned Land and did not 
99 involve endangered or protected species. Meanwhile, because this study supported by National 

100 Environmental Conservation Research Program, so the government of Bairin Youqi permitted and 
101 approved this study. 

102 Collection of field data

103 Experimental setup

104 Field work was conducted during 15-30 July 2016, coinciding with the most productive period of 
105 vegetational growth. Based on the topography and land use, 39 plots were established that 
106 included large, homogeneous patches of vegetation and representative vegetational communities 
107 with different types of vegetation. The plot size was set at 30 × 30 m, equivalent to the size of a 
108 TM8 pixel. The plots contained a total of 173 quadrats of 1 × 1 m. The data collected were divided 
109 into 2 groups. Group one, which contained 153 quadrats were used to build the ground spectral 
110 model; group two, which contained 20 quadrats, were used for the accuracy test of the spectral 
111 inversion model. Meanwhile, within group one, the data of approximately two thirds of the total 
112 quadrats (n=115) were chosen randomly to build the model while the rest were used for testing the 
113 terrain model in terms of selecting the best fitting function and precision.

114 Field spectral data

115 The field data were collected using the SOC710 Hyperspectral Imaging System which 
116 Manufactured by Surface Optics Corporation in America. The SOC710 is a precision instrument 
117 with an integrated scanning system and analysis software that can quickly obtain high-quality 
118 hyperspectral images at visible to near-infrared (NIR) wavelengths in the range 0.4-1.0 µm. The 
119 system can be used under normal lighting conditions at variable exposures and gains. The SOC 
120 spectra were collected with a 10° field of view and at 1.2 m above the grass canopy. All spectral 
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121 measurements were collected between 9:00 and 15:00 Beijing time under clear skies. Three 
122 measurements were taken for each sample of grass canopy. These spectra were standardised to 
123 spectra measured at approximately 10-minute intervals with a white board. The average of three 
124 replicates for each sample was used for the analysis.

125 Biomass measurements

126 After the spectral data had been recorded, the standing biomass was collected in the quadrats at 
127 each sample location. The fresh weight of green herbaceous material was recorded soon after 
128 clipping, the samples were then dried at 80 °C for 10-12 hours, and the dry masses of the samples 
129 were determined.

130 Image data acquisition, satellite data, and preprocessing
131 Biomass was assessed using TM8 data from the Landsat 8 land imager of the United States 
132 Geological Survey. The satellite data were acquired within the same time frame in which the field 
133 data had been collected, and the images were free of clouds and haze. Four suitable TM8 satellite 
134 scenes at PATH/ROWs 123/29, 123/30, 122/29, and 122/30 were analysed. The satellite data were 
135 geometrically rectified by a digital elevation model and ground-control points from Land Survey. 
136 The four TM8 scenes were processed for atmospheric correction with the Fast Line-of-sight 
137 Atmospheric Analysis of Spectral Hypercubes software package. 

138 Data analysis

139 NDVI calculation

140 NDVI are commonly calculated from RED and NIR reflectance data [38]. We calculated the 
141 SOC_NDVI of the samples from SOC710 spectral reflectance using the ENVI 5.0 image analysis 
142 software. The method for calculating NDVI was the same as that used for calculating the 
143 TM_NDVI: 

144              (1)
REDNIR

REDNIR
NDVI






145 Where the RED and NIR bands correspond to wavelengths of 630-680 and 845-885 nm, 
146 respectively. Spectral reflectance data should be resampled within the scope of the RED and NIR 
147 bands.

148 Regression analyses

149 The regression analyses were carried out for the scatter diagrams of ANPP vs. SOC_NDVI, and 
150 SOC_NDVI vs. TM_NDVI. In study area, The 173 quadrats data were employed to obtain the 
151 regression model for ANPP vs. SOC_NDVI. Mean value of NDVI within a specific plot was 
152 calculated, and then the data of the total 39 plots (Fig. 1) were used in the regression analysis for 
153 SOC_NDVI vs. TM_NDVI.
154 The coefficient of determination (R2) and the adjusted R2 were used to test the strength and 
155 significance of the relationships between the field data and the corresponding data extracted from 
156 the satellite scenes. The standard error (SE, Eq. 2) of the prediction based on the independent test 
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157 data and the coefficient of mean error (MEC, Eq. 3) were calculated to assess the accuracy of the 
158 developed models.
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161 where y is a measured biomass, y′ is an estimated biomass for the test data, and n is the number of 
162 samples.

163 Results

164 Optimal ground spectral models and tests of model accuracy

165 The optimal ground spectral models for biomass

166 From the analysis and evaluation of the relationships between ANPP and SOC_NDVI computed 
167 from reflectance data obtained by the SOC710 in the field, we chose linear, logarithmic, power, 
168 and exponential functions to fit and optimise the regression equations for selecting the best 
169 regression model (Fig.2). 
170
171 Fig.2 The Simulation Curves of the Regression Equation of the Training Samples
172 The relationships between ANPP and SOC_NDVI was significant (P < 0.001) for all functions 
173 and met the assumptions of the statistical analyses. The exponential model was superior for ANPP, 
174 with an R2 of 0.636, indicated by bold type in Tables 1.
175 Table 1 Comparison of the regression equations between ANPP and SOC_NDVI.

Linear Logarithmic Power Exponential
n 115 115 115 115

Equation y = 443.297x − 
166.610

y = 284.562ln(x) + 
248.525

y = 299.611x2.216 y = 12.523e3.370x

R2 0.617 0.579 0.626 0.636
AdjustedR2 0.614 0.575 0.623 0.633
F(α=0.01) 182.255 (P  

0.001)
155.181 (P  0.001) 802.5746 (P  0.001) 1089.7635(P  

0.001)
176 Note: n, number of samples; R2,coefficients of determination; the best regression model is highlighted in bold.

177 Tests of model accuracy

178 The accuracy of the models was tested to obtain the best regression models. We used test sets of 
179 all field samples to analyse and evaluate the errors in the regression models (Table 2). A 
180 comparison of the predictive performances of the regression equations indicated by SE and MEC 
181 are presented in Table 2.
182 Table 2 Comparison of the errors of the regression equations.

Linear Logarithmic Power Exponential
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n 38 38 38 38
SE (gm-2) 52.64 55.46 51.32 49.22

ANPP

MEC (%) 34.77 37.09 31.64 30.01
183 Note: n, number of samples; SE, standard error of prediction; MEC, coefficient of mean error; the SE and MEC of 

184 the best regression model for each vegetational parameter are highlighted in bold.

185
186 We determined the best models for ANPP based on R2 and the independent validations. The 
187 exponential equation was optimal for ANPP (R2 = 0.636, SE = 49.22gm-2, MEC = 30.01%; Tables 
188 1 and 2). Models with the following equations (Eqs. 4) were selected and used as the optimal 
189 ground spectral models for ANPP of the entire Khorchin grassland:
190             (4)NDVISOCeANPP _370.3523.12 

191 The relationship between TM_NDVI and SOC_NDVI
192 The linear regression equation was selected based on the analysis of the TM_NDVI/SOC_NDVI 
193 scatter plot. The relationship between TM_NDVI and SOC_NDVI was significant, with an R2 of 
194 0.656 (P < 0.001) and met the assumptions of the statistical analyses (Table 4, Fig.3). The model 
195 with the following equation (Eq. 5) was selected for the relationship between TM_NDVI and 
196 SOC_NDVI for the entire Khorchin grassland:
197 SOC_NDVI = 0.462*TM_NDVI+0.413               (5)
198 Table 3 Regression equations between TM_NDVI and SOC_NDVI.

Equation n R R2 F (α=0.01)

y=0.462X+0.413 39 0.810 0.656 70.63，P < 0.001

199 Note: n, number of samples; R, R2,coefficients of determination.

200

201  Fig. 3 Fitted curve of the best model for the relationship between SOC_NDVI and
202 TM_NDVI. 
203

204 Spectral inversion models 
205 The spectral inversion models of TM8 for ANPP was calculated by Eqs. 4-5:
206           (6))413.0_462.0(370.3523.12  NDVITMeANPP
207 To test the agreement between measured and predicted values, we applied Eqs. 6 to the TM8 
208 NDVI greyscale image and obtained the patterns of ANPP distribution in the study area by grid 
209 computing. The test data sets were then converted into vector diagrams defined by geographic 
210 coordinates by geographic information system. The values at the test points were recorded in the 
211 distribution patterns as the corresponding pixels predicting values of ANPP. The relationship 
212 between actual and predicted values was used to evaluate the accuracy of model.
213 The correlation between the predicted and actual values was significant, as were the independent 
214 validations for predicting biomass (SE = 24.74, MEC = 18.61%; Fig.4). This study suggested that 
215 the spectral inversion models could be used to monitor grassland biomass at regional scales.
216
217 Fig. 4 Independent validation for predicting biomass (n = 20, P < 0.001). SE, standard error of 
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218 predicted biomass; MEC, coefficient of mean error. 

219 Discussion
220 The main goal of this study was to establish more accurate models for estimating ANPP of the 
221 grassland in Khorchin. We chose the NDVI vegetation index, which can be calculated from 
222 spectral reflectance data acquired in the field and from data from Landsat TM7 Band 4 (TM4; 
223 760-900 nm) and Band 3 (TM3; 630-690 nm) or from NOAA/AVHRR Channel 1 (580-680 nm) 
224 and Channel 2 (720-1100 nm)[39-41]. In a previous study, we also calculated the NDVI from data 
225 collected by a FieldSpec3 spectroradiometer (Analytical Spectral Devices, Boulder, USA), at 
226 spectral reflectances of 620-670 (RED) and 841-876 (NIR) nm [9]. To further improve the 
227 accuracy in the present study, we chose satellite data from Landsat 8(TM8), which have a higher 
228 geometric precision and signal-to-noise ratio than the other Landsat data, and used the SOC710 
229 Hyperspectral Imaging System, which is more accurate than the FieldSpec3 spectroradiometer. 
230 The TM8 remotely sensed imaging data were only released in 2013, so they have not yet been 
231 widely applied to monitor vegetational biomass. This study applied the field data for monitoring 
232 the vegetation, thereby providing an informational baseline for this study area. The spectral 
233 inversion model was ideal, indicating that TM8 remote imaging can be used for research on 
234 vegetation biomass on a regional scale.
235 ANPP have their own optimal regression models based on the processing and statistical analysis 
236 of experimental data in the study area. The optimal equations for the estimation of ANPP (Fig.5) 
237 indicate that the relationship between SOC_NDVI and ANPP weakens at biomass >350 g m-2 for 
238 grassland. Estimates of biomass above these levels are inaccurate or unreliable and may be 
239 affected by the NDVI lower saturation phenomenon in areas of dense vegetation cover. When 
240 biomass exceed these levels, factors such as grass height and leaf area index must be considered, 
241 or a modified SOC_NDVI should be derived[42].
242
243 Fig. 5  Fitted curve of the best model for the relationship between ANPP and SOC_NDVI for 
244 the calibration sets
245 The ground spectral models for ANPP can be applied to TM8 images, because measured spectral 
246 characteristics of plants on the ground are intrinsically linked to those obtained by TM8 remote 
247 sensing. Grassland yield over large areas can be estimated based on the ground spectral model. 
248 The models, however, could be more accurate if field and satellite data are collected over several 
249 years rather than only for one year. Also, the field and satellite data should be acquired at the same 
250 time for maximal correspondence. In future field experiments, we will assess the collective 
251 influence of these vegetational characteristics and the NDVI on biomass prediction and will seek 
252 to obtain a modified NDVI for estimating the biomass of dense vegetation under natural 
253 conditions. 

254 Conclusions
255 This study developed a relatively accurate model for estimating AGB and tests the applicability of 
256 hyperspectral data from field and TM8 to map AGB on regional scales by a regression analysis 
257 method. The methodology we adopted in the study was a first attempt to Retrieval of vegetation 
258 biomass from ground hyperspectral remote sensing in Khorchin grassland.
259 The accuracy of ground spectral inversion is affected by many factors, and the quality of the selected 
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260 remote sensing image data has the greatest impact on the fitting accuracy of the model. Landsat 8 
261 satellite data is selected for remote sensing data, which has higher geometric accuracy and 
262 signal-to-noise ratio than previous Landsat data, which effectively expands the application range of 
263 image data. In the aspect of imaging mode, the sweep pendulum design of OLI imager has good 
264 stability and improves the image quality, and in the aspect of geometric accuracy, L1T data product is a 
265 data product after precise correction, and the product accuracy has been greatly improved. In this paper, 
266 TM8 data is used to retrieve vegetation biomass, and the results show that calculated R2 and SE and 
267 MEC values for various regression models vary among ground spectral models. By comparison, 
268 the exponential regression models we developed show a stronger relationship between spectral 
269 reflectance and ANPP. An exponential equation was optimal for estimating ANPP in the Khorchin 
270 grassland. Accuracy verification indicated that the relationship between the actual and predicted 
271 biomass was significant. Estimating ANPP with high accuracy based on NDVI derived from TM8 
272 satellite data is thus possible, which accumulates experience for the application of TM8 data in 
273 vegetation monitoring field.
274 The accuracy of this technique depends on living, green biomass and not on senesced or dead 
275 biomass, so the timing of the acquisition of NDVI data is critical, and the model can possibly be 
276 improved if models are developed per vegetation types and using a larger range of ground data. In 
277 brief, this research shows the usefulness of hyperspectral data from field and TM8 to evaluate 
278 aboveground biomass at very high precision to provide theoretical and data support for RS 
279 monitoring, grassland governance and ecological restoration.
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