Matthew R. George ${ }^{1,2,3,9}$, Qiming Duan ${ }^{1}$, Abigail Nagle ${ }^{1}$, Irfan S. Kathiriya ${ }^{1,2,4}$, Yu Huang ${ }^{1}$, Kavitha Rao ${ }^{1}$, Saptarsi M. Haldar ${ }^{1,5,6,8}$, Benoit G. Bruneau ${ }^{1,2,3,6,7}$

1. Gladstone Institutes, San Francisco, CA, 94158 USA
2. Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
3. Program in Developmental and Stem Cell Biology, University of California, San Francisco, CA 94143 USA
4. Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94158
5. Division of Cardiology, Department of Medicine, University of California, San Francisco, CA 94143 USA
6. Cardiovascular Research Institute, University of California, San Francisco, CA 94158 USA
7. Department of Pediatrics, University of California, San Francisco, CA 94143 USA
8. Present address: Amgen Research, Cardiometabolic Disorders, South San Francisco, CA

94080 USA
9. Present address: Vascugen Inc., Madison, WI, 53719

Correspondence to B.G.B (benoit.bruneau@gladstone.ucsf.edu)

Abstract

Long intergenic non-coding RNAs (lincRNAs) have been implicated in aspects of gene regulation, but their requirement for development needs empirical interrogation. To begin to understand the roles lincRNAs might play in heart development, we computationally identified nine murine lincRNAs that have developmentally regulated transcriptional and epigenomic profiles specific to early heart differentiation. Six of the nine lincRNAs had in vivo expression patterns supporting a potential function in heart development, including a transcript downstream of the cardiac transcription factor Hand2 that we named Handlr (Hand2-associated lincRNA), Rubie, and Atcayos. We genetically ablated these six lincRNAs in mouse, which implicated genomic regulatory roles to four of the cohort, However, none of the lincRNA deletions led to severe cardiac phenotypes. Thus, we stressed the hearts of adult Handlr and Atcayos mutant mice by transverse aortic banding and found that absence of these lincRNAs did not affect cardiac hypertrophy or left ventricular function post-stress. Our results support roles for lincRNA transcripts and/or transcription to regulation of topologically associated genes. However, the individual importance of developmentally-specific lincRNAs is yet to be established. Their status as either gene-like entities or epigenetic components of the nucleus should be further considered.

Keywords: heart development, long non-coding RNA, gene regulation

Introduction

A substantial portion of the mammalian genome is transcribed throughout development, while only a small fraction of this yields functional protein (Wong, Passey et al. 2001, 2012, Hon, Ramilowski et al. 2017). The remaining noncoding RNA is arbitrarily classified into long (IncRNA) and short transcripts based upon length greater or less than 200nt. A few IncRNAs have been implicated to be important for cardiac development (Grote, Wittler et al. 2013, Han, Li et al. 2014, Kurian, Aguirre et al. 2015, Anderson, Anderson et al. 2016). However, these RNA molecules are often products of the pervasive bidirectional transcription taking place at most genes (Katayama, Tomaru et al. 2005), which makes independently dissecting their function difficult. On the other hand, thousands of putative intergenic IncRNAs (lincRNAs) with little protein coding potential exist as stand-alone units (Carninci, Kasukawa et al. 2005). They can exhibit characteristics indicative of epigenetic control, such as histone H 3 trimethylation at lysine 4 (H3K4me3) and acetylation of lysine 27 (H3K27Ac) at promoters and trimethylation at lysine 36 (H3K36me3) throughout their gene body, splicing, 5' m7G capping, and polyadenylation (Derrien, Johnson et al. 2012, Sati, Ghosh et al. 2012, Quinn and Chang 2016). LincRNAs also can display considerable sequence conservation and are dynamically expressed in specific tissues at developmentally discrete times (Diederichs 2014, Perry and Ulitsky 2016, Mattioli, Volders et al. 2019). For example, the lincRNAs Braveheart, Meteor, and Carmen seem to play significant roles in precardiac mesodermal differentiation, at least in cellular differentiation systems in vitro (Klattenhoff, Scheuermann et al. 2013, Ounzain, Micheletti et al. 2015,

Alexanian, Maric et al. 2017, Hou, Long et al. 2017). However, Meteor knockout in vivo resulted in milder phenotypes than observed in vitro (Guo, Xu et al. 2018), while Braveheart and Carmen have not been tested in embryos. Thus, few lincRNAs have been shown to be required for cardiac development in vivo. The energy investment a cell puts toward the processing and maintenance of these transcripts suggests their putative importance to the cell and organism. Therefore, efforts must be taken to interrogate specific lincRNA requirements for proper embryogenesis.

We were most interested in lincRNAs that might act to influence the early commitment of nascent mesoderm into the cardiac lineage. We hypothesized that asyet unstudied transcripts were important for this most fundamental stage of cardiac development. Therefore, we screened for the expression of candidates during mouse embryonic stem cell (mESC) in vitro differentiation into cardiomyocytes (CM) through nascent mesoderm (MES), cardiac mesoderm (cMES), and cardiac progenitor (CP) intermediates. Of more than 114,000 long noncoding RNA annotations, we identified a small cohort of lincRNAs with epigenetic regulation, clear splice structure, and cardiac progenitor specificity, which we then validated in vivo in the early embryo. Ablation of these noncoding genes revealed regulatory roles within their topologically associated domains (TADs) but very mild or undetectable phenotypes in heart development or postnatal function.

Results

LincRNAs with cardiac-specific expression and epigenetic regulation in vitro.
We hypothesized that, like many canonical genes, a subset of lincRNAs would be specifically expressed in the cardiac lineage. We also predicted that those most critical for heart formation would function early in its development. To find candidate lincRNAs, we re-mapped stranded raw RNA-seq reads from differentiations of mouse ESCs into cardiomyocytes (Figure 1A/B; (Wamstad, Alexander et al. 2012, Devine, Wythe et al. 2014) against Noncode version 4.0-annotated transcripts (Xie, Yuan et al. 2014). Additionally, we integrated parallel histone modification ChIP-seq data (Wamstad, Alexander et al. 2012) to discriminate loci under epigenetic regulation. To screen for cardiac developmental specificity, we chose to focus on elements that were lowly expressed in ESCs (FPKM < 0.5), while strongly upregulated in cardiac mesoderm or cardiac progenitors (FPKM >1.0). The majority of protein coding genes display antisense transcription from their promoters (Carninci, Kasukawa et al. 2005), including numerous studied IncRNAs (Kino, Hurt et al. 2010, Grote, Wittler et al. 2013, Han, Li et al. 2014, Kurian, Aguirre et al. 2015, Ramos, Andersen et al. 2015, Anderson, Anderson et al. 2016, Daneshvar, Pondick et al. 2016, Gore-Panter, Hsu et al. 2016, Xu, Zhang et al. 2016). We focused instead on genomic elements that could be altered independently from their nearby protein-coding genes. Therefore, we filtered for RNA annotations whose transcriptional start site (TSS) began more than 1 kilobase (kb) from the TSS of known protein-coding genes. To avoid spurious transcripts, we required candidates be spliced and then further refined the list to those displaying histone H3 lysine-4
trimethylation (H3K4me3) and H3 lysine-27 acetylation (H3K27Ac) at their promoters.

After removing annotated transcripts that splice into nearby protein coding genes (i.e. A930006K02Rik into Ifnar1), we found that these criteria narrowed candidates to only nine total lincRNAs out of 114,104 considered transcripts (Figure 1B).

The lincRNA Rubie (Rna Upstream Bmp4 in the Inner Ear, Gm15219) was known to co-express with Bmp4 after E15.0 in the mouse inner ear, and its perturbed splicing was previously implicated in ear vestibule malformation and consequent circling behavior (Roberts, Abraira et al. 2012). However, our candidate screen revealed it to be expressed much earlier in the developing cardiac mesoderm(Figure 2A). As in the inner ear, it's expression in vitro overlapped the TGF- β signaling protein Bmp4 (Wozney, Rosen et al. 1988) and these genes, separated by approximately 176 kb , co-occupied a strongly interacting region within the same topologically associated domain (TAD; Figure 2C) (Dixon, Selvaraj et al. 2012, Nora, Lajoie et al. 2012).

Hand2, a transcription factor critical for heart development (Srivastava, Thomas et al. 1997), was previously shown to be regulated by antisense transcription of the noncoding RNA Upperhand (Uph) locus 5' from its promoter (Anderson, Anderson et al. 2016). Our search identified 5033428122 Rik as a candidate lincRNA approximately 8 kb downstream of Hand2, which we named Handlr (Hand2-Associated lincRNA). During the course of our study, others also studied this gene in the cardiac lineage, which they named Handsdown (Hdn) (Ritter, Ali et al. 2019). This region displayed numerous transcribed splice forms, but 3' rapid amplification of cDNA ends (RACE) of E9.5 cDNA revealed a single predominant 5-exon, polyadenylated isoform that varied from its

Ensembl- and RefSeq-annotated structures (Figure 1D, Supplemental figure S1A, S1B). Handlr's expression overlapped Hand2 in vitro (Figure 2E), but these genes sat near a TAD border (Figure 2F) and were separated by a CTCF insulation site (Martin, Pantoja et al. 2011), suggesting a potential topological division between the two.

Seven additional annotated lincRNAs met the criteria for subsequent analyses.
We discovered Atcayos (2310050B05Rik) transcription to span the important cardiomyocyte metabolic regulator Nmrk2 (Diguet, Trammell et al. 2018) and precede its expression in differentiating cardiac progenitors and cardiomyocytes (Supplemental figure S2A, S2B). Gm12829, named HrtLincR4 (heart lincRNA of chromosome 4) was correlatively expressed within a genomic domain in frequent contact with Trabd2b, a Wnt protein-binding metalloprotease (Zhang, Abreu et al. 2012). In addition, its expression was only transiently detected within an 18 -hour window at the cardiac mesoderm (cMES) stage of differentiation (Supplemental figure S2C-S2E). Also, E130006D01Rik, named HrtLincR5 (heart lincRNA of chromosome 5), was expressed within a Mn1-interacting DNA domain approximately 275kb downstream of this transcriptional coactivator (van Wely, Molijn et al. 2003). This transcript displayed highly stereotypic splicing and was only detected at the cardiac progenitor stage of differentiation (Supplemental figure S3A-S3C). C430049B03Rik, named HrtLincRX (heart lincRNA of \underline{X} chromosome) was highly expressed early in our differentiation model and contained a miRNA cluster in its 3 ' tail that had previously been shown to drive cardiomyocyte specification (Shen, Soibam et al. 2016). This lincRNA also lies approximately 12.5 kb downstream of- and overlapped expression with- the essential
placental gene Plac1 (Jackman, Kong et al. 2012) not normally expressed in most somatic tissues (Fant, Farina et al. 2010) (Supplemental figure S2D-S2F). Finally, 5033406O09Rik, 9630002D21Rik, and 2810410L24Rik also fulfilled the criteria of our screen (Supplemental figure S4A-S4C).

All nine lincRNAs contained regions with highly homologous sequence to human and/or mammalian genomes (Figure 2, Supplemental figures S2-S4). To assess the protein coding potential of these candidates, we employed multiple tests. First, we evaluated PhyloCSF (Lin, Jungreis et al. 2011) codon scores in all three frames for each transcript. Whereas this algorithm readily detected stretches with coding potential in known genes such as Bmp4 and the micropeptide-containing Apela/Toddler (Pauli, Norris et al. 2014) and Dworf (Nelson, Makarewich et al. 2016), we found no evidence for protein coding potential in our lincRNA cohort, with one exception. A 28 amino acid reading frame in the second exon of HrtLincR4 was predicted to represent a possible conserved coding region (Supplemental figure S5A), though HrtLincR4, as well as each additional member of the cohort displayed negative coding-non-coding indices (CNCI, Supplemental figure S5B) (Sun, Luo et al. 2013) similar to the known paraspeckleassociated lincRNA Neat1 (Hutchinson, Ensminger et al. 2007). However, CPAT (Wang, Park et al. 2013) calculation of hexamer usage bias (Wang, Park et al. 2013) and Ficket nucleotide composition and codon usage bias (Fickett 1982) could not differentiate our lincRNA group from Apela or Dworf (Supplemental figure S5C). We next tested Rubie, Handlr, Atcayos, HrtLincR4, HrtLincR5, and HrtLincRX Iocalization in fractionated cardiac progenitor cells. These lincRNAs were biased to the nucleus, where

Rubie and Handlr were enriched even more so than Neat1 (Supplemental figure S5D).

Additionally, these six lincRNAs could generate cDNA using oligo dT primers at least as efficiently as Actb and Neat1, known to be polyadenylated (Sasaki, Ideue et al. 2009) (Supplemental figure S5E, Supplemental table S1). Taken together, we classified these lincRNAs as nuclear-enriched, polyadenylated, transcripts with little translational capacity. However, we could not rule out the coding potential of the minority HrtLincR4 fraction that reaches the cytoplasm.

A cohort of screened cardiac lincRNAs display dynamic expression in vivo in the developing mouse heart.

We examined the spatiotemporal expression patterns in the developing embryo for each of the nine candidate lincRNAs by whole mount in situ hybridization from E7.25 through E10.5 using transcript-specific probes (Supplemental table S2). The expression patterns observed in vitro were largely predictive of those observed in vivo. Rubie was first observed in the E7.75 embryo, where, similar to Bmp4 (Perea-Gomez, Shawlot et al. 1999), it strongly demarcated the extraembryonic boundary and flanked the eventual heart field. From E8.0 to E8.5, its expression became less focused, spreading throughout the developing cardiac crescent and heart tube, respectively. Rubie transcription at E8.75 was largely non-cardiac, and by E9.5, it was strongly localized to posterior mesoderm and the otic vesicle (Figure 3A). This patterning overlapped a somewhat refined subset of what had previously been established for Bmp4 (Danesh, Villasenor et al. 2009).

From E8.5 through E9.5, Handlr was transcribed in the developing heart tube, posterior cardiac progenitors, branchial arches, and lateral plate mesoderm (Figure 3B). These patterns overlapped what was also shown for Hand2 at this developmental stage (Charite, McFadden et al. 2000), suggesting common regulation between Hand2 and Handlr. Atcayos, as predicted by in vitro expression patterns, was weakly expressed during early stages of heart tube formation, while it was dramatically upregulated after E9.5 in the developing ventricles, as well as cranial structures and somitic mesenchyme (Figure 3C).

From E8.25 through E9.5, HrtLincR4 displayed strong expression in developing pharyngeal mesoderm, just dorsal to the developing cardiac crescent (Figure 3D). Given its highly transient expression within differentiating cardiac mesoderm in vitro, these data suggested HrtLincR4 to be quickly specified to the secondary heart field and/or adjacent tissues during the onset of cardiac lineage commitment. HrtLincR5 was broadly expressed throughout the mesoderm, including the nascent cardiac crescent, at E8.25. As expected by its short-lived in vitro expression pattern, HrtLincR5 was predominantly lost in vivo by E9.5 (Figure 3E).

HrtLincRX was strongly expressed by E7.5 during cardiac lineage formation in anterior mesoderm at the extraembryonic boarder, as well as in extraembryonic tissues. At E8.25, it was strongly expressed in the cardiac crescent, amniotic membranes, and the developing allantois. While expression of the adjacent miR322/503 cluster was previously shown to be cardiac-specific (Shen, Soibam et al. 2016), this lincRNA was widely expressed throughout the heart, forelimb, and somitic mesoderm at E9.5 and

E10.5 (Figure 3F). This suggested divergent regulation and/or compounding roles for HrtLincRX versus its miRNA components. We could not effectively validate the expression of 5033406O09Rik, 9630002D21Rik, or 2810410L24Rik beyond diffuse, low levels in the developing mouse embryo (Supplemental figure S6A-S6C). These experiments established the striking expression patterns of numerous tissue-specific lincRNAs identified from our screen of in vitro cardiac differentiation. Therefore, we aimed to test developmental importance of Rubie, Handlr, Atcayos, HrtLincR4, HrtLincR5, and HrtLincRX expression during embryonic development.

Cas9 ablation of lincRNA promoter regions in vivo identifies local gene regulatory roles.
To determine the requirement for the six lincRNAs that displayed compelling in vivo expression, we generated knockout mouse lines through pronuclear Cas9 mRNA and tru-sgRNA (Fu, Sander et al. 2014) injections. For each knockout, paired trusgRNAs were co-injected to induce 2-3kb deletions flanking the respective lincRNA transcriptional start site (TSS) (Figure 4A, Supplemental table S3), which successfully generated heritable alleles for all six target regions. After substantial outbreeding (>3 backcrosses into C57BI/6j background), we crossed heterozygotes and harvested the anterior half of E8.25 embryos for RT-qPCR (Figure 4B). We found that these deletions ablated downstream transcription of each lincRNA (Figure 4C-4H). As these lincRNAs were nuclear-enriched, we hypothesized they might be involved in transcriptional regulation within their local genomic environments. To test this, we measured expression of neighboring protein-coding genes sharing the same respective TADs
(Supplemental table S1). While Rubie was previously associated with BMP4 signaling in the inner ear (Roberts, Abraira et al. 2012), its requirement for Bmp4 expression had not been established. We found that loss of Rubie resulted in significant reduction of Bmp4 expression during cardiac specification. Furthermore, the amount of transcribed Rubie was directly correlated with Bmp4 levels in this region at the same time point.

This effect was maintained even within equivalent underlying genotypes, whereby Rubie and Bmp4 transcript levels were still significantly correlated among Rubie ${ }^{+/-}$offspring only (Figure 4C). These data strongly suggested that either the act of Rubie transcription and/or its physical RNA molecule were responsible for quantitative regulation of Bmp4 expression.

Despite proximity to and co-expression with Handlr, Hand2 activation was not dependent on Handlr lincRNA (or its underlying promoter DNA sequence, Figure 4D). We speculated that the TAD architecture and CTCF boundary between these genes may introduce complex dynamics within the region. We also could not find a correlation between Mn1's expression to HrtLincR5 (Figure 4E). In contrast, Nmrk2 and Trabd2b expression was dependent on Atcayos (Figure 4F) and HrtLincR4 (Figure 4G), respectively. Furthermore, Plac1 transcription was significantly and inversely correlated to HrtLincRX levels, whereby loss of HrtLincRX resulted in approximately a 2 -fold increased expression of Plac1 (Figure 4H). However, using IntaRNA (Mann, Wright et al. 2017) analysis, we calculated stable RNA-RNA interactions between all three miRNAs constituents of its 3 ' tail (miRNA-322, miRNA-351, miRNA-503) and the 5'- and 3'-untranslated regions (UTRs) of Plac1 (Figure 4I). Therefore, this relationship could
likely be explained by the loss of inhibitory miRNA binding to Plac1 primary transcript. Nonetheless, these data indicated a potential role for HrtLincRX and/or its miRNAs in demarcating embryonic from extraembryonic mesoderm during gastrulation and early cardiogenesis.

Cardiac lincRNAs are not required for viable mouse development.

To determine the requirement of our lincRNA cohort for viable embryonic development in vivo, we bred heterozygotes for each gene and examined ratios of expected offspring that survived to weaning (Supplemental table S4). We could not establish any reduction in viability within null progeny for any tested lincRNA (Figure 5A, 5C, 5D, Supplemental figure S7A-S7C). Furthermore, homozygous offspring for these loci lived to adulthood and were fertile. However, the Rubie null genotype did sporadically recapitulate the circling behavior described by Roberts et al, which they observed as a result of aberrant Rubie splicing in the SWR/J genetic background (Roberts, Abraira et al. 2012). While rarely observed, circling was only present in Rubie${ }^{1}$ mice during >2 years of colony breeding (Figure 5B). Nonetheless, despite their clear expression within the developing heart, we concluded that none of the lincRNAs were individually required for viable development or fertility in the FVBn; C57BL/6j mixed background.

Neither Handlr nor Atcayos play important roles in the cardiac stress response.
Gene knockout models often require external stressors to materialize overt
phenotypes. Handlr and Atcayos were the only cohort lincRNAs expressed in adult hearts, and Atcayos'very high expression was reduced approximately 50% after transverse aortic constriction (TAC)-induced cardiac hypertrophy (Supplemental figure S7D, S7E) (Duan, McMahon et al. 2017). Therefore, we performed TAC experiments on Handlr- and Atcayos-null mice and compared their responses to wild type (WT) littermates. At baseline, calculated left ventricular (LV) masses (from echocardiographic measurements) were modestly reduced in Handlr ${ }^{-1}$ and Atcayos $^{-/}$adults ($-18.4 \%, \mathrm{p}<$ $0.05 ;-22.4 \%, p<0.01$, respectively; Figure 5E; Supplemental table S5 and S6). Additionally, Handlr-null adults had slightly but significantly increased fractional area contractility (FAC) over Handlr ${ }^{+/+}$, Atcayos ${ }^{+/+}$, and Atcayos ${ }^{-/}$genotypes (46.5%, versus $37.8 \%, \mathrm{p}<0.01 ; 37.4 \%, \mathrm{p}<0.005$; and $40.1 \%, \mathrm{p}<0.05$, respectively; Figure 5F, Supplemental table S5/S6). However, neither loss of Handlr nor Atcayos could invoke a significant alteration to LV mass increase or LV fractional shortening decrease after TAC-mediated stress. Of note, the severity of the TAC-response in Handlr-related experiments was greater than that for Atcayos due to genetic background and/or surgical procedure differences for each cohort. This resulted in sharper fractional shortening decrease and longer duration under cardiac failure (\%FAC $<30 \%$) for these mice. Consequently, Handlr $r^{+/+}$males displayed greater downstream increase in lung mass versus Handlr $r^{-/}$individuals (whom began the experiment with greater contractile function), while only sporadic lung hypertrophy arose in the Atcayos groups (Figure 5G$5 \mathrm{~J})$. This result was not interpreted to indicate an altered cardiac hypertrophic response in Handlr-null individuals but further supports their increased LV FAC measured at
baseline. We also could not detect any noticeable changes versus WT in the expression of canonical hypertrophic response genes Nppa, Nppb, or Acta1 due to Handlr nor Atcayos knockout (data not shown). Therefore, despite strong Atcayos expression in the adult heart and the known hypertrophic involvement of Handlr's neighbor Hand2, loss of these transcripts did not induce an altered response to LV pressure overload.

Therefore, we concluded that neither of these lincRNAs played important roles in the physiological response to heart failure.

Compound heterozygosity reveals genetic interaction between Rubie and Bmp4 but not between Handlr and Hand2.

Despite the lack of overt lethality in lincRNA-deficient offspring, we carefully examined morphological heart development in Handlr and Rubie null embryos, the only conditions that produced noticeable physiological effects. We harvested E15.5 hearts and examined transverse histological sections to establish any change to chamber septation, myocardial trabeculation and/or compaction, or ventricular outflow tract (OFT) development. Handlr $r^{-/}$adults exhibited increased left ventricular fractional shortening over WT controls, but we could not associate this functionality with overt changes in cardiac anatomy (Supplemental figure S8A, S8B). Due to overlapping expression patterns between Hand2 and Handlr in the developing heart, we next tested embryos from Hand^{+1-} x Handlr $r^{+\wedge}$ crosses to eliminate one allele of either Hand2 or Handlr per chromosome. However, neither Hand2 heterozygosity nor Hand2 $2^{+/}$; Handlr ${ }^{+/}$ compound heterozygosity resulted in any clear effects on heart morphogenesis
(Supplemental figure S8C, S8D). In addition, we did not notice any elevated lethality in Hand $2^{+\digamma}$; ;Handll ${ }^{+/ \sim}$ offspring (data not shown, $\mathrm{n}=63$).

Bmp4 expression in the embryo was correlated to the amount of Rubie transcript. Numerous studies have established the requirement of proper BMP4 dosage for normal septation of the atria, ventricles, and outflow tract (OFT), as well as viable embryo development (Dunn, Winnier et al. 1997, Jiao, Kulessa et al. 2003, Goldman, Donley et al. 2009). Therefore, we tested the hypothesis that compound haploidy of Bmp4 and Rubie together would result in an exacerbated onset of resulting phenotypes. For this, we bred $\mathrm{Bmp}^{\text {t/f/f }} \times$ Rubie $^{+\digamma ;}$; Actb-Cre ${ }^{+}$(single transgene integration) in the $\mathrm{FVB} / \mathrm{n}$; C57BL/6j mixed genetic background. When we examined E15.5 hearts, neither the Rubie ${ }^{-/}$background nor loss of a single Bmp4 allele could induce an abnormal cardiac phenotype. We also recovered these offspring in expected ratios at weaning (Figure 6A6 D). However, we did find a sustained approximately 20% reduction in recovered pups carrying the $\mathrm{Bmp}^{+} /$/ $/$Rubie ${ }^{+/ /}$compound genotype (Figure 6D; $\mathrm{n}=186$). In addition, these offspring exhibited incidences of OFT distortion out of the right ventricle beyond its typical boundary. In these cases, the origins of the pulmonary artery skewed toward the left ventricular OFT and aortic valve (Figure 6E). While we were unable to clearly establish communication between the pulmonary and aortic outflow systems in these instances, the data point toward a modest genetic interaction between Rubie and Bmp4 in cardiac morphogenesis.

Discussion

With thousands of uncharacterized noncoding transcriptional elements expressed throughout the genome, efforts must be taken to better understand the functional relevance of unstudied lincRNAs. Towards this need, these experiments were meant to identify and test the requirement for cardiac progenitor-specific lincRNAs in the developing embryo. Out of numerous considered annotated IncRNAs that we initially surveyed, our selection criteria led to a highly restricted set that contained epigenetically-regulated promoter signatures and cardiac-specific expression in vivo. Ablation of these transcripts in the developing mouse revealed modulatory roles of Rubie, Atcayos, HrtLincR4, and HrtLincRX within their local genomic environments. In particular, we found a requirement for the Rubie locus for normal Bmp4 dosage. Furthermore, loss of Handlr/Hdn and Atcayos led to minor reduction in LV mass in adult mice, along with modestly increased contractility among Handlr ${ }^{-1}$ individuals. Loss of either of these two transcripts did not influence the hypertrophic or LV contractile response to pressure overload. Most importantly, despite clear transcription in the developing heart, none of the tested lincRNAs alone were required for embryo viability. However, when we generated compound heterozygotes for Rubie and Bmp4, we observed a slight yet consistent reduction in recovered offspring and a modest perturbation of right ventricular outflow tract orientation. Of course, this cohort of lincRNAs that we ablated does not include the entirety of all relevant cardiac transcripts. Nonetheless, we argue this set of transcripts represents a sufficient consideration of the early cardiac lincRNA landscape to predict modest individual roles for most noncoding
transcripts of this type.

Similar to our observations, an independent study (Ritter, Ali et al. 2019) reported that the Handlr/Hdn locus produced multiple transcripts. Namely, Hdn was described as originating from the same TSS but splicing approximately 15kb 3' beyond Handlr, along with Hdna, which shares TSS and splice patterning (albeit 1 fewer exon) with Handlr. $H d n / H d n \alpha$ was described as localized to the cytoplasm near the nuclear envelope. Our results clearly supported Handlr enrichment in the nucleus, though we did not interrogate to which subnuclear component. Most importantly, they showed that complete deletion of the >20 kilobase Hdn locus produced embryonic-lethal cardiac and extraembryonic phenotypes. This accompanied perturbation of a cardiac gene expression program, including hyper-expression of Hand2. They attributed the act of transcription from the $H d n / H d n \alpha$ TSS as an important regulatory component of this phenotype, whereas $H d n(\alpha)$-specific RNA molecules were dispensable. In our work, ablation of the Handlr/Hdn/Hdn α TSS, which terminated downstream transcription, resulted in no lethality, dramatic cardiac phenotype, or altered Hand2 expression. Therefore, both sets of experiments agree on the lack of requirement for Handlr/Hdn α as a functional lincRNA during cardiogenesis, but disagree on a link between HandIr/Hdn/Hdn α transcription and Hand2 expression. Importantly, a clear regulatory mechanism/effect for transcription per se from the HandIr/Hdn/Hdn α TSS has yet to be established. We predict the large genomic deletion reported in Ritter et al. 2019 affects critical cardiac enhancer elements within the Hdn locus. Therefore, future work must more definitively assign a mechanistic role for RNA synthesis, splicing, and/or molecular
function at this locus before attributing them to the mild or severe phenotypes observed by either study.

The subtle effects created by ablation of our collection of cardiac lincRNAs are consistent with the results most often obtained by others' efforts to knockout developmentally-specific lincRNAs (Nakagawa, Naganuma et al. 2011, Nakagawa, Ip et al. 2012, Zhang, Arun et al. 2012, Sauvageau, Goff et al. 2013, Goff, Groff et al. 2015, Lai, Gong et al. 2015, Amandio, Necsulea et al. 2016, Goudarzi, Berg et al. 2019). In most instances where strong phenotypes have been observed, conflicting regulatory mechanisms, in vivo versus in vitro effects, lack of in vivo reproducibility, and/or conflated DNA-/RNA-/transcription-/splicing-based mechanisms prevent clean parsing of the underlying importance of lincRNA molecules. However, several lincRNAs in our cohort did seem to function within the nucleus to impact gene expression in their local environments, including Rubie's influence on Bmp4. Consequently, future experiments are needed to dissect the physical mechanisms that underlie these effects. We speculate that the vast majority of singular IncRNAs fit as cogs into the multifaceted regulatory architecture of the nucleus, which individually can be compensated for during organogenesis in vivo. More so we hypothesize that overt phenotypic impacts in most lincRNA-centric experiments will be observed only after additional contextual molecular components are also manipulated. It may prove more beneficial to interpret most nuclear lincRNAs as collective epigenomic components analogous to histone/DNA modifications- with potential capabilities to alter the physical properties and orientation of the genome and recruit regulatory machinery, more so than as individual gene-like
elements.

Author Contributions

Acknowledgements

Funding

Project design and direction: B.G.B. and M.R.G. All experiments: M.R.G., except mouse echocardiography and surgery: Q.D., Y.H. under supervision of S.M.H, QRT-PCR: A.N., and interpretation of cardiac anatomy: I.S.K and K.R. Manuscript writing: M.R.G. and B.G.B with contribution from all authors.

We thank Junli Zhang (Gladstone Transgenic Core) for pronuclear injection, Hazel Salunga for help with echocardiography, and the Gladstone Histology and Microscopy Core for embryo heart sectioning and histology. We are also grateful to Judy Morgan, Leslie Goodwin, and Laura Reinholdt (JAX) for mouse production.

This work was funded by NIH/NHLBI (R01HL114948 and Bench to Bassinet Program UM1HL098179) to B.G.B., NIH/NHLBI HL127240 to S.M.H, and a Graduate Scholarship co-sponsored by the American Heart Association and the Lawrence J. and Florence A. DeGeorge Charitable Trust (ID: 15PRE24470159) to M.R.G. I.S.K. was funded by the

Society of Pediatric Anesthesia, UCSF Research Allocation Program, the Hellman
Family Fund, and the Department of Anesthesia at UCSF. This work was also supported by an NIH/NCRR grant (C06 RR018928) to the J. David Gladstone Institutes and by The Younger Family Fund to B.G.B.

Competing Interests: B.G.B is a co-founder of and owns equity in Tenaya Therapeutics. M.R.G. is an employee of and owns equity in Vascugen Inc. S.M.H. is an executive and shareholder of Amgen, Inc. and a co-founder with equity stake in Tenaya Therapeutics. These interests are not related to the work described here.

Materials and Methods

Informatic search for cardiac lincRNAs
Raw stranded, total RNA-seq reads from ESC (day 0), MES (day 4), CP (day 5.3), and CM (day 10) stages (Wamstad, Alexander et al. 2012) and cMES (day 4.75) stage (Devine, Wythe et al. 2014) of mESC in vitro differentiation into cardiomyocytes were mapped to the mouse genome (mm9) and aligned to Noncode v4 (Xie, Yuan et al. 2014) annotated IncRNAs using the Cufflinks suite of software (Trapnell, Williams et al. 2010). ChIP-seq domains positive for trimethylation of histone 3 lysine 4 (H3K4me3), acetylation of histone 3 lysine 27 (H3K27Ac), and trimethylation of histone 3 lysine 27 (H3K27me3) for ESC, MES, CP, and CM stages were obtained from Wamstad, Alexander et al. The following criteria were used to generate a candidate list of lincRNAs. 1.) Less than 0.5 fragments per kilobase per million reads (FPKM) in mESCs. 2.) Greater than 1.0 FPKM at CP or cMES stage of differentiation (expression at other time points was not factored into selection). 3.) Positive H3K4me3 ChIP-seq signal at TSS during CP stage. 4.) Positive H3K27Ac at TSS during CP stage. 5.) At least 1 exon splice in transcript. 6.) No splice events into neighboring protein coding genes 7.) TSS at least 1 kb from nearest protein-coding gene TSS. Screened candidates tracks were then visually inspected via UCSC Genome Browser (Kent 2002) to filter for lincRNAs with expression patterns that matched the assigned lincRNA structure and not simply spurious reads at the general locus.

Analysis of lincRNA coding potential

PhyloCSF (Lin, Jungreis et al. 2011) browser tracks were uploaded to the UCSC

Genome Browser for interrogation. Ficket and hexamer scores were calculated with CPAT software (Wang, Park et al. 2013) and visualized with the 'ggplot2' package (Wickham 2016) in R version 3.4.0 (R-Core-Team 2017). CNCI scores were obtained from NONCODEv4 annotations (Xie, Yuan et al. 2014).

$m E S C$ differentiation and cardiac progenitor cell fractionation

Directed cardiomyocyte differentiations were performed as previously described (Wamstad, Alexander et al. 2012) using the Smarcd3-F6nlsEGFP mESC line (Devine, Wythe et al. 2014) with minor modifications to improve differentiation efficiency. Briefly, three days before differentiation induction (day -3), mESCs were split into $2 \mathrm{i}+$ LIF media on gelatin. The following day (day -2), $2 i+$ LIF was replaced with 15% FBS (HiClone) in DMEM +1 X non-essential amino acids +1 X sodium pyruvate +1 X GlutaMAX + 1X β mercaptoethanol +1 1X penicillin/streptomycin $+1000 \mathrm{U} / \mathrm{ml}$ LIF (ESGRO, EMD). The following day (day -1), cells were fed again with the same 15% FBS-LIF media to complete their conversion to epiblast-like stem cells. One day later (day 0), cardiac differentiation was initiated as per Wamstad, Alexander et al. On day 5.3, CP cells were dissociated with TrypLE (Gibco) and quenched in DMEM:F12 (Gibco) $+10 \%$ FBS (HiClone). After washing in D-PBS, nuclei were isolated using the Nuclei EZ Prep kit (SigmaAldrich), pelleted, and supernatant was collected as cytoplasmic fraction. Nuclei were washed again, and pellet was harvested with Trizol (Invitrogen) as nuclear fraction in subsequent qPCR quantification experiments.

Cytoplasmic fractions were processed equivalently.

Whole mount in situ hybridization

Primers were designed to amplify in situ probe templates between 440bp and 1.5 kb for each candidate lincRNA off cDNA from CP stage of in vitro differentiation (Supplemental table S2). Templates were electrophoresed in 1.0\% agarose gel and purified using QIAquick gel extraction kit (Qiagen). These templates were then TOPO TA cloned into pCR4-TOPO using the TOPO TA cloning kit (Invitrogen) and Sanger sequenced to validate orientation in plasmid and proper composition. $2 \mu \mathrm{~g}$ linearized vector for each lincRNA template were then input into digoxygenin (DIG) RNA synthesis kit reactions (Roche) in $40 \mu \mathrm{~L}$ total volume using either T7 or T3 primers, depending on template orientation. Transcription was carried out for 2 hours at $37^{\circ} \mathrm{C}$. Afterward, 8 U DNase I (NEB) were added to each reaction and incubated for 15 min at $37^{\circ} \mathrm{C}$ to degrade DNA. DNase reactions were quenched with 1.5μ L EDTA, and DIG-RNA probes were cleaned and concentrated with RNeasy Mini Columns (Qiagen), EtOH precipitated and washed, and resuspended in $20 \mu \mathrm{~L} \mathrm{H}_{2} \mathrm{O}$. DIG probes were then diluted to $100 \mu \mathrm{~g} / \mathrm{mL}$ in HYB buffer (50% formamide +5 X SSC pH $4.5+50 \mu \mathrm{~g} / \mathrm{mL}$ yeast tRNA $+75 \mu \mathrm{~g} / \mathrm{mL}$ heparin $+0.2 \%$ Tween $-20+0.5 \%$ CHAPS + 5mM EDTA). E7.5 through E12.5, mouse embryos were liberated from the uterus and dissected from extraembryonic tissues and membranes. Embryos were washed with D-PBS and fixed overnight in 4\% paraformaldehyde and then washed $3 x$ in PBT (PBS $+0.1 \%$ Tween-20) on ice.

Embryos were dehydrated in MeOH series (25\%, 50\%, 75\%, $2 \times 100 \%$, 5 min each).

Then, samples were rehydrated by reversing this series including 2 extra PBT washes.

Embryos were bleached in $6 \% \mathrm{H}_{2} \mathrm{O}_{2}$ in PBT for 15 minutes at RT with rocking. Embryos were washed $3 \times 5 \mathrm{~min}$ in PBT and treated with $10 \mathrm{ug} / \mathrm{mL}$ proteinase K for 5 min (E7.5), $10 \min (E 8.5), 20 \min (E 9.5)$, or $30 \min (E 10.5+)$ rocking at $R T$ and then quenched $2 x$ with $2 \mathrm{mg} / \mathrm{mL}$ glycine in PBT followed by $3 \times 5 \mathrm{~min}$ washes in PBTw. Embryos were refixed in 4\% paraformaldehyde + 0.2\% glutaraldehyde for 20 min with rocking and washed an additional $5 x 5 \mathrm{~min}$ with PBT. Embryos were then rinsed 2 x in $65^{\circ} \mathrm{C} \mathrm{HYB}$ buffer and incubated in HYB buffer for 3 hours at $65^{\circ} \mathrm{C}$. Then, lincRNA-specific probes (in HYB) were added, respectively, to final concentration of $1 \mu \mathrm{~g} / \mathrm{mL}$ and hybridized overnight at $65^{\circ} \mathrm{C}$. Embryos were rinsed $3 \times 5 \mathrm{~min}$ in $65^{\circ} \mathrm{C}$ WASH1 buffer (50\% formamide +5 X SSC pH $4.5+1 \%$ SDS) and then incubated 2×30 min again in $65^{\circ} \mathrm{C}$ WASH1 buffer. Next, embryos were washed $2 \times 30 \mathrm{~min}$ in $65^{\circ} \mathrm{C}$ WASH2 (50\% formamide + 2X SSC pH $4.5+0.1 \%$ Tween-20), followed by 3×5 min RT washes in TTBS (25 mM Tris $\mathrm{HCl} \mathrm{pH} 7.4+135 \mathrm{mM} \mathrm{NaCl}+2.5 \mathrm{mM} \mathrm{KCl}+0.1 \%$ Tween-20). Embryos were then blocked in TTBS containing 20\% sheep serum for 3 hours at RT and stained overnight with alkaline phosphatase (AP) conjugated anti-DIG Fab fragments in TTBS $+1 \%$ sheep serum (1:5000, Roche). Embryos were then rinsed $3 x$ 5min in RT TTBS, followed by $6 x 1 \mathrm{hr}$ TTBS washes at RT. A final TTBS wash was then performed overnight at $4^{\circ} \mathrm{C}$. Embryos were then washed $2 \times 30 \mathrm{~min}$ in AP buffer (100mM Tris pH $9.5+50 \mathrm{mM} \mathrm{MgCl} 2+100 \mathrm{mM} \mathrm{NaCl}+0.1 \%$ Tween-20) at RT. Then, Boehringer Purple AP substrate was added to embryos to initiate staining reactions. Reactions were allowed to progress in the dark until suitable contrast was observed. AP
reactions were quenched with $3 x$ PBT washes containing 1 mM EDTA, followed by multiple PBT pH5.5 washes. A final fixation was then performed overnight in 4\% paraformaldehyde and 0.1% glutaraldehyde at $4^{\circ} \mathrm{C}$. Finally, embryos were dehydrated again in methanol series and stored in $100 \% \mathrm{MeOH}$ at $-20^{\circ} \mathrm{C}$. Embryos were imaged on an upright microscope, and images were white balanced with Adobe Photoshop.

Cas9 lincRNA knockout, mouse husbandry, and genotyping

All mouse experiments were carried out in accordance with IACUC protocols and cared for by the UCSF LARC. For each lincRNA, two cut sites were targeted to induce a 2-3kb deletion flanking the TSS/promoter. Two sequence-specific truncated single guide RNA (tru-gRNA, Supplemental table S3) (Fu, Sander et al. 2014) regions were separately cloned into pX330 (Addgene). After generating T7 promoter-containing sgRNA templates by PCR using Phusion TAC polymerase (NEB), tru-sgRNAs were transcribed using the Hiscribe T7 High Yield RNA Synthesis Kit (NEB). Tru-sgRNA was extracted using Trizol reagent (Invitrogen) and dual chloroform purifications before immunoprecipitating with isopropanol. Each tru-gRNA pair was then resuspended in sterile 5mM Tris-HCl before pronuclear injection by the Gladstone transgenic mouse core. Injections were carried out as previously described (Yang, Wang et al. 2014). To increase efficiency of obtaining deletions for each target site, all pairs were co-injected into each of 70 FVB/n pronuclei. All genotyping was performed on tail clips stored at $20^{\circ} \mathrm{C}$. To extract gDNA, tail clips were suspended in $100 \mu \mathrm{~L} 50 \mathrm{mM} \mathrm{NaOH}$ in $\mathrm{H}_{2} \mathrm{O}$ and incubated at $95^{\circ} \mathrm{C}$ for 40 minutes. Tubes were agitated to break up tissue, and
remaining solids were allowed to settle before use. pH was normalized by addition of
$7.0 \mu \mathrm{~L}$ of 1 M Tris HCl pH 7.4. 1.5 $\mu \mathrm{L}$ was then input into PCR reactions using Q5 2 X master mix (NEB) and 3 gene-specific primers for simultaneous WT and KO product amplification (Supplemental table S4). Reactions were carried out according to manufacturer-specified recommendations. F0 founders for single lincRNA deletions were first identified and bred into C57BL/6j to establish germline transmission (F1). Separate F1 heterozygotes for each individual lincRNA deletion were then outbred into the C57BL/6j background for multiple generations to reduce off-target effects. Handlr and Atcayos null alleles were generated in collaboration with Jackson Laboratory using the same targeting strategy but in a homogenous C57BL/6j background.

Transverse aortic constriction cardiac hypertrophy models

Surgery was performed under IACUC protocols and monitored by the UCSF LARC. Experiments were performed as described (Duan, McMahon et al. 2017). For transverse aortic constriction (TAC), 12-20 week-old male mice were anaesthetized with ketamine/xylazine and mechanically ventilated. After thoracotomy, TAC was executed between the left common carotid and the brachiocephalic arteries using a 7-0 silk suture and 27-gauge needle. After surgery, pressure overload was confirmed by Doppler probe measurement of flow velocity at the carotid artery. Echocardiography was performed at baseline, 1 week, 4 weeks, 6 weeks, and 8 weeks after operation to measure left ventricle (LV) fractional area change (\%FAC). LV areas were obtained from twodimensional measurements at the end-diastole and end-systole. At baseline, non-
biological echocardiography variability required outlier removal. Week 0 (pre-TAC) mice measured to be in cardiac failure ($\%$ FAC $<30.0 \%$) with increased $\%$ FAC week 1 after TAC were deemed failed measurements. 1-2 instances of this were observed in all groups. From remaining data, '1.5X interquartile range rule' was used to eliminate outliers. The LV mass was estimated by M-mode measurements and the equation

$$
M_{L V}=\left(\left(I V S_{D}+L V I D_{D}+L V P W_{D}\right)^{3}-L V I D_{D}^{3}\right) \times 1.053 \text { (Marwick, Gillebert et al. 2015) }
$$

M_{LV}, left ventricular mass; $\mathrm{IVS}_{\mathrm{D}}$, diastolic interventricular septum width; LVID $_{\mathrm{D}}$, diastolic left ventricular internal diameter; LVPW $_{D}$, diastolic left ventricular posterior wall thickness.

At 8 weeks post-surgery, mice were sacrificed for analysis. First, left ventricle, lung, and body weights were measured. Subsequently, a $10-20 \mathrm{mg}$ concentric short axis slice of the left ventricle was collected and preserved in RNAlater reagent (ThermoFisher). Heart sections were disrupted in PureZOL (Bio-Rad) on a TissueLyser II (Qiagen). RNA was then purified with Aurum purification kit (BioRad). qRT-PCR was performed using TaqMan chemistry including FastStart Universal Probe Master (Roche), labeled probes from the Universal Probe Library (Roche), and gene-specific oligonucleotide primers run on a 7900 HT (ThermoFisher) cycler with absolute quantification. Gene expression levels were normalized to $c y c l o B$ and $A c t b$ internal controls using the $\Delta \mathrm{Ct}$ method.

E8.25 RNA isolation and qPCR analysis

At E8.25, embryos were removed from the uterus and dissected from
extraembryonic tissues and membranes. Only embryos displaying late cardiac crescent formation before heart tube expansion and cavitation were kept and deemed to be at E8.25. The anterior half of each embryo was washed twice in cold PBS and transferred into Trizol (Invitrogen), while the posterior half was washed in PBS and stored at $-20^{\circ} \mathrm{C}$ for genotyping. RNA from Trizol samples was precipitated using standard protocols and further purified/ condensed using Qiagen RNeasy MinElute columns. 250ng RNA was reverse transcribed using the AffinityScript Reverse Transcription kit (Agilent) using 200ng random hexamer and/or 100ng dT 20 primers, where appropriate. RT-qPCR was subsequently performed with 5.0 ng cDNA and 500 nM gene-specific primers (Supplemental table S1) in PowerUP SYBR Green master mix (Thermo Fisher). Reactions were run on a 7900 HT (ThermoFisher) cycler with absolute quantification. Gene expression levels were normalized to Actb internal controls using the $\Delta \mathrm{Ct}$ method.

E15.5 Histology

At E15.5, embryos were liberated from the uterus and dissected from extraembryonic tissues and membranes. Whole hearts were removed, rinsed twice in D-PBS, and fixed overnight in 4\% paraformaldehyde. Each heart was then paraffin embedded and sectioned at an oblique transverse plane for four chamber visualization. Hematoxylin and eosin staining and imaging were performed by the Gladstone Histology Core (UCSF).

Description of Figures

Figure 1. Epigenetically regulated cardiac lincRNAs. A. Differentiation progression of mESCs into cardiomyocytes used for lincRNA candidate selection; ESC, embryonic stem cell, MES, mesoderm, CP, cardiac progenitor, CM, cardiomyocyte. B. Criteria for lincRNA identification and resulting 9 candidates; ${ }^{*}$, name assigned by Bruneau lab.

Figure 2. Genomic characterization of Rubie and Handlr in vitro. A. UCSC Genome Browser tracks of Rubie RNA-seq and overlaid histone H3 ChIP-seq at ESC, MES, CP, and CM stages of in vitro differentiation; RefSeq annotation in blue. B. Quantified expression of Rubie and Bmp4 at each differentiation stage. C. 3D Genome Browser HiC heatmap of chromosome interactions around Bmp4 and Rubie loci. D. UCSC Genome Browser tracks of Handlr RNA-seq and overlaid histone H3 ChIP-seq at ESC, MES, CP, and CM stages of in vitro differentiation. Ensembl annotation in red; actual exon structure of predominant Handlr transcript in black with blue stars. E. Quantified expression of Handlr and Hand2 at each differentiation stage. F. 3D Genome Browser Hi-C heatmap of chromosome interactions around Handlr and Hand2 loci; TAD, topologically associated domain. ESC, embryonic stem cell, MES, mesoderm, CP, cardiac progenitor, CM, cardiomyocyte; blue, ESC, green, MES, orange, CP, red, CM; K4me3, histone H3 lysine 4 trimethylation; K27me3, histone H3 lysine 27 trimethylation; K27Ac, histone H3 lysine 27 acetylation; TAD, topologically associated domain.

Figure 3. lincRNA expression patterns in vivo. A. in situ hybridization staining for Rubie from E7.5 through E9.5. B. in situ hybridization staining for Handlr at E8.5 and E9.5. C.
in situ hybridization staining for Atcayos at E9.5 and E10.5. D. in situ hybridization staining for HrtLincR4 at E8.25, E8.5, and E9.5. E. in situ hybridization staining for HrtLincR5 at E8.0 and E9.5. F. in situ hybridization staining for HrtLincRX from E7.5 through E10.5. A, anterior; P, posterior; Em, embryonic region; Ex, extraembryonic region; CC, cardiac crescent; Ht , heart tube; H , heart; OV, otic vesicle.

Figure 4. Cas9 ablation of cardiac lincRNAs in vivo and effects on local gene expression. A. lincRNA TSS/promoter ablation strategy; TSS, transcriptional start site; tru-sgRNA, truncated single guide RNA. B. Schematic for RT-qPCR on anterior half of E8.25 embryo; A, anterior, P, posterior, red line, bisection point. C. Left:

Electrophoresed gDNA PCR genotyping products of Rubie alleles and resulting Rubie and Bmp4 expression in anterior E8.25 embryos; Right: correlation between Rubie expression and Bmp4 expression for all genotypes or Rubie ${ }^{+/}$only, respectively. D. Electrophoresed gDNA PCR genotyping products of Handlr alleles and resulting Handlr and Hand2 expression in anterior E8.25 embryos. E. Electrophoresed gDNA PCR genotyping products of Atcayos alleles and resulting Atcayos and Nmrk2 expression in anterior E8.25 embryo. F. Electrophoresed gDNA PCR genotyping products of HrtLincR5 alleles and resulting HrtLincR5 and Mn1 expression in anterior E8.25 embryos. G. Electrophoresed gDNA PCR genotyping products of HrtLincR4 alleles and resulting HrtLincR4 and Trabd2b expression in anterior E8.25 embryos. H. Left: Electrophoresed gDNA PCR genotyping products of HrtLincRX alleles and resulting HrtLincRX and Plac1 expression in anterior E8.25 embryos; Right: IntaRNA 2.0 binding
prediction between HrtLincRX 3' miRNAs and Plac1. *, p < 0.05; ***, p <0.005; n.s., not significant; Student's 2-tailed t-test. Data presented as mean +/- SEM.

Figure 5. Viability and phenotypic effects after lincRNA knockout. A. Offspring recovered at weaning from Rubie $^{+/-} \times$Rubie $^{+/}$cross vs expected Mendelian ratios. B. Representative sporadic circling behavior in Rubie ${ }^{-/}$offspring; \#, only observed in Rubie $^{-/}$genotype over 2+ years of observation. C. Offspring recovered at weaning from Handlr ${ }^{+/}$x Handlr ${ }^{+/}$cross vs expected Mendelian ratios. D. Offspring recovered at weaning from Atcayos ${ }^{+/}$x Atcayos $^{+/-}$cross vs expected Mendelian ratios. E. LV mass calculated by echocardiographic measurements in Handlr WT versus NULL and Atcayos WT versus NULL litter-matched adult males, respectively. F. LV contractility measured by echocardiography in Handlr WT versus NULL and Atcayos WT versus NULL litter-matched adult males, respectively. G. Time course of cardiac contractility after TAC in Handlr WT versus NULL litter-matched adult males. H. Time course of cardiac contractility after TAC in Atcayos WT versus NULL litter-matched adult males. I.

Week 8 post-TAC LV and lung weights in Handlr WT versus NULL litter-matched adult males. J. Week 8 post-TAC LV and lung weights in Atcayos WT versus NULL littermatched adult males. *, p <0.05; **, p < 0.01; ***, p <0.005, Student's 2-tailed t-test, except panel I, Z-test; LV, left ventricle; FAC, fractional area shortening; TAC, transverse aortic constriction; WT, wild type.

Figure 6. Effect of Rubie ablation on heart development at E15.5. A-C,E. Oblique transverse hematoxylin and eosin histological sections of cardiac ventricular and OFT morphogenesis, respectively, at E15.5. A. Representative wild type WT morphology. B. Representative Rubie ${ }^{-/-}$morphology. C. Representative $\mathrm{Bmp4}^{+/-}$(Actb-Cre ${ }^{+}$) morphology. D. Left: Electrophoresed gDNA PCR genotyping products of Rubie and Actb-Cre transgene alleles, respectively. Right: Offspring recovered at weaning from Rubie ${ }^{+/-}$; Actb-Cre ${ }^{+} \times$Bmp4 $^{f / f / f}$ mating vs expected Mendelian ratios G. H. Representative $\mathrm{Bmp4}^{+/-}$; ubbie $^{+/}\left(\right.$Actb-Cre $\left.{ }^{+}\right)$morphology in 2 separate individuals. RV, right ventricle; LV, left ventricle; OFT, outflow tract; WT, wild type; scale bar, $300 \mu \mathrm{~m}$; arrow, distorted OFT orientation.

Supplemental Figure S1. Predominant Handlr transcript in vivo. A. Electrophoresed Handlr 3' RACE PCR products from E9.5 mouse cDNA. B. Sanger sequence of predominant RNA transcript, polyA tail highlighted; T in place of U due to DNA sequencing; arrow, location of 3'RACE Handlr-specific primer.

Supplemental Figure S2. Genomic characterization of Atcayos and HrtLincR4 in vitro. A. UCSC Genome Browser tracks of Atcayos and Nmrk2 RNA-seq and overlaid histone H3 ChIP-seq at ESC, MES, CP, and CM stages of in vitro differentiation. B. Quantified expression of Atcayos and Nmrk2 at each differentiation stage. C. UCSC Genome Browser tracks of HrtLincR4 RNA-seq and overlaid histone H3 ChIP-seq during cardiac differentiation in vitro; D. Quantified expression of HrtlincR4 and Trabd2b at each
differentiation stage. E. 3D Genome Browser Hi-C heatmap of chromosome interactions around HrtlincR4 and Trabd2b loci. ESC, embryonic stem cell, MES, mesoderm, CP, cardiac progenitor, CM, cardiomyocyte; blue, ESC, green, MES, orange, CP, red, CM; K4me3, histone H3 lysine 4 trimethylation; K27me3, histone H3 lysine 27 trimethylation; K27Ac, histone H3 lysine 27 acetylation; TAD, topologically associated domain. Ensembl annotations in red.

Supplemental Figure S3. Genomic characterization of HrtLincR5 and HrtLincRX in vitro. A. UCSC Genome Browser tracks of HrtLincR5 RNA-seq and overlaid histone H3 ChIP-seq during cardiac differentiation in vitro. Ensembl annotation in red. B. Quantified expression of HrtlincR5 and Mn1 at each differentiation stage. C. 3D Genome Browser Hi-C heatmap (of chromosome interactions around HrtlincR5 and Mn1 loci. D. Genome Browser tracks of HrtLincRX RNA-seq and overlaid histone H3 ChIP-seq during cardiac differentiation in vitro; E. Quantified expression of HrtLincRX and Plac1 at each differentiation stage. F. 3D Genome Browser Hi-C heatmap of chromosome interactions around HrtlincRX and Plac1 loci. ESC, embryonic stem cell, MES, mesoderm, cMES, cardiac mesoderm; CP, cardiac progenitor, CM, cardiomyocyte; blue, ESC; green, MES; orange, CP; red, CM; K4me3, histone H3 lysine 4 trimethylation; K27me3, histone H3 lysine 27 trimethylation; K27Ac, histone H3 lysine 27 acetylation; RefSeq annotation in blue. RefSeq annotations, including 3' miRNA cluster, in blue.

Supplemental Figure S4. Genomic characterization of 5033406O09Rik,

9630002D21Rik, and 2810410L24Rik in vitro. A. UCSC Genome Browser tracks of 5033406O09Rik RNA-seq and overlaid histone H3 ChIP-seq during cardiac differentiation in vitro, as well as quantified expression at each differentiation stage. B . UCSC Genome Browser tracks of 9630002D21Rik RNA-seq and overlaid histone H3 ChIP-seq during cardiac differentiation in vitro, as well as quantified expression at each differentiation stage. C. UCSC Genome Browser tracks of 2810410L24Rik RNA-seq and overlaid histone H3 ChIP-seq during cardiac differentiation in vitro, as well as quantified expression at each differentiation stage. ESC, embryonic stem cell, MES, mesoderm, cMES, cardiac mesoderm; CP, cardiac progenitor, CM, cardiomyocyte; blue, ESC; green, MES; orange, CP; red, CM; K4me3, histone H3 lysine 4 trimethylation; K27me3, histone H3 lysine 27 trimethylation; K27Ac, histone H3 lysine 27 acetylation; Ensembl annotation in red, RefSeq annotations in blue.

Supplemental Figure S5. Molecular characterization of lincRNA cohort. A. UCSC Genome Browser tracks of PhyloCSF codon scores for all three frames of known protein coding gene Bmp4, micropeptide coding genes Apela and Dworf, and lincRNA cohort; red box, potential 28 amino acid-coding open reading frame in HrtLincR4; scale, -15 to +15 ; positive score indicates higher coding potential; green, (+) strand; red, (-) strand. B. Coding-non-Coding-Index (CNCI) scores for lincRNA cohort compared to known lincRNA Neat1. C. Comparison of CPAT algorithm calculations of Ficket and Hexamer scores for known protein coding genes, micropeptide coding genes, and our lincRNA cohort. D. Nuclear vs cytoplasmic enrichment of lincRNA cohort compared to

Actb and known nuclear-enriched lincRNA Neat1; *, p < 0.05; ***, $p<0.005$; n.s., not significant; Student's 2-tailed t-test. E. Efficiency of RT-qPCR amplification from dT_{20} - or random hexamer-primed cDNA for lincRNA cohort compared to Actb and known polyadenylated lincRNA Neat1. Data presented as mean +/- SEM.

Supplemental Figure S6. lincRNA expression patterns in vivo. A. in situ hybridization staining for 5033406009Rik at E7.25 and E7.5. B. in situ hybridization staining for 9630002D21Rik at E8.5. C. in situ hybridization staining for 2810410L24Rik at E8.25 and E9.5. A, anterior; Em, embryonic region; Ex, extraembryonic region; P, posterior; CC , cardiac crescent; Ht, heart tube; H , heart.

Supplemental Figure S7. Viability and phenotypic effects after lincRNA knockout. A. Offspring recovered at weaning from HrtLincR4 $4^{+/-}$x HrtLincR $4^{+/-}$cross vs expected Mendelian ratios. B. Offspring recovered at weaning from HrtLincR5 ${ }^{+/}$x HrtLincR5 $^{+/-}$ cross vs expected Mendelian ratios. C. Male offspring recovered at weaning from HrtLincRX ${ }^{+/}$x HrtLincRX $X^{+/ y}$ cross vs expected Mendelian ratios. D. RNA-seq expression of Handlr in adult heart before and after TAC. E. RNA-seq expression of Atcayos in adult heart before and after TAC from Duan et al, 2017. **, $\mathrm{p}<0.01$, Student's 2-tailed ttest; TAC, transverse aortic constriction; WT, wild type.

Supplemental Figure S8. Effect of Handlr ablation on heart development at E15.5. A-
D. Oblique transverse hematoxylin and eosin histological sections of cardiac ventricular

Representative Hand2 $2^{+/}$; Handlr ${ }^{+/}$morphology. RV, right ventricle; LV, left ventricle;
OFT, outflow tract; WT, wild type; scale bar, $300 \mu \mathrm{~m}$.
and OFT morphogenesis, respectively, at E15.5. A. Representative WT morphology. Representative Handlr ${ }^{-/}$morphology. C. Representative Hand2 ${ }^{+/-}$morphology. D.

References

(2012). "An integrated encyclopedia of DNA elements in the human genome." Nature

489(7414): 57-74.
Alexanian, M., D. Maric, S. P. Jenkinson, M. Mina, C. E. Friedman, C.-C. Ting, R.
Micheletti, I. Plaisance, M. Nemir, D. Maison, J. Kernen, I. Pezzuto, D. Villeneuve, F.
Burdet, M. Ibberson, S. L. Leib, N. J. Palpant, N. Hernandez, S. Ounzain and T.
Pedrazzini (2017). "A transcribed enhancer dictates mesendoderm specification in pluripotency." Nature Communications 8(1): 1806.

Amandio, A. R., A. Necsulea, E. Joye, B. Mascrez and D. Duboule (2016). "Hotair Is Dispensible for Mouse Development." PLoS Genet 12(12): e1006232.

Anderson, K. M., D. M. Anderson, J. R. McAnally, J. M. Shelton, R. Bassel-Duby and E. N. Olson (2016). "Transcription of the non-coding RNA upperhand controls Hand2 expression and heart development." Nature 539(7629): 433-436.

Carninci, P., T. Kasukawa, S. Katayama, J. Gough, M. C. Frith, N. Maeda, R. Oyama, T. Ravasi, B. Lenhard, C. Wells, R. Kodzius, K. Shimokawa, V. B. Bajic, S. E. Brenner, S. Batalov, A. R. Forrest, M. Zavolan, M. J. Davis, L. G. Wilming, V. Aidinis, J. E. Allen, A. Ambesi-Impiombato, R. Apweiler, R. N. Aturaliya, T. L. Bailey, M. Bansal, L. Baxter, K. W. Beisel, T. Bersano, H. Bono, A. M. Chalk, K. P. Chiu, V. Choudhary, A.

Christoffels, D. R. Clutterbuck, M. L. Crowe, E. Dalla, B. P. Dalrymple, B. de Bono, G.
Della Gatta, D. di Bernardo, T. Down, P. Engstrom, M. Fagiolini, G. Faulkner, C. F.
Fletcher, T. Fukushima, M. Furuno, S. Futaki, M. Gariboldi, P. Georgii-Hemming, T. R.
Gingeras, T. Gojobori, R. E. Green, S. Gustincich, M. Harbers, Y. Hayashi, T. K.

Hensch, N. Hirokawa, D. Hill, L. Huminiecki, M. Iacono, K. Ikeo, A. Iwama, T. Ishikawa, M. Jakt, A. Kanapin, M. Katoh, Y. Kawasawa, J. Kelso, H. Kitamura, H. Kitano, G.

Kollias, S. P. Krishnan, A. Kruger, S. K. Kummerfeld, I. V. Kurochkin, L. F. Lareau, D. Lazarevic, L. Lipovich, J. Liu, S. Liuni, S. McWilliam, M. Madan Babu, M. Madera, L. Marchionni, H. Matsuda, S. Matsuzawa, H. Miki, F. Mignone, S. Miyake, K. Morris, S. Mottagui-Tabar, N. Mulder, N. Nakano, H. Nakauchi, P. Ng, R. Nilsson, S. Nishiguchi, S. Nishikawa, F. Nori, O. Ohara, Y. Okazaki, V. Orlando, K. C. Pang, W. J. Pavan, G. Pavesi, G. Pesole, N. Petrovsky, S. Piazza, J. Reed, J. F. Reid, B. Z. Ring, M.

Ringwald, B. Rost, Y. Ruan, S. L. Salzberg, A. Sandelin, C. Schneider, C. Schonbach, K. Sekiguchi, C. A. Semple, S. Seno, L. Sessa, Y. Sheng, Y. Shibata, H. Shimada, K.

Shimada, D. Silva, B. Sinclair, S. Sperling, E. Stupka, K. Sugiura, R. Sultana, Y.
Takenaka, K. Taki, K. Tammoja, S. L. Tan, S. Tang, M. S. Taylor, J. Tegner, S. A.
Teichmann, H. R. Ueda, E. van Nimwegen, R. Verardo, C. L. Wei, K. Yagi, H.
Yamanishi, E. Zabarovsky, S. Zhu, A. Zimmer, W. Hide, C. Bult, S. M. Grimmond, R. D.
Teasdale, E. T. Liu, V. Brusic, J. Quackenbush, C. Wahlestedt, J. S. Mattick, D. A.
Hume, C. Kai, D. Sasaki, Y. Tomaru, S. Fukuda, M. Kanamori-Katayama, M. Suzuki, J.
Aoki, T. Arakawa, J. lida, K. Imamura, M. Itoh, T. Kato, H. Kawaji, N. Kawagashira, T. Kawashima, M. Kojima, S. Kondo, H. Konno, K. Nakano, N. Ninomiya, T. Nishio, M.

Okada, C. Plessy, K. Shibata, T. Shiraki, S. Suzuki, M. Tagami, K. Waki, A. Watahiki, Y. Okamura-Oho, H. Suzuki, J. Kawai and Y. Hayashizaki (2005). "The transcriptional landscape of the mammalian genome." Science 309(5740): 1559-1563.

Charite, J., D. G. McFadden and E. N. Olson (2000). "The bHLH transcription factor dHAND controls Sonic hedgehog expression and establishment of the zone of polarizing activity during limb development." Development 127(11): 2461-2470.

Danesh, S. M., A. Villasenor, D. Chong, C. Soukup and O. Cleaver (2009). "BMP and BMP receptor expression during murine organogenesis." Gene Expr Patterns 9(5): 255265.

Daneshvar, K., J. V. Pondick, B. M. Kim, C. Zhou, S. R. York, J. A. Macklin, A.
Abualteen, B. Tan, A. A. Sigova, C. Marcho, K. D. Tremblay, J. Mager, M. Y. Choi and A. C. Mullen (2016). "DIGIT Is a Conserved Long Noncoding RNA that Regulates GSC Expression to Control Definitive Endoderm Differentiation of Embryonic Stem Cells." Cell Rep 17(2): 353-365.

Derrien, T., R. Johnson, G. Bussotti, A. Tanzer, S. Djebali, H. Tilgner, G. Guernec, D. Martin, A. Merkel, D. G. Knowles, J. Lagarde, L. Veeravalli, X. Ruan, Y. Ruan, T. Lassmann, P. Carninci, J. B. Brown, L. Lipovich, J. M. Gonzalez, M. Thomas, C. A. Davis, R. Shiekhattar, T. R. Gingeras, T. J. Hubbard, C. Notredame, J. Harrow and R. Guigo (2012). "The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression." Genome Res 22(9): 1775-1789.

Devine, W. P., J. D. Wythe, M. George, K. Koshiba-Takeuchi and B. G. Bruneau (2014).
"Early patterning and specification of cardiac progenitors in gastrulating mesoderm."

Elife 3.

Diederichs, S. (2014). "The four dimensions of noncoding RNA conservation." Trends

Genet 30(4): 121-123.

Diguet, N., S. A. J. Trammell, C. Tannous, R. Deloux, J. Piquereau, N. Mougenot, A.

Gouge, M. Gressette, B. Manoury, J. Blanc, M. Breton, J. F. Decaux, G. G. Lavery, I. Baczko, J. Zoll, A. Garnier, Z. Li, C. Brenner and M. Mericskay (2018). "Nicotinamide Riboside Preserves Cardiac Function in a Mouse Model of Dilated Cardiomyopathy." Circulation 137(21): 2256-2273.

Dixon, J. R., S. Selvaraj, F. Yue, A. Kim, Y. Li, Y. Shen, M. Hu, J. S. Liu and B. Ren (2012). "Topological domains in mammalian genomes identified by analysis of chromatin interactions." Nature 485(7398): 376-380.

Duan, Q., S. McMahon, P. Anand, H. Shah, S. Thomas, H. T. Salunga, Y. Huang, R. Zhang, A. Sahadevan, M. E. Lemieux, J. D. Brown, D. Srivastava, J. E. Bradner, T. A. McKinsey and S. M. Haldar (2017). "BET bromodomain inhibition suppresses innate inflammatory and profibrotic transcriptional networks in heart failure." Science translational medicine 9(390): eaah5084.

Dunn, N. R., G. E. Winnier, L. K. Hargett, J. J. Schrick, A. B. Fogo and B. L. Hogan (1997). "Haploinsufficient phenotypes in Bmp4 heterozygous null mice and modification by mutations in Gli3 and Alx4." Dev Biol 188(2): 235-247.

Fant, M., A. Farina, R. Nagaraja and D. Schlessinger (2010). "PLAC1 (Placenta-specific 1): a novel, X-linked gene with roles in reproductive and cancer biology." Prenat Diagn 30(6): 497-502.

Fickett, J. W. (1982). "Recognition of protein coding regions in DNA sequences."
Nucleic Acids Res 10(17): 5303-5318.

Fu, Y., J. D. Sander, D. Reyon, V. M. Cascio and J. K. Joung (2014). "Improving CRISPR-Cas nuclease specificity using truncated guide RNAs." Nat Biotechnol 32(3): 279-284.

Goff, L. A., A. F. Groff, M. Sauvageau, Z. Trayes-Gibson, D. B. Sanchez-Gomez, M.
Morse, R. D. Martin, L. E. Elcavage, S. C. Liapis, M. Gonzalez-Celeiro, O. Plana, E. Li, C. Gerhardinger, G. S. Tomassy, P. Arlotta and J. L. Rinn (2015). "Spatiotemporal expression and transcriptional perturbations by long noncoding RNAs in the mouse brain." Proc Natl Acad Sci U S A 112(22): 6855-6862.

Goldman, D. C., N. Donley and J. L. Christian (2009). "Genetic interaction between Bmp2 and Bmp4 reveals shared functions during multiple aspects of mouse organogenesis." Mech Dev 126(3-4): 117-127.

Gore-Panter, S. R., J. Hsu, J. Barnard, C. S. Moravec, D. R. Van Wagoner, M. K.
Chung and J. D. Smith (2016). "PANCR, the PITX2 Adjacent Noncoding RNA, Is Expressed in Human Left Atria and Regulates PITX2c Expression." Circ Arrhythm Electrophysiol 9(1): e003197.

Goudarzi, M., K. Berg, L. M. Pieper and A. F. Schier (2019). "Individual long non-coding RNAs have no overt functions in zebrafish embryogenesis, viability and fertility." Elife 8. Grote, P., L. Wittler, D. Hendrix, F. Koch, S. Wahrisch, A. Beisaw, K. Macura, G. Blass, M. Kellis, M. Werber and B. G. Herrmann (2013). "The tissue-specific IncRNA Fendrr is an essential regulator of heart and body wall development in the mouse." Dev Cell

24(2): 206-214.

Guo, X., Y. Xu, Z. Wang, Y. Wu, J. Chen, G. Wang, C. Lu, W. Jia, J. Xi, S. Zhu, Z. Jiapaer, X. Wan, Z. Liu, S. Gao and J. Kang (2018). "A Linc1405/Eomes Complex Promotes Cardiac Mesoderm Specification and Cardiogenesis." Cell Stem Cell 22(6): 893-908.e896. Han, P., W. Li, C. H. Lin, J. Yang, C. Shang, S. T. Nuernberg, K. K. Jin, W. Xu, C. Y. Lin, C. J. Lin, Y. Xiong, H. Chien, B. Zhou, E. Ashley, D. Bernstein, P. S. Chen, H. V. Chen, T. Quertermous and C. P. Chang (2014). "A long noncoding RNA protects the heart from pathological hypertrophy." Nature 514(7520): 102-106.

Hon, C. C., J. A. Ramilowski, J. Harshbarger, N. Bertin, O. J. Rackham, J. Gough, E.
Denisenko, S. Schmeier, T. M. Poulsen, J. Severin, M. Lizio, H. Kawaji, T. Kasukawa, M. Itoh, A. M. Burroughs, S. Noma, S. Djebali, T. Alam, Y. A. Medvedeva, A. C. Testa, L. Lipovich, C. W. Yip, I. Abugessaisa, M. Mendez, A. Hasegawa, D. Tang, T.

Lassmann, P. Heutink, M. Babina, C. A. Wells, S. Kojima, Y. Nakamura, H. Suzuki, C.
O. Daub, M. J. de Hoon, E. Arner, Y. Hayashizaki, P. Carninci and A. R. Forrest (2017). "An atlas of human long non-coding RNAs with accurate 5' ends." Nature 543(7644): 199-204.

Hou, J., H. Long, C. Zhou, S. Zheng, H. Wu, T. Guo, Q. Wu, T. Zhong and T. Wang (2017). "Long noncoding RNA Braveheart promotes cardiogenic differentiation of mesenchymal stem cells in vitro." Stem Cell Res Ther 8(1): 4.

Hutchinson, J. N., A. W. Ensminger, C. M. Clemson, C. R. Lynch, J. B. Lawrence and A. Chess (2007). "A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains." BMC Genomics 8: 39.

Jackman, S. M., X. Kong and M. E. Fant (2012). "Plac1 (placenta-specific 1) is essential for normal placental and embryonic development." Mol Reprod Dev 79(8): 564-572. Jiao, K., H. Kulessa, K. Tompkins, Y. Zhou, L. Batts, H. S. Baldwin and B. L. M. Hogan (2003). "An essential role of Bmp4 in the atrioventricular septation of the mouse heart." Genes \& Development 17(19): 2362-2367.

Katayama, S., Y. Tomaru, T. Kasukawa, K. Waki, M. Nakanishi, M. Nakamura, H. Nishida, C. C. Yap, M. Suzuki, J. Kawai, H. Suzuki, P. Carninci, Y. Hayashizaki, C. Wells, M. Frith, T. Ravasi, K. C. Pang, J. Hallinan, J. Mattick, D. A. Hume, L. Lipovich, S. Batalov, P. G. Engstrom, Y. Mizuno, M. A. Faghihi, A. Sandelin, A. M. Chalk, S. Mottagui-Tabar, Z. Liang, B. Lenhard and C. Wahlestedt (2005). "Antisense transcription in the mammalian transcriptome." Science 309(5740): 1564-1566.

Kent, W. J. (2002). "BLAT--the BLAST-like alignment tool." Genome Res 12(4): 656664.

Kino, T., D. E. Hurt, T. Ichijo, N. Nader and G. P. Chrousos (2010). "Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor." Sci Signal 3(107): ra8.

Klattenhoff, C. A., J. C. Scheuermann, L. E. Surface, R. K. Bradley, P. A. Fields, M. L. Steinhauser, H. Ding, V. L. Butty, L. Torrey, S. Haas, R. Abo, M. Tabebordbar, R. T. Lee, C. B. Burge and L. A. Boyer (2013). "Braveheart, a long noncoding RNA required for cardiovascular lineage commitment." Cell 152(3): 570-583.

Kurian, L., A. Aguirre, I. Sancho-Martinez, C. Benner, T. Hishida, T. B. Nguyen, P.

Reddy, E. Nivet, M. N. Krause, D. A. Nelles, C. R. Esteban, J. M. Campistol, G. W. Yeo
and J. C. I. Belmonte (2015). "Identification of novel long noncoding RNAs underlying vertebrate cardiovascular development." Circulation 131(14): 1278-1290.

Lai, K. M., G. Gong, A. Atanasio, J. Rojas, J. Quispe, J. Posca, D. White, M. Huang, D.
Fedorova, C. Grant, L. Miloscio, G. Droguett, W. T. Poueymirou, W. Auerbach, G. D. Yancopoulos, D. Frendewey, J. Rinn and D. M. Valenzuela (2015). "Diverse Phenotypes and Specific Transcription Patterns in Twenty Mouse Lines with Ablated LincRNAs." PLoS One 10(4): e0125522.

Lin, M. F., I. Jungreis and M. Kellis (2011). "PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions." Bioinformatics 27(13): i275-i282.

Mann, M., P. R. Wright and R. Backofen (2017). "IntaRNA 2.0: enhanced and customizable prediction of RNA-RNA interactions." Nucleic Acids Res 45(W1): W435w439.

Martin, D., C. Pantoja, A. Fernandez Minan, C. Valdes-Quezada, E. Molto, F. Matesanz, O. Bogdanovic, E. de la Calle-Mustienes, O. Dominguez, L. Taher, M. Furlan-Magaril, A. Alcina, S. Canon, M. Fedetz, M. A. Blasco, P. S. Pereira, I. Ovcharenko, F. RecillasTarga, L. Montoliu, M. Manzanares, R. Guigo, M. Serrano, F. Casares and J. L. GomezSkarmeta (2011). "Genome-wide CTCF distribution in vertebrates defines equivalent sites that aid the identification of disease-associated genes." Nat Struct Mol Biol 18(6): 708-714.

Marwick, T. H., T. C. Gillebert, G. Aurigemma, J. Chirinos, G. Derumeaux, M. Galderisi, J. Gottdiener, B. Haluska, E. Ofili, P. Segers, R. Senior, R. J. Tapp and J. L. Zamorano (2015). "Recommendations on the use of echocardiography in adult hypertension: a
report from the European Association of Cardiovascular Imaging (EACVI) and the

American Society of Echocardiography (ASE)dagger." Eur Heart J Cardiovasc Imaging 16(6): 577-605.

Mattioli, K., P. J. Volders, C. Gerhardinger, J. C. Lee, P. G. Maass, M. Mele and J. L. Rinn (2019). "High-throughput functional analysis of IncRNA core promoters elucidates rules governing tissue specificity." Genome Res 29(3): 344-355.

Nakagawa, S., J. Y. Ip, G. Shioi, V. Tripathi, X. Zong, T. Hirose and K. V. Prasanth (2012). "Malat1 is not an essential component of nuclear speckles in mice." Rna 18(8): 1487-1499.

Nakagawa, S., T. Naganuma, G. Shioi and T. Hirose (2011). "Paraspeckles are subpopulation-specific nuclear bodies that are not essential in mice." J Cell Biol 193(1): 31-39.

Nelson, B. R., C. A. Makarewich, D. M. Anderson, B. R. Winders, C. D. Troupes, F. Wu, A. L. Reese, J. R. McAnally, X. Chen, E. T. Kavalali, S. C. Cannon, S. R. Houser, R. Bassel-Duby and E. N. Olson (2016). "A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle." Science 351(6270): 271275.

Nora, E. P., B. R. Lajoie, E. G. Schulz, L. Giorgetti, I. Okamoto, N. Servant, T. Piolot, N. L. van Berkum, J. Meisig, J. Sedat, J. Gribnau, E. Barillot, N. Bluthgen, J. Dekker and E. Heard (2012). "Spatial partitioning of the regulatory landscape of the X-inactivation centre." Nature 485(7398): 381-385.

Ounzain, S., R. Micheletti, C. Arnan, I. Plaisance, D. Cecchi, B. Schroen, F. Reverter, M. Alexanian, C. Gonzales, S. Y. Ng, G. Bussotti, I. Pezzuto, C. Notredame, S.

Heymans, R. Guigo, R. Johnson and T. Pedrazzini (2015). "CARMEN, a human super enhancer-associated long noncoding RNA controlling cardiac specification, differentiation and homeostasis." J Mol Cell Cardiol 89(Pt A): 98-112.

Pauli, A., M. L. Norris, E. Valen, G.-L. Chew, J. A. Gagnon, S. Zimmerman, A. Mitchell, J. Ma, J. Dubrulle, D. Reyon, S. Q. Tsai, J. K. Joung, A. Saghatelian and A. F. Schier (2014). "Toddler: An Embryonic Signal That Promotes Cell Movement via Apelin

Receptors." Science (New York, N.Y.) 343(6172): 1248636-1248636.
Perea-Gomez, A., W. Shawlot, H. Sasaki, R. R. Behringer and S. Ang (1999).
"HNF3beta and Lim1 interact in the visceral endoderm to regulate primitive streak formation and anterior-posterior polarity in the mouse embryo." Development 126(20):

4499-4511.
Perry, R. B. and I. Ulitsky (2016). "The functions of long noncoding RNAs in development and stem cells." Development 143(21): 3882-3894.

Quinn, J. J. and H. Y. Chang (2016). "Unique features of long non-coding RNA biogenesis and function." Nat Rev Genet 17(1): 47-62.

R-Core-Team (2017) "R: A language and environment for statistical computing. R Foundation for Statistical Computing."

Ramos, A. D., R. E. Andersen, S. J. Liu, T. J. Nowakowski, S. J. Hong, C. Gertz, R. D. Salinas, H. Zarabi, A. R. Kriegstein and D. A. Lim (2015). "The long noncoding RNA

Pnky regulates neuronal differentiation of embryonic and postnatal neural stem cells."

Cell Stem Cell 16(4): 439-447.
Ritter, N., T. Ali, N. Kopitchinski, P. Schuster, A. Beisaw, D. A. Hendrix, M. H. Schulz, M. Muller-McNicoll, S. Dimmeler and P. Grote (2019). "The IncRNA Locus Handsdown Regulates Cardiac Gene Programs and Is Essential for Early Mouse Development."

Dev Cell.

Roberts, K. A., V. E. Abraira, A. F. Tucker, L. V. Goodrich and N. C. Andrews (2012).
"Mutation of Rubie, a novel long non-coding RNA located upstream of Bmp4, causes vestibular malformation in mice." PLoS One 7(1): e29495.

Sasaki, Y. T., T. Ideue, M. Sano, T. Mituyama and T. Hirose (2009). "MENepsilon/beta noncoding RNAs are essential for structural integrity of nuclear paraspeckles." Proc Natl Acad Sci U S A 106(8): 2525-2530.

Sati, S., S. Ghosh, V. Jain, V. Scaria and S. Sengupta (2012). "Genome-wide analysis reveals distinct patterns of epigenetic features in long non-coding RNA loci." Nucleic Acids Res 40(20): 10018-10031.

Sauvageau, M., L. A. Goff, S. Lodato, B. Bonev, A. F. Groff, C. Gerhardinger, D. B. Sanchez-Gomez, E. Hacisuleyman, E. Li, M. Spence, S. C. Liapis, W. Mallard, M. Morse, M. R. Swerdel, M. F. D'Ecclessis, J. C. Moore, V. Lai, G. Gong, G. D. Yancopoulos, D. Frendewey, M. Kellis, R. P. Hart, D. M. Valenzuela, P. Arlotta and J. L. Rinn (2013). "Multiple knockout mouse models reveal lincRNAs are required for life and brain development." Elife 2: e01749.

Shen, X., B. Soibam, A. Benham, X. Xu, M. Chopra, X. Peng, W. Yu, W. Bao, R. Liang, A. Azares, P. Liu, P. H. Gunaratne, M. Mercola, A. J. Cooney, R. J. Schwartz and Y. Liu (2016). "miR-322/-503 cluster is expressed in the earliest cardiac progenitor cells and drives cardiomyocyte specification." Proceedings of the National Academy of Sciences 113(34): 9551-9556.

Srivastava, D., T. Thomas, Q. Lin, M. L. Kirby, D. Brown and E. N. Olson (1997). "Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND." Nat Genet 16(2): 154-160.

Sun, L., H. Luo, D. Bu, G. Zhao, K. Yu, C. Zhang, Y. Liu, R. Chen and Y. Zhao (2013). "Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts." Nucleic Acids Research 41(17): e166-e166.

Trapnell, C., B. A. Williams, G. Pertea, A. Mortazavi, G. Kwan, M. J. van Baren, S. L. Salzberg, B. J. Wold and L. Pachter (2010). "Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation." Nat Biotechnol 28(5): 511-515.
van Wely, K. H., A. C. Molijn, A. Buijs, M. A. Meester-Smoor, A. J. Aarnoudse, A. Hellemons, P. den Besten, G. C. Grosveld and E. C. Zwarthoff (2003). "The MN1 oncoprotein synergizes with coactivators RAC3 and p300 in RAR-RXR-mediated transcription." Oncogene 22(5): 699-709.

Wamstad, J. A., J. M. Alexander, R. M. Truty, A. Shrikumar, F. Li, K. E. Eilertson, H.
Ding, J. N. Wylie, A. R. Pico, J. A. Capra, G. Erwin, S. J. Kattman, G. M. Keller, D.
Srivastava, S. S. Levine, K. S. Pollard, A. K. Holloway, L. A. Boyer and B. G. Bruneau
(2012). "Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage." Cell 151(1): 206-220.

Wang, L., H. J. Park, S. Dasari, S. Wang, J. P. Kocher and W. Li (2013). "CPAT:
Coding-Potential Assessment Tool using an alignment-free logistic regression model."
Nucleic Acids Res 41(6): e74.
Wickham, H. (2016). "ggplot2: Elegant Graphics for Data Analysis." Springer-Verlag
New York.
Wong, G. K., D. A. Passey and J. Yu (2001). "Most of the human genome is
transcribed." Genome Res 11(12): 1975-1977.
Wozney, J. M., V. Rosen, A. J. Celeste, L. M. Mitsock, M. J. Whitters, R. W. Kriz, R. M. Hewick and E. A. Wang (1988). "Novel regulators of bone formation: molecular clones and activities." Science 242(4885): 1528-1534.

Xie, C., J. Yuan, H. Li, M. Li, G. Zhao, D. Bu, W. Zhu, W. Wu, R. Chen and Y. Zhao (2014). "NONCODEv4: exploring the world of long non-coding RNA genes." Nucleic Acids Research 42(Database issue): D98-D103.

Xu, C., Y. Zhang, Q. Wang, Z. Xu, J. Jiang, Y. Gao, M. Gao, J. Kang, M. Wu, J. Xiong,
K. Ji, W. Yuan, Y. Wang and H. Liu (2016). "Long non-coding RNA GAS5 controls human embryonic stem cell self-renewal by maintaining NODAL signalling." Nat

Commun 7: 13287.
Yang, H., H. Wang and R. Jaenisch (2014). "Generating genetically modified mice using CRISPR/Cas-mediated genome engineering." Nat Protoc 9(8): 1956-1968.

Zhang, B., G. Arun, Y. S. Mao, Z. Lazar, G. Hung, G. Bhattacharjee, X. Xiao, C. J. Booth, J. Wu, C. Zhang and D. L. Spector (2012). "The IncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult." Cell Rep 2(1): 111-123.

Zhang, X., J. G. Abreu, C. Yokota, B. T. MacDonald, S. Singh, K. L. Coburn, S. M. Cheong, M. M. Zhang, Q. Z. Ye, H. C. Hang, H. Steen and X. He (2012). "Tiki1 is required for head formation via Wnt cleavage-oxidation and inactivation." Cell 149(7): 1565-1577.

Figure 1

A

B

\qquad lincRNA Criteria 1. Noncode v4 annotated 2. lincRNA TSS \gg 1kb from protein coding TSS 3. Splices > 1 (discrete from nearby genes) 4. FPKM < O.5 in ESCs 5. FPKM > 1.0 in cardiac progenitors 6. Promoter H3K4me3 in cardiac progenitors 7. Promoter H3K27Ac in cardiac progenitors

Figure 2

D
HandIr

F

Figure 3

A

Rubie

C

D
HrtLincR4

E

F
HrtLincRX

Figure 4

Figure 5
A

C

D

E

F
LV Contractility

B

G

H

I
J

Figure 6

Supplemental Figure S1

A

B

* Predominant Handlr Isoform*

Exon 1

TCTTCTCTCTGCACTGTCTCTCCTTTGTGCATCTTGGACTCCTGAAGGCCACTCAGAGCATA GATGCG

Exon 2

CCAGCTTAGTTCTTTGGAGAAGCAGTGTGGAGTCCTAAAAAAGGAGGCTGAGTCTTACCGT TGAGGTCGGTGCCGGTAGAGAATGGGAGGGAGTCTGCAGGAGCCAAGCACCCTAAAGAAG AGGAAGAGAGCACGTTGCTGAGATTTGAACAGCGACCTGAGAGGTCAGACTGGACCCAGG CCTCCTCAAG

Exon 3

AAGGAACGGAGATGGAGATTCTTCCCTTTTCCCGGCCCTTCGGTCCTTCTCCGGAAGAGCT ACTCTGGCCAGCTCTGGGCTAGGGGCAGTGGCCGAACAGAAGGGGAAA

Exon 4

GTTTTTAGGTTTTTGCCTGTTGCTCTTAGGGATCCAGGGGCAGAGTTTTGCCTTAGGTGCTG AAG

Exon 5

ACAGCTGCTGGAGCCTGTTGCTTTTTCACACCACAGATACTTCATGCTGCCTAATATTCTACC GAGCCAGCCTAGGGGACTTGGATCTGTCTCGCCTGGGGCTAAGAGAATAGTTTCTCTAAGA AGAAAACAGTTCTAATTCAAAGATGCTGGATCTGGCTTCCTTTAAAGCCTGAAGTCGCTGAA GTGGCCATAGAACTATGGGGTCCAGAGGACTGCCAGTCTCAGCCAGCCTTTAGGCTGGAGA GAGGCTGTGGGCCTGCTTGGGGACTAAAATGGATGAATAAGAAACCTGTAAGAAATGTAAAC AGATGGAATGGCAAGGAGGAGAGCGCTGGAGATTGTTCAGGTGTGAGCTGAGGTTTCTGA GTTTGTACTGGGGATGCCTTTGCACACAGTGAGGTGCCCCCTCCCTAAGTGGCTCTTGTTTT GCACAAACAGCCCCACCCTGCGCACACACTGTGGGTCTCAGTAGGGACTGAGGGTGTAGG TGCTCAGGTTTTGGGGGTGGTGGTGAAGGGGCACTCAGAATCAACAAGACAGGGCGGGGA AAATCAAAATCAACCAAGGAACCAGCCTTCCATTTCTGAAAAGCCGCGCTCTGNNCCCGTG CTTCAGTTCTGAAATACGAATAAATGGNGTCAGATCCCGTACTACAAAAAAAAAAAAAAAAA

Supplemental Figure S2

A

E

Supplemental Figure S3

Supplemental Figure S4

Supplemental Figure S5

A

PhyloCSF		
Bmp4	Rubie	HrtLincRX
-	+	
-	-	miRNA cluster -
Apela	Handlr	5033406O09Rik
, Cl	-	는․․․․․․․․ ㅈ․
-	. $=$.	- - - - - - -
Dworf	Atcayos	9630002D21Rik
-	-	
	$\square \square_{\text {Atcay }}$	
	HrtLincR4	2810410L24Rik
	"	\cdots
	HrtLincR5	
	-- - - - - - - - -	
	\% $\quad-\cdots \cdots \cdots$	

B

C

D

E

Supplemental Figure S6

A

B
9630002D21Rik

C
2810410L24Rik

Supplemental Figure S7

A

B

C

D

E

Supplemental Figure S8

A

B
Handlr ${ }^{-}$

C

D

Supplemental Table S1. RT-qPCR primers

	Target	Forward Primer	Reverse Primer	Product Size (bp)
	Handlr	CTGTGGGTCTCAGTAGGGAC	TTTTGATTTTCCCCGCCCTG	101
	Rubie	CTGCTTCCTCCTCTTCGTGT	CCAAATGCTTCAGTTCCCCT	90
	Atcayos	CCCAGTCGTTGAAGAGGAGT	TTCACTTCCCACCCCATCTC	126
	HrtLincR4	TCTACAACCACAGTCAGCCC	CTGAGATATCCCCGCCTGAG	113
	HrtLincR5	CCAGCAGCACCAACCAAATA	AGACGGTGGACCCTTTTCTT	94
	HrtLincRX	CTTAAGGAGTGGGGCTGTTAT	AATGATCCAGTGCTAACATATGC	78
	Hand2	CAGCTACATCGCCTACCTCA	CTCCTCTTTCACGTCGGTCT	103
	Bmp4	AGCCAACACTGTGAGGAGTT	GGATGCTGCTGAGGTTGAAG	104
	Nmrk2	GAAGACCACCCTGACCAACA	CCCACTGTTTAAAGCCGTCC	122
	Trabd2b	TCGAGGACAGCACTACGATC	CTGGAGTTGGTGTGAGGACT	101
	Mn1	TGCCAGAACATGATTGCCAG	GCTCAGTTTCCTCTTCCCCT	90
	Plac1	TACCAGTTTCACTACCGCGT	ACAGGACACGGGAATCACAT	135
1100	Neat1	CTGCACTGTAGATCGGGACC	CTTTCCCCAACACCCACAAG	117

Supplemental Table S2. in situ hybridization probe primers

Target	Fwd Primer	Rev Primer
HandIr	GACTTGGATCTGTCTCGCCT	TCTGTCCCCGGAGTGTAGTA
Rubie	CTCCCTGCTTCCTCCTCTTC	GTCCTGGTCATGGTCTGTCA
Atcayos	GAGATGGGGTGGGAAGTGAA	ACCTTTACCTGCTGAGCCAT
HrtLincR4	ACCGAGAGACAGCAGTTGAA	CCGCGAGTCCCTTTGTAATG
HrtLincR5	TATGGGGATGGGAACTCAGC	AGGATGAACGGAGAAGCACA
HrtLincRX	ACCGCTCCAACCCGATTC	GCTCCCACTGTTGCTTTTCA
5033406O09Rik	CCCACTCTCTGCTGATCCAA	AGCCCCGTTTCTTCTTCTGA
9630002D21Rik	AGGATGAACGGAGAAGCACA	GCCTTCTTCCTCCTCTGGTT
$2810410 L 24 R i k$	CTCACATCCTGTTCTGGGGT	AACATCCCGTGCTGTAAAGC

Supplemental Table S3. tru-sgRNA oligomers

Target	Left Cut	RightCut
Handlr	AATGATGGTCATCCACCG TTAAAAAGAAGGCCCCGG	CCTAATAAGATGCCTGAC CCTTCTCATTGAAACCCC
Rubie	GGGCTAAATAACCCATTA	GATTAATTCATGCCCCGG
Atcayos	CAACCCGCTTTAAACTCC CTCATAACTTGGGGTGTC	GACCAGCATCAGAGTCAC ACCCGCCTGGTGAGCCGA
HrtLincR4	GGTTCAGGCAGGAATAC	GGGGACAGCCTTTACAA
HrtLincR5	GTGATAGACCACTTCTTG	GCGCCCCATCCGTATGC
HrtLincRX	GGCCATTTTGACCCGTCG	GGCGGTCCACTTTAGGGG

Supplemental Table S4. Genotyping primers

Locus	Fwd Primer	Rev Primer	WT band size (bp)	KO band size (bp)
Handlr	TGGATCCAACTAACCTAATGCTT	ACGCGCAGGAAAGGTAAAT CCGCATTAGTTTCCCTTCCC	600	400
Rubie	CCTGGTTGCCGTCATTACTG	GTGTATGTGGGCAGAGAGGT AGTCACTGTTTCGCATGAGA	617	680
Atcayos	TGACGACAGCTGATAGGGC	TGCTTGCCCTAGTATGGTCA AGTTCCATCTTCAAGGCCCT	443	280
HrtLincR4	ATCTTGGGGCCATCTCCAAA	GACAATTGGCTGTGGTGGTT TTTCTCTGGACCCGTGTGAG	448	500
HrtLincR5	GTAAAGGCTCTTGTCACAGGG	TTTTCCTTGCAACTCCCAGC TAACTAGAGGGAGGGGAGGG	255	180
HrtLincRX	AGGAGAGAGAAAAGCCGTGT	CGCGGTGCAATGAAAGACTA GGGCCACTCATTTGTAAGCA	784	855
Bmp4 (loxP)	GAGCTAAGTTTTGCTGGTTTGC	GCCCATGAGCTTTTCTGAGA	200	250 (loxP)
Cre Transgene	ATGCTTCTGTCCGTTTGCCG	CCTGTTTTGCACGTTCACCG	280	
Hand2 (loxP)	AAAGAGTCAGTGGTTCTCATCC GAAGTTCCTATTCTCTAGAAA	AATCTAACCCAACCCCTCGC	600	634 (IoxP) 300 (KO)

bioRxiv preprint doi: https://doi.org/10.1101/793257; this version posted October 4, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.

Supplemental Table S5. Handlr KO TAC echocardiography

1112

1114

	Handlr ${ }^{+/+}$					Handlr ${ }^{-1}$				
Time Point	Baseline	Week 1	Week 4	Week 6	Week 8	Baseline	Week 1	Week 4	Week 6	Week 8
ENDOarea; d (mm2)	16.21+/-0.71	16.26+/-1.19	16.65+/-1.42	16.19+/-1.58	17.35+/-1.63	14.00+/-0.70	14.63+/-0.29	15.39+/-1.16	15.65+/-0.49	16.05+/-1.09
ENDOarea;s (mm2)	10.07+/-0.45	11.82+/-1.15	12.59+/-1.10	12.30+/-1.17	13.35+/-1.36	7.51+/-0.53	$9.72+/-0.35$	10.68+/-1.25	11.38+/-0.27	12.45+/-1.04
IVS; ${ }^{\text {d (mm) }}$	0.64+/-0.04	$1.02+/-0.05$	0.90+/-0.06	1.12+/-0.06	1.20+/-0.08	0.63+/-0.04	0.93+/-0.04	$1.13+/-0.04$	1.05+/-0.07	1.29+/-0.06
IVS; ${ }^{\text {(mm) }}$	0.96+/-0.04	$1.38+/-0.04$	$1.16+/-0.08$	$1.25+/-0.05$	$1.39+/-0.05$	0.91+/-0.02	$1.28+/-0.07$	$1.33+/-0.06$	$1.28+/-0.05$	$1.46+/-0.11$
LVID; ${ }^{\text {d }}$ (mm)	$4.54+/-0.10$	$4.38+/-0.16$	$4.65+/-0.19$	$4.58+/-0.24$	$4.68+/-0.19$	$4.19+/-0.09$	$4.25+/-0.04$	$4.49+/-0.18$	$4.57+/-0.06$	$4.43+/-0.13$
LVPW; ${ }^{\text {d (mm) }}$	0.66+/-0.05	$1.00+/-0.05$	1.03+/-0.11	$1.22+/-0.07$	$1.13+/-0.04$	0.61+/-0.04	0.89+/-0.09	0.93+/-0.09	$1.03+/-0.05$	$1.11+/-0.05$
LVPW; ${ }^{\text {(mm) }}$	0.82+/-0.06	0.97+/-0.06	1.26+/-0.10	$1.52+/-0.07$	1.37+/-0.07	0.87+/-0.05	$1.09+/-0.12$	$1.32+/-0.22$	1.37+/-0.12	$1.25+/-0.06$
Doppler (mm/s)		-3665+/-206					-3671+/-209			
HR (bpm)	511.23+/-16.33	513.64+/-11.34	512.55+/-28.10	506.11+/-26.13	545.55+/-29.02	470.08+/-12.68	493.20+/-21.93	492.34+/-24.46	476.12+/-30.90	498.91+/-19.11
Body Weight (g)	28.30+/-0.76	26.70+/-0.41	28.57+/-0.70	29.87+/-0.73	31.00+/-0.53	28.70+/-1.49	27.96+/-1.74	28.44+/-1.19	30.00+/-1.52	29.60+/-1.03
LV Mass (mg)	110.68+/-6.06	191.11+/-17.75	198.85+/-27.89	252.14+/-24.46	257.60+/-24.23	90.33+/-4.89	156.06+/-12.16	201.37+/-11.15	209.86+/-11.13	245.80+/-19.90
FAC (\%)	37.78+/-1.55	27.93+/-3.16	24.25+/-2.52	23.85+/-1.96	23.38+/-1.37	46.50+/-1.70	33.50+/-2.68	31.45+/-4.94	27.06+/-2.83	22.50+/-3.65

bioRxiv preprint doi: https://doi.org/10.1101/793257; this version posted October 4, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.

1116 Supplemental Table S6. Atcayos KO TAC echocardiography

1118

	Atcayos ${ }^{+/+}$					Atcayos ${ }^{\text {/ }}$				
Time Point	Baseline	Week 1	Week 4	Week 6	Week 8	Baseline	Week 1	Week 4	Week 6	Week 8
ENDOarea;d (mm2)	12.95+/-0.65	15.66+/-1.10	14.89+/-0.89	15.09+/-1.57	16.15+/-1.51	14.95+/-1.70	15.21+/-0.94	14.44+/-0.97	14.17+/-1.26	15.74+/-1.20
ENDOarea;s (mm2)	$8.11+/-0.43$	10.15+/-0.94	10.71+/-0.84	11.02+/-1.52	12.47+/-1.38	8.90+/-0.86	9.95+/-0.81	$10.22+/-0.87$	10.65+/-1.25	12.27+/-1.30
IVS; ${ }^{\text {(mm) }}$	0.77+/-0.03	1.05+/-0.06	1.08+/-0.05	1.03+/-0.04	$1.08+/-0.05$	0.62+/-0.04	0.90+/-0.09	$1.01+/-0.04$	0.99+/-0.05	1.14+/-0.07
IVS; ${ }^{\text {(mm) }}$	1.01+/-0.06	1.42+/-0.07	1.32+/-0.06	1.30+/-0.04	1.39+/-0.06	0.83+/-0.04	$1.33+/-0.05$	1.25+/-0.07	1.18+/-0.05	$1.31+/-0.05$
LVID; ${ }^{\text {(}}$ (mm)	$4.01+/-0.09$	$4.32+/-0.15$	$4.47+/-0.14$	$4.47+/-0.19$	$4.45+/-0.20$	4.25+/-0.09	$4.22+/-0.15$	$4.33+/-0.16$	$4.24+/-0.17$	$4.52+/-0.16$
LVPW; ${ }^{\text {d (mm) }}$	0.82+/-0.04	$1.05+/-0.05$	1.09+/-0.04	1.17+/-0.07	$1.21+/-0.06$	0.60+/-0.04	0.93+/-0.05	$1.14+/-0.04$	$1.21+/-0.09$	$1.12+/-0.07$
LVPW; ${ }^{\text {(mm) }}$	0.99+/-0.06	1.24+/-0.06	1.36+/-0.06	1.36+/-0.03	$1.37+/-0.05$	0.77+/-0.05	$1.14+/-0.07$	1.35+/-0.06	$1.35+/-0.08$	1.33+/-0.05
Doppler (mm/s)		-3457+/-174					-3509+/-210			
HR (bpm)	485.01+/-22.77	513.39+/-13.83	520.69+/-15.65	510.88+/-18.73	538.68+/-13.28	451.29+/-34.10	515.49+/-7.01	555.15+/-17.93	513.05+/-19.75	527.46+/-29.90
Body Weight (g)	28.37+/-0.77	27.40+/-0.51	28.50+/-0.74	29.31+/-0.59	29.44+/-0.47	27.36+/-0.81	26.41+/-0.63	27.26+/-0.74	28.31+/-0.82	29.29+/-0.84
LV Mass (mg)	117.88+/-7.48	195.39+/-16.13	216.98+/-14.07	221.22+/-19.53	234.12+/-20.87	91.61+/-3.64	154.58+/-11.35	202.07+/-11.93	203.23+/-18.00	234.41+/-22.46
FAC (\%)	37.41+/-0.66	35.60+/-1.93	29.18+/-2.09	27.98+/-2.40	23.47+/-2.09	40.13+/-1.73	34.66+/-2.63	29.59+/-2.08	25.66+/-3.29	22.75+/-3.03

