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Recent massive increases in the number of sequences available in public databases challenges
current experimental approaches to determining protein function. These methods are limited
by both the large scale of these sequences databases and the diversity of protein functions.
We present a deep learning Graph Convolutional Network (GCN) trained on sequence and
structural data and evaluate it on ~40k proteins with known structures and functions from
the Protein Data Bank (PDB). Our GCN predicts functions more accurately than Convolu-
tional Neural Networks trained on sequence data alone and competing methods. Feature
extraction via a language model removes the need for constructing multiple sequence align-
ments or feature engineering. Our model learns general structure-function relationships
by robustly predicting functions of proteins with ≤ 30% sequence identity to the training
set. Using class activation mapping, we can automatically identify structural regions at the
residue-level that lead to each function prediction for every protein confidently predicted,
advancing site-specific function prediction. De-noising inherent in the trained model allows
an only minor drop in performance when structure predictions are used, including multiple
de novo protocols. We use our method to annotate all proteins in the PDB, making several
new confident function predictions spanning both fold and function trees.
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Proteins are linear chains of amino acid residues that fold into 3-dimensional structures to

carry out a wide variety of functions within the cell. Even though many (5–30%, depending on the

organism) functional regions of proteins are disordered (lack a well defined ensemble average) the

majority of protein domains in natural proteins fold into specific and ordered three-dimensional

conformations as a result of the physical interactions within the chain1–5. The structural features of

proteins, in turn, determine the wide range of functions: from binding specificity, forming struc-

tures within the cell, to catalysis of biochemical reactions, transport, or signal transduction. There

are several widely used classification schemes that help to organize these myriad protein func-

tions including: the Gene Ontology (GO) Consortium6, the Comprehensive Enzyme Information

System (BRENDA)7, Enzyme Commission (EC) numbers8, Kyoto Encyclopedia of Genes and

Genomes (KEGG)9, and others. GO, for example, classifies proteins into hierarchically related

functional classes (also called GO terms) organized into 3 different ontologies: Molecular Func-

tion (MF), Biological Process (BP) and Cellular Component (CC) describing different aspects of

protein functions.

The advent of low-cost and efficient protein sequencing technologies has resulted in the

massive growth in the number of sequences available in key protein sequence databases, like

the UniProt Knowledgebase (UniProtKB, http://uniprot.org). UniProt currently contains

over 100 million sequences and only ~0.5 million sequences (0.5%) that are manually annotated

(UniProtKB/Swiss-Prot). Most proteins with unknown function (i.e., hypothetical proteins) are

unlikely to be experimentally characterized. Understanding the functional roles and studying the

mechanisms of these newly discovered proteins, in both health and disease, is one of the most
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important biological problems in the post-genomic era. In parallel to the growth of sequence data,

the advent of experimental as well computational techniques in structure biology has made the

three-dimensional structures of many proteins available10–16.

The Protein Data Bank (PDB, http://wwpdb.org) remains the main repository of infor-

mation about the three-dimensional structures of proteins, nucleic acids, and complex assemblies,

and has also experienced significant growth in recent years, reaching over 150,000 entries.

To address the sequence-function gap many computational methods have been developed

over the years. These methods typically aim to predict protein function for whole protein genes,

but much work is also directed at the related problem of predicting function in a site- or domain-

specific manner (that automatically generates functional hypothesis linked to residues, regions or

domains)17–20. Traditional machine learning classifiers, such as support vector machines, random

forests, and high-dimensional statistical methods like logistic regression have been used exten-

sively for the protein function prediction problem, and have established that integrative predic-

tion schemes can outperform homology-based function transfer21, 22. Systematic benchmarking

efforts, such as the Critical Assessment of Functional Annotation (CAFA123 & CAFA224) and

MouseFunc25, have also played a key role in the development of these methods and have shown that

integrative machine learning and statistical methods outperform traditional sequence alignment-

based methods (e.g., BLAST)22. However, the performance of these methods is typically strongly

affected by the quality of manually-engineered features constructed from either sequence or struc-

ture (features that rely heavily on heuristics that in turn require domain-expert knowledge, and in
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some cases unstable assumptions, thresholds and preprocessing pipelines)26. Here, we focus on

methods that can take as inputs sequence and features that are readily derived from sequence (such

as predicted structure) and do not focus on, or compare to, the many methods that rely on pro-

tein networks like GeneMANIA27, Mashup28, DeepNF29, and other integrative network prediction

methods. We focus our study in this way to present a method that can be applied to very large vol-

umes of sequence where many proteins are from unknown organisms lacking the required network

data (and thus hope to address the critical need for these methods in metagenomic contexts).

In the last decade, deep learning approaches have achieved unprecedented increase in per-

formance on a broad spectrum of problems ranging from learning protein sequence embeddings

for contact map prediction30 to predicting protein structure31, 32 and function33. In particular, Con-

volutional Neural Networks (CNN)34, that have been state-of-the-art in computer vision, have also

shown tremendous success in addressing problems in computational biology. They enabled task-

specific feature extraction directly from protein sequence or its 3D structure overcoming the limi-

tations of feature-based ML methods. The majority of sequence-based protein function prediction

methods use 1D CNNs, or variations thereof, that search for recurring spatial patterns within a

given sequence and converts them hierarchically into complex features using multiple convolu-

tional layers.

Recent work has employed 3D CNNs to make predictions and extract features from protein

structural data35, 36. These methods take as input a 3D volumetric protein structure represented on

a grid. Storing explicit 3D representations of protein structure at high resolution is not memory
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efficient (most of the 3D space is unoccupied by protein structure); thus, in most cases, the 3D

CNN would convolve over empty space which is somewhat inefficient. More recently, geometric

deep learning methods37 and more specifically Graph Convolutional Networks (GCNs)38, 39 have

offered a way to overcome these limitations by generalizing convolutional operations on more natu-

ral graph-like molecular representations. Graph Convolutional Networks have shown tremendous

success in various problems ranging from learning useful molecular fingerprints40, to predicting

biochemical activity of drugs41, to protein interface prediction42.

Here, we describe a method based on GCNs for functionally annotating protein sequences

and structures that outperforms current methods and scales to the size of current repositories of

sequence information. We model protein structures as graphs that are derived from protein con-

tact maps (truncated residue-residue-pair distance maps). Residue-level sequence features together

with contact maps, are fed into GCNs. The GCNs uses a deep architecture to further propagate

residue-level features between residues at different proximity to each other in the protein contact

graph to construct final protein-level feature representations that prove useful for protein function

prediction. For learning sequence features we use Bidirectional Long Short-Term memory Lan-

guage Model (LSTM-LM) pretrained on a corpus of around 2 million protein sequences. Our LM

is trained to predict an amino-acid residue in the context of residues before and after it in a protein

sequences. Using features from a pre-trained, task-agnostic LSTM LM as input to classification

tasks has demonstrated tremendous success in many NLP43 and biological problems30. We show

that such features can significantly boost performance of GCN in function prediction task. Using

LM features together with contact maps of experimental PDB structures we show that our method

5

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 4, 2019. ; https://doi.org/10.1101/786236doi: bioRxiv preprint 

https://doi.org/10.1101/786236


outperforms sequences-only state-of-the-art methods. Moreover, by testing our method on de novo

predicted structures we show that our method is robust to expected errors and can significantly

de-noise predicted structures while still confidently predicting their functions.

In addition to improved accuracy of function predictions, our method also provides the abil-

ity to interpret predictions by analysing what the method is learning during the training. Designing

transparent and explainable methods for interpreting classification results made by complex neural

network classifiers has been a main focus of many recent studies44–48. For instance, a recent work

in computer vision, uses Class Activation Maps (CAMs) on trained CNN-based architectures44 to

localize the most important regions in images relevant for making correct classification decisions44.

Here, we propose a similar approach, adapted for GCNs, for detecting functional regions in pro-

teins. For each PDB chain, CAM detects GO term-specific sites on its 3D structure by identifying

residues relevant for making accurate GO term prediction. Here, we show that, for various GO

terms, these functional sites often correspond to known binding regions, conserved regions or ac-

tive sites. Interestingly, our model is not explicitly trained to predict functional sites, but instead

such predictions stem solely from the CAM analysis of the graph convolution parameters of the

trained model. Performing such analysis for identifying functional sites is also very efficient as it

does not require any further training or modification of the model’s architecture.

As we demonstrate below, analysing results from CAM approach and finding their biolog-

ical meanings is challenging for some protein structures. However, in most cases, this approach

can automatically navigate the hierarchy from small sites, to larger binding sites, to domains to
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whole-protein localized functions. The site-specificity afforded by our function predictions is very

valuable, especially in the case when predicting functions of poorly studied, unannotated pro-

teins. Site-specific predictions provide first insights into the correctness of predictions and frames

follow-up genetics or validation experiments (for example, highlighting the salient residues in the

protein’s 3D structure, detected by CAM, could serve as a potential validation technique to many

biochemists and other domain experts studying predictions made by our model).
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Figure 1: Schematic overview of our method’s pipeline. (A) LSTM language model, pretrained
on ~2 million Pfam protein sequences, used for extracting residue level features of PDB sequence.
(B) our GCN with 3 graph convolutional layers for learning complex structure–to–function rela-
tionships.
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RESULTS

Method overview

Our model takes as input a protein sequence and structure (in the form of a contact map) and out-

puts GO term probabilities. The method consists of two main parts: a LSTM LM that is learned

from a very large corpus of protein sequences (Figure 1A), and a GCN that uses protein structure

(Figure 1B). The first stage is an LSTM-LM (pretrained on the full set of protein domain sequences

in the protein families database (Pfam)49, see Methods) is used for extracting residue-level features

from PDB sequences. It is composed of two stacked forward direction LSTM layers and two

stacked reverse direction LSTM layers50. The residue-level hidden states from both LSTM blocks

are concatenated and passed to a softmax layer for predicting probabilities of amino acids at each

position of each sequence given the previous and following amino acid residues. The concatenated

residue-level features constructed for PDB sequences, together with PDB contact maps, are used

as an input for the second stage of our method. The second stage is a GCN used for predicting GO

terms that uses three graph convolutional layers, a global average pooling layer followed by a num-

ber of fully connected layers to learn a complex structure-to-function relationship. The number of

fully connected layers and final model dimensions are chosen based on the method’s performance

on the validation set (see Method section). During the training of GCN the parameters of the

LM are frozen; i.e., the LSTM LM stage is only used as a PDB sequence feature extractor. One

main advantage of our method, in comparison to, standard CNNs, is that it convolves features over

residues that are distant in the primary sequence, but close to each other in the 3D space. Such an
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operation, implemented here using graph convolution, leads to better protein feature representa-

tions and ultimately to more accurate function predictions. The effect of long-range connections on

predictive performance of our method is shown in [Supplementary Figure 1]. Another advantage

of our method is that LM sequence features boost the predictive power of our method compared to

simplified residue feature representation [Supplementary Figure 1].

1 Evaluating our method on PDB structures

The performance of our method, computed based on the Area Under the Precision-Recall (AUPR)

curve, averaged over all EC numbers and over all GO terms in all three branches of GO is shown in

Figure 2a (see panel 1 for EC and panels 2-4 for GO). The performance is compared to 1) BLAST

baseline, in which every test sequence receives GO terms that are transferred from the sequence

in the training set with the score being the pairwise sequence identity (as done in CAFA123 &

CAFA224), as well as to the 2) state-of-the-art CNN trained only on the sequence data (see Methods

section for the architecture details). Our method substantially outperforms both CNN and BLAST

on the EC numbers (only the most specific EC numbers are considered in the training, i.e., leaf

nodes in the EC tree), MF-GO and CC-GO, but not on BP-GO (see also average AUPR curves for

EC and MF-GO in Figure 2c and Figure 2d).

We explored the performance of our method on individual GO terms and EC classes [Sup-

plementary Figures 2-5]. We observe that for the majority of MF-GO and CC-GO terms, our

method outperforms the sequence-only CNN method, indicating the importance of structure fea-
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Figure 2: Improved performance over GO terms in different ontologies and EC numbers.
(A) AUPR scores, summarized over all EC numbers/GO terms both under the micro-averaging
(m-AUPR) and macro-averaging (M-AUPR), computed on the test set comprised of PDB chains
chosen to have ≤ 30 % sequence identity to the PDB chains in the training set. The numbers in
brackets indicates the number of EC classes and the number of GO terms in different ontologies
used in the training of the model; (B) Distribution of F-max score averaged over all MF-GO terms
grouped by maximum % sequence identity to the training set; Precision-recall curves for each
method for MF-GO terms (C) and EC numbers (D); The curves are averaged over prediction results
from 10 different separately trained GCN or CNN models.

tures in improving the classification performance. Our method performs better than sequence-only

CNN for more specific MF-GO and CC-GO terms with fewer training examples (see Supplemen-
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tary Figures 6A,B). By looking at the individual CC-GO term performance, we demonstrate that

our method outperforms CNN on almost all GO terms with average PDB chain length ≥ 200 (see

Supplementary Figure 6F), illustrating the importance of encoding distant amino-acid contacts

via the structure graph. This demonstrates the superiority of graph convolutions over sequence

convolutions in constructing more accurate protein features. Specifically, in the case of long pro-

tein sequences, a CNN, with reasonable filter lengths, would most likely fail to convolve over

residues at different ends of the long sequence, even after applying multiple consecutive CNN lay-

ers; wheres, GCN applied on contact maps would, in 3 layers, access feature information from the

complete structure.

2 Evaluating our method on predicted structures

Here, we ask how well can our method tolerate the error in predicted structures. We demonstrate

this for the Rosetta de novo prediction procedure and for another de novo deep-leaning-based,

structure prediction method, 11. We used Rosetta macromolecular modeling suite51 and protein

contact predictions from DeepMetaPSICOV contact predictor (DMPfold)11 to fold sequences of

~500 experimentally annotated PDB chains and obtain the lowest energy decoy from folding. With

respect to contact or distance map prediction (the relevant input feature here), Rosetta has the

highest error of the three methods tested (Supplementary Figure showing TM scores). We construct

two kinds of Cα–Cα contact maps for each PDB chain – one from its experimental (i.e., NATIVE)

structure and one from the lowest-energy (i.e., LE) decoy.
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Figure 3: Precision-recall curves representing the performance on ~500 annotated test proteins ob-
tained by using our CNN applied to sequences (blue), GCNN applied to NATIVE (black), Rosetta-
predicted lowest energy (LE) (green) structures and DMPfold lowest energy (LE) structures (red).
The curves are averaged over prediction results from 10 different separately trained GCN or CNN
models.

We run our method on both predicted (Rosetta de novo) and native (derived from high quality

experimental structures) contact maps and report the results together with results of the CNN ap-

plied only on sequences in Figure 3. We observe that our GCN model exhibits higher performance

than that of the CNN even when accounting for error in predicted contact maps. Even though

Rosetta-predicted structures often result in noisy contact maps, the fact that the performance of

our method on the predicted LE structures is not drastically impaired can be attributed to the high

denoising ability of the GCN implied by high correlation between GCN features extracted from

NATIVE and LE contact maps (see Supplementary Figure 7).
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Figure 4: (A) An example of the gradient-weighted class activation map for ’Ca Ion Binding’
(right) mapped onto the 3D structure of rat alpha-parvalbumin (PDB Id. = 1S3P), chain A (left),
annotated with calcium ion binding. The two highest peaks in grad-CAM activation profile cor-
respond to calcium binding regions. (B) ROC curves showing the overlap between grad-CAM
activation profiles and binding sites, retrieved from the BioLiP database, computed for the PDB
chains shown in panel C. (C) Examples of other PDB chains annotated with DNA binding, GTP
binding and glutathione transferase activity. All residue are colored using gradient color scheme to
match the grad-CAM activity profile, with more salient residues highlighted in red and less salient
residues highlighted in blue.

3 From protein-level to residue-level prediction via class activation maps

Many proteins carry out their functions through a proxy of a few functionally important residues

(e.g., active sites on an enzyme, or ligand-binding sites on a protein, and protein-protein interac-

tions); this is especially the case for site-specific functions in MF branch of the GO. Designing ML

methods for identifying such functional residues have been a subject of many recent studies17–20.
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Much recent work in ML has provided several new approaches for localizing signal to regions of

the input feature space that lead to a positive predictions, giving a means of interpreting decisions

made by neural networks52, 53. In computer vision, these methods determine the regions of images

that lead to positive object classifications; in NLP these methods lead to identification of sub-

regions of documents54. Here, we use grad-CAMs44, adapted for post-training analysis of GCNs,

to determine a region of a protein that leads to the correct prediction of its GO function. For each

GO term, the grad-CAM technique generates an activation map over the input data, in our case a

sequence of residues and the contact or distance map, indicating the importance of each residue

to the GO term classification decision (see example of CAM and its corresponding heatmap over

sequence in Fig. 4A, right). It does so by first computing the contribution of each graph convo-

lutional feature map of the model (trained on the MF-GO dataset) to the GO term prediction, and

then by summing the feature maps with positive contributions to obtain a final residue-level activa-

tion map (see Method Section). For site-specific functions, this method identifies correct function

regions and we provide several examples where we automatically and correctly identify functional

sites for several functions where binding sites are known (see Fig. 4). Fig. 4A shows a grad-CAM

for a calcium ion binding (GO:0005509) of alpha-parvalbumin protein (PDB id: 1S3P). The two

highest peaks in the grad-CAM correspond to the binding regions in the 3D structure of the protein

(Fig. 4A, left). Indices of the calcium binding residues of the 1S3P protein were retrieved from the

BioLiP database55 and compared to the residues identified by our method. ROC curve computed

between the binary profile representing binding sites from BioLiP (shown in red) and the gradCAM

profile (shown in green) in Fig. 4A, right are depicted in Fig. 4B. High area under the ROC curve
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indicates high correspondence between binding sites and our predictions. Similar correspondence

with BioLiP is observed for several other functions including DNA binding (GO:0003677), GTP

binding (GO:0005525) and glutathione transferase activity (GO:0004364) (see Fig. 4C and their

corresponding ROC curves in Fig. 4 B).

Our systematic analysis of grad-CAMs against BioLiP database reveal that the highest per-

forming group of GO terms are related to functions with known site-specific mechanisms or site

specific underpinnings, like metal binding. Therefore, we provide a systematic analysis of grad-

CAMs for GO terms related to metal binding using also information from MetalPDB56 database.

We depict examples (with high AUROC scores) where CAMs correctly identify binding regions

for calcium ion binding (GO:0005509), zinc ion binding (GO:0008270) and copper ion binding

(GO:0005507) (see Supplementary Figure).

There are also a large number of high quality protein structures in the PDB that lack func-

tional annotation, or that have only high-level or incomplete annotation. This partial lack of an-

notation results from unbiased structural genomics projects, proteins having associations with pro-

cesses but no function, and the fact that proteins can have multiple functions. Here we apply our

method to the full PDB to 1) annotate unannotated chains, 2) complete partial annotations, and 3)

look for new functions hiding in annotated proteins (find more moonlighting proteins). We present

Supplementary Table 2 which shows the number and types of new annotations produced for the

full PDB, and Supplemental file 1 which holds predictions and salience maps for all predictions

produced for the PDB.
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4 Discussion

In this work, we proposed a novel deep learning-based method for predicting protein function

from both protein sequences and contact map representations of protein structures. Our method,

trained on protein structures from PDB, is very efficient, and it can predict both GO terms and EC

numbers of proteins and improves over state-of-the-art sequence-based methods on majority of GO

terms especially. Features learned from protein sequences by the LSTM Language Model and from

contact maps by the GCN lead to substantial improvements in protein function prediction accuracy,

which could enable novel protein function discoveries. One important advantage of our method

is that it makes function predictions that go beyond homology-based transfer by extracting local

sequence and global structure features that would most likely be neglected by homology-based

methods like BLAST (reflected in the substantial difference in the function prediction accuracy

between our method and BLAST)23.

Comparable performance of our method between Rosetta-predicted and their correspond-

ing experimentally determined structures, which can be attributed to high denoising power of our

method, indicates that our method can also be reliably used in predicting functions of proteins with

computationally inferred structures. This opens a door for characterizing many proteins lacking ex-

perimentally determined 3D structures and the contents of many databases with available predicted

structures (e.g., homology-based Swiss-Model12, and ModBase57 could be used for expanding the

train set and improving predictive power of the model). The more extensive use of homology

models allowed by the denoising properties of our network architecture will be a subject of future
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study.

While this paper mainly focuses on introducing efficient and accurate function prediction

model, it also provides means of interpreting prediction results. We demonstrate, on multiple dif-

ferent GO terms, that CAMs identify structurally-meaningful protein regions encompassing func-

tionally relevant residues (e.g., ligand-binding residues). For some PDB chains, the accuracy at

which the CAM identifies binding residues is quite remarkable, especially given the fact the model

is not principally designed to predict this, and that the ligand-binding information was not given

to the model a priori. However, the main disadvantage of considering this to be a site-specific

function prediction method is in the multiple different meanings of CAMs. Specifically, for some

GO terms related to “binding”, CAMs do not necessarily identify binding residues/regions; in-

stead, they identify regions of residues that are conserved among the sequences annotated with

the same function. The most interesting example demonstrating this property is maltose binding

(GO:1901982) (see Supplementary Figure 8). In this example, the salient residues are far from

the residues binding maltose in the 3D structure; but, by looking at a few non-redundant PDB se-

quences annotated with maltose binding, we find that the CAM always identifies the same residues

that are conserved across the sequences. These can be explained with the fact that any neural net-

work, including ours, would always tend to learn the most trivial features that lead to the highest

accuracy ( AUPR=1 for maltose binding for both CNN and GCN)58, 59. Despite these limitations,

with the appropriate balancing and control of the bias in the training set (see Supplementary

Figure 9 showing the distribution of PDB chains belonging to different folds and how this corre-

lates with grad-CAM performance), this approach has a huge potential in advancing site-specific
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function prediction.

After the culmination of much effort two key problems in computational biology, protein

structure prediction and protein function protein, are linked together by the described methods.

Deep learning together with increasing amount of available sequence and structural data being

generated each day has a potential to meet the annotation challenges posed by ever increasing

volumes of genomic sequence, offering several new methods for interpreting protein biodiversity.

Methods

Construction of contact maps. We collect 3D atomic coordinates of proteins from the Protein

Data Bank (PDB)60. As the PDB contains extensive redundancy in terms of both sequence and

structure, we remove identical and similar sequences from our set of annotated PDB chains. We

create a non-redundant set by selecting PDB chains that are not identical to any other PDB chain

in the set. To do so, we first cluster all PDB chains (for which we were able to retrieve contact

maps) by blastclust at 100% sequence identity (i.e., number of identical residues out of the

total number of residues in the sequence alignment). Then, from each cluster we select a “repre-

sentative" PDB chain as a PDB chain which is annotated (i.e., has at least one GO term in at least

one of the 3 ontologies) and which is of high quality (has a high resolution structure). Each protein

in the set is described by an ordered list of amino acid residues represented by thier X, Y and Z

coordinates in angstrom (Å). To construct contact maps we use the α-carbon (Cα) atom type and

consider two resides to be in contact if the distance between their corresponding Cα atoms is less

than 10Å. We refer to this type of contact maps as Cα–Cα. We have also considered two other
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criteria for contact map construction. Two residues are in contact: 1) if the distance between any

of their atoms is less than 6.5Å (we refer to this type of contact maps as ANY-ANY) and 2) if the

distance between their Rosetta neighbor atoms is less than sum of the neighbor radii of the amino

acid pair (we refer to this type of contact maps as NBR-NBR). Rosetta neighbor atoms are defined

as the β-carbon (Cβ) for all amino acids except glycine where the α-carbon is used. An amino

acids neighbor-radius describes a potential interaction sphere that would be swept out by the side

amino acid side-chain as it samples all possible conformations. Neighbor-neighbor contact maps

are therefore more indicative of side-chain–side-chain interactions than Cα–Cα maps. We have

also experimented with different cut-off thresholds for Cα–Cα and ANY − ANY contact maps.

We found that our method produced the best results with Cα–Cα and 10Å cut-off.

Function annotations of PDB chains. In the training of our models we use two sets of function

labels: 1) Gene Ontology (GO)6 terms and 2) enzyme commission (EC) numbers 7. GO terms are

hierarchically organized into 3 different onotologies – molecular function (MF), biological process

(BP) and cellular component (CC). We train our models to predict GO terms separately for each on-

tology. The summary of GO identifiers as well as EC numbers for each PDB chain were retrieved

from SIFTS61 (Structure integration with function, taxonomy and sequence) database. SIFTS

transfers annotation to PDB chain level via residue-level mapping between UniProt Knowledge-

base (UniProtKB) and PDB entries. All the annotation files were retrieved from SIFTS database

with PDB release 08.19 and UniPort release 2019.02. We consider annotations that are: 1) not

electronically inferred (non-IEA), specifically, we consider GO terms with the following evidence

codes: EXP, IDA, IPI, IMP, IGI, IEP, TAS and IC and 2) electronically inferred (IEA). Further-
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more, we focus only on specific MF-, BP- and CC-GO terms that have enough training examples

from the non-redundant training set (see the section above). That is, we select only GO terms

that annotate ≥ 30 (for MF and CC) and ≥ 50 (for BP) non-redundant PDB chains. We retrieved

enzyme classes for sequences and PDB structures from the lowest level (most specific level) of EC

tree. The number of GO terms and EC classes in each ontology is represented in Table [Supple-

mentary Table 1].

Top 500 Rosetta-predicted structures. The initial set of benchmark structures used here was

Jane and Dave Richardson’s “Top 500” dataset62. It is a set of hand curated, high quality (the top

500 best), protein structures that were chosen for their fit to their completeness, how well they

fit the experimental data, and lack of high energy structural outliers (bond angle and bond length

deviations). This set has been used in the past for fitting Rosetta energy/score terms and numerous

other structural-bioinformatics validation tasks. Unfortunately, the structures in this set lacked

sufficient annotations (many of these structures were the results of structural genomics efforts and

had no, or only high level, annotations in GO and Brenda) Accordingly, we choose an additional

350 sequences from the PDB. These additional high quality benchmark structures were chosen by

taking 119K chains with function annotations and filtering them with the PISCES Protein Sequence

Culling Server63 with the criteria below. That left us with 1606 SIFTS annotated chains from which

we randomly selected 350. These proteins were then excluded from all phases of model training.

Convolutional neural network. Convolutional neural networks (CNNs) have shown tremendous

success in extracting information from sequence data and making highly accurate predictive mod-

els. Their success can be attributed to convolutional layers with highly reduced number of learnable
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parameters which allow multi-level and hierarchical feature extraction. In the last couple of years a

large body of work has been published covering various applications of CNNs, such as prediction

of protein functions33 and subcellular localization64, prediction of effects of noncoding-variants65

and protein fold recognition66. Here we describe in detail the architecture of the convolutional

neural network used in our comparison study. We represent a protein sequence with L amino acid

residues as a features matrix X = [x1, . . . ,xL] ∈ {0, 1}L×c, where c = 26 dimensions (25 residues

plus the gap symbol) are used as a one-hot indicator, xi ∈ {0, 1}c, of the amino acid residue

at position i in the sequence. This representation is fed into a convolution layer which applies

a one-dimensional convolution operation with a specified number of kernels (weight matrices or

filters), fn, of certain length, fl, and all outputs are then transformed by the rectified linear activa-

tion function (ReLU ), which sets values below 0 to 0, i.e., ReLU(x) = max(x, 0). It consists of

two convolutional layers followed by a global max pooling layer and a dense layer with sigmoid

activation function for predicting probabilities of GO terms or softmax activation functions for

predicting EC enzyme classes. In the first convolution layer, we use fn = 360 filters of different

lengths: 120 filters of length fl = 5, 100 filters of length fl = 10, 80 filters of length fl = 15

and 60 filters of length fl = 20. After concatenating the results of the first CNN layer we obtain

L × 360 dimensional feature map for each sequence. Using filters of variable lengths ensures ex-

traction of complementary information from protein sequences. The second convolutional layer

has fn = |GO| number of filters for GO terms (or fn = |EC| for EC) classification. The length

of the filters is set to fl = 3 for all filters in the second convolutional layer. The architecture of the

CNN used in our study is shown in [Supplementary Note 1].
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LSTM language model for learning residue-level features. We use an approach similar to Be-

pler & Berger30. We train a bidirectional LSTM language model on ~2,000,000 Pfam sequences.

The sequences are represented using 1-hot encoding (see above). The LM architecture is com-

prised of two stacked forward and two stacked backward LSTM layers with 512 units each (see

Fig. 1A for forward direction LSTM). The LSTM LM model is trained for 5 epochs using ADAM

optimizer with learning rate lr = 0.001 and batch size of 128.

The residue-level features, extracted from the final LSTM layers’ hidden states, HLM =

[
−→
H,
←−
H], are combined together with 1-hot representation of sequences, X, through learnable non-

linear mapping:

Xinput = ReLU(HLMWLM + XWX + b) (1)

where Xinput is the final residue-level feature representation passed to the fist GCN layer, H(0) =

Xinput (see equation 4). The parameters, WLM , WX and b are trained together with the pa-

rameters of the GCN. All the parameters of the LSTM LM are frozen during the training. See

[Supplementary Note 2] summarizing LSTM-LM architecture used in our study.

Graph convolutional network. Graph Convolutional Networks (GCNs) have recently been shown

to be powerful methods for extracting features from data that is naturally represented as one or

more graphs37. This makes GCN a suitable candidate method for extracting features from a pro-

tein by taking into account their graph-based structure of amino acids represented by contact maps.

In particular, they have achieved a remarkable performance in classifying documents in citation
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networks39, modeling and predicting chemical properties of molecules40, 41, 67 and protein interface

prediction with applications in drug discovery and design42. Here, we propose our model based

on the work of Kipf & Welling39. A protein graph can be represented by an adjacency matrix (also

termed contact map), A ∈ RL×L, encoding connections between its L residues, and a residue-level

feature matrix, X ∈ RL×c.

We explore different residue-level feature representations including the one-hot encoding

representation of residues as in the CNN (c = 26), LSTM language model (c = 512, i.e., the

concatenated output forward and reverse LSTM layers), and no sequence features.1 We refer to the

last case as function prediction from protein fold only; see [Supplementary Figure 1].

The graph convolution takes both adjacency matrix, A and residue-level embeddings from

the previous layer, H(l) ∈ RL×cl and outputs the residue-level embeddings in the next layer,

H(l+1) ∈ Rn×cl+1 :

H(l+1) = GC (A,H(l)), (2)

where H(0) = X, and cl and cl+1 are residue embedding dimensions for layers l and l + 1, respec-

tively. Concretely, we use the formulation of Kipf & Welling39:

GC (A,H(l)) = ReLU(D̃−
1
2 ÃD̃−

1
2 H(l)W(l)), (3)

1To be able to run GCN, in this case, feature matrix is substituted with an identity matrix, i.e., X = IL.
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where Ã = A+IL is the adjacency matrix with added self-connections represented by the identity

matrix IL ∈ RL×L; D̃ is the diagonal degree matrix with entries D̃ii =
∑L

j=1 Ãij , and W(l) ∈

Rcl×cl+1 is a trainable weight matrix for layer l + 1. To keep the residues’ features on the same

scale after every convolutional layer the adjacency matrix is first symmetrically normalized, hence

the term D̃−
1
2 ÃD̃−

1
2 . Equation 3 updates features of each residue by a weighted sum of features

of the residue in its one-hop neighborhood (adding self-connections ensures that the residue’s own

features are also included in the sum) (see also inset in Fig. 1).

Given that we are classifying individual protein graphs with different number of residues, we

use several layers, Nl = 3, of graph convolutions. The final protein representation is obtain by first

concatenating features from all layers into a single feature matrix, i.e., H = [H(1), . . . ,H(Nl)] ∈

RL×
∑L

l=1 cl , and then by performing a global pooling layer after which we obtain a fixed vector

representation of a protein structure, h(pool) ∈ R
∑L

l=1 cl . The global pooling is obtained by a sum

operator over L residues:

h(pool) =
n∑
i=1

Hi,: (4)

We then use two dense layers to learn complex protein-to-function relations withReLU acti-

vation function in the first layer and sigmoid (for predicting GO terms) and softmax (for predicting

EC) activation function in the second layer. The second layer outputs probability vector ŷ of di-

mension |GO| for predicting probabilities of GO terms, and |EC| for predicting probabilities of

EC classes.
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Model training and hyperparameters. To account for imbalanced label problem, both CNN and

GCN are trained to minimize weighted binary cross-entropy cost function that gives higher weights

to GO term with fewer training examples:

L(Θ) = − 1

N

N∑
i=1

|GO|∑
j=1

wjyij log(ŷij) + (1− yij) log(1− ŷij), (5)

where Θ is the set of all parameters in all layers to be learned; wj = N
N+

j

is class weight for

function j, with N+
j being the number of positive examples associated with function j; N is the

total number of samples and |GO| is the total number of functions (i.e., GO terms); yij is the true

binary indicator for sample i and function j (i.e., yij = 1 if sample i is annotated with function

j and yij = 0 otherwise) and ŷij is the predicted (sigmoid) probability that sample i is annotated

with function j.

All hyperparameters are determined through grid search based on the model’s performance

on the validation set. The validation set is comprised of 10% randomly chosen samples from

the training set. To avoid overfitting, we use early stopping with patience = 5 (i.e., we stop

training if validation loss does not improve in 5 epochs). We use ADAM optimizer68 with learning

rate lr = 0.0001, β1 = 0.95 and β2 = 0.99 and batch size of 64. The number of epochs is

200. Both GCN and CNN are implemented to deal with variable length sequences, by performing

sequence/contact map padding only on the batch level. See [Supplementary Note 3] for all the

optimal hyperparameters used in our study.

We partition the non-redundant set of PDB chains into train, validation and test such that
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for each function we have at least 30 training examples and at least 3 test examples. The test

set is chosen to be no more than 30% sequence identical to the training set (and typically much

less, or unalignable). We perform experiments with different thresholds. See Figure 2b showing

performance of our method for different sequence identity thresholds. In all our experiments we

trained on both non-IEA and IEA PDB chains (see Supplementary Figure 1), but the the test

set, composed of only experimentally annotated PDB chains (non-IEA), is always kept fixed. See

Table [Supplementary Table 1].

In all our experiments we train different models and the final results are averaged over pre-

dictions made by the 10 different models.

Residue-level annotations. We use a method based on Gradient-weighted Class Activation Map

(grad-CAM)44 to localize function predictions on a protein structure (i.e., to find residues with

highest contribution to a specific function). grad-CAM is a class-discriminative localization tech-

nique that provides visual explanations for predictions made by CNN-based models. Motivated

by its huge success in image analysis, we use grad-CAM to identify important, function-specific

residues in a protein structure. In a grad-CAM approach, we first compute the contribution of each

filter, k, in the last convolutional layer to the prediction of function label l by taking derivative of

the output of the model for function l, yl, with respect to feature map Fk ∈ RL over the whole

sequence of length L:

wlk =
L∑
i=1

∂yl

∂Fk,i
(6)
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wherewlk represent the importance of feature map k for predicting function l, obtained by summing

the contributions from each individual residue. Finally, we obtain the function-specific heat-map in

a residue space by making the weighted sum over all feature maps in the last convolutional layer:

CAM l[i] = ReLU(
∑
k

wlkFk,i) (7)

where ReLU function ensures that only features with positive influence on the functional label are

preserved; CAM l[i] - indicates the relative importance of residue i to function l.

To account for variations in grad-CAM between different initializations of the same model

architecture, we report the grad-CAMs averaged over an ensemble of 10 different separately trained

models.

The advantage of grad-CAM is that it does not require re-training or changes in the architec-

ture of the model which makes is computationally efficient and directly applicable to our models.
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