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Abstract

Hand movements are controlled by neuronal networks in primary motor cortex (M1).
The organising principle in M1 does not follow an anatomical body map, but rather a
distributed representational structure in which motor primitives are combined to pro-
duce motor outputs. Both electrophysiological recordings in primates and human imaging
data suggest that M1 encodes kinematic features of movements, such as joint position
and velocity. However, M1 exhibits well-documented sensory responses to cutaneous and
proprioceptive stimuli, raising questions regarding the origins of kinematic motor repre-
sentations: are they relevant in top-down motor control, or are they an epiphenomenon of
bottom-up sensory feedback during movement? Moreover, to what extent is information
related to muscle activity encoded in motor cortex? Here we provide evidence for spatially
and temporally distinct encoding of kinematic and muscle information in human M1 dur-
ing the production of a wide variety of naturalistic hand movements. Using a powerful
combination of high-field fMRI and MEG, a spatial and temporal multivariate represen-
tational similarity analysis revealed encoding of kinematic information from data glove
recordings in more caudal regions of M1, over 200ms before movement onset. In contrast,
patterns of muscle activity from EMG were encoded in more rostral motor regions later
in the cycle of movement. Our spatial and temporal analysis provide compelling evidence
that top-down control of dexterous movement engages kinematic representations in caudal
regions of M1 prior to movement production; an area with direct cortico-motorneuronal
connections. Muscle information encoded more rostrally in M1 was engaged later, sugges-
tive of involvement in bottom-up signalling.
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1. Main text

Mounting evidence supports the encoding of movements in M1 based on

kinematics and synergistic muscle activation, rather than the anatomy of

the peripheral musculature1,2. Measurements from individual M1 neurons in

non-human primates reveal the encoding of multiple kinematic features, such

as speed, direction, and position in the same cells in a time-varying manner3.

The same neuronal populations have been shown to encode instantaneous

features during motor execution, as well as the target kinematic end point

and upcoming movement trajectory4,5,6,7.

In the human brain, evidence of neuronal tuning to multiple kinematic fea-

tures has been reported during the production of intended movements from

M1 microelectrode recordings made in tetraplegic patients8. The encoding

of kinematic features of hand movements in M1 has also been supported

by human imaging studies9,10,11. Patterns of fMRI activity in sensorimotor

cortex have been shown to mirror the relative differences in the final joint

configuration across a range of prehensile movements12. Similarly, the repre-

sentational structure of fMRI activity in M1 during finger flexion is consistent

with patterns of finger co-use during naturalistic hand movements13.

However, the functional relevance of kinematic encoding in M1 to human mo-

tor control remains a fundamental unknown. As well as their role in motor

output, M1 neurons exhibit rapid and integrative responses to somatosensory

signals14,15. Kinematic information is inextricably linked to proprioceptive

and tactile signals: specific patterns of movement are associated with specific

patterns of sensory feedback. Are kinematic motor representations reported

in human M1 functionally relevant in the process of top-down motor con-

trol, or an epiphenomenon generated by bottom-up sensory feedback during

human movement production?
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Hand movements

Abduct fingers Pinch: thumb and little finger
Cylinder Grip Pinch: thumb and index finger
Hook Grip Pinch: thumb and middle finger
Spherical Grip Pinch: thumb and ring finger
Index finger flexion (45°) Ring finger flexion (45°)
Index finger flexion (90°) Ring finger flexion (90°)
Index and middle finger flexion (90°) Ring and little finger flexion (90°)
Index finger and thumb roll Rock fingers
Little finger flexion (45°) Squeeze: thumb and fingers
Little finger flexion (90°) Abduct thumb
Middle finger flexion (45°) Extend thumb
Middle finger flexion (90°) Flex thumb
Middle and ring finger flexion (90°) Twiddle: thumb and index finger

Table 1: Outline of the 26 hand movements used in the motor task. Instructional videos presented
in Video S1.

We addressed this question using a spatiotemporal multivariate representa-

tional similarity analysis to ask where in the human brain and when during

movement production are the kinematics of human hand movements en-

coded? This approach combined high-field fMRI and MEG data with kine-

matic data glove recordings made during a broad repertoire of prehensile

and non-prehensile hand movements. Probing recordings of human brain

activity with high spatial resolution from fMRI and high temporal resolu-

tion from MEG offered a powerful means to identify the location and tim-

ing of kinematic information encoding. Together this information was used

to dissociate the relevance of kinematic information in M1 to top-down or

bottom-up processes in motor control, as well as the relevance of alternative

muscle-based or ethological action based models.

Ten right-handed participants performed a range of 26 prehensile and non-

prehensile hand movements17,18 (Table 1, Video S1) in two fMRI sessions

(1.5 hours total fMRI data per participant), two MEG sessions (1.5 hours to-

tal MEG data per participant), and a behavioural testing session (35 minutes
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Figure 2: Kinematic and muscle models show evidence of distinct spatial encoding

in primary motor cortex A. Outline of supra-threshold representational similarity analysis
results presented in Figure 1 reveal overlapping but distinct encoding of muscle and kinematic
information, with muscle information encoding in more rostral regions of Brodmann area 4 and 6,
while kinematic information is encoded encode in more caudal regions of primary motor cortex,
including Brodmann areas 4 and 3a. (B). A Wilcoxon signed-rank test calculated on Spearmans
⇢ values across the muscle and kinematic spatial searchlights revealed a region at the border of
Brodmann area 4 and 3a in which kinematic information showed significantly greater encoding
than the muscle model (Statistical maps subject to FDR correction ↵ = 0.05).

kinematic data recording). In each session participants wore a right-handed

14-channel fibre optic data glove; kinematic data were recorded through-

out all sessions. Electromyography (EMG) data were acquired during MEG

sessions to validate the movement onset measures calculated from the data

glove.

To probe the spatial and temporal correspondence between patterns of brain

activity and hand kinematics, data glove recordings were used to construct

a kinematic model quantifying the similarity of the kinematic signals mea-

sured during each of the 26 movements (Figure 1: Top row, Figure S2). The

kinematic model quantified the distance between the displacement measures

for each movement pair across the 14 channels (Pearson correlation), subject

to a Fisher Z-transformation and averaged across the 14 recording channels.

The resulting kinematic model exhibits strong split-half and inter-session

consistency within participant (Figure S1). A grand average of the kine-
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Figure 3: MEG temporal representational similarity analysis searchlight in motor

cortex reveals distinct encoding of kinematic and muscle information. Temporal MEG
searchlight analysis of the broadband MEG signal revealed encoding of kinematic information
around the time of movement onset (5-120ms), contrasted against much later encoding of muscle
information 735-785 ms after movement onset. Decomposition of the MEG signal into alpha, beta,
and gamma frequencies revealed distinct encoding of the kinematic and muscle models across
bands. The kinematic model showed significant encoding in the alpha band after movement
onset (55-135 ms) and the beta band prior to movement onset (-210 to -90 ms). In contrast,
the muscle model showed significant encoding in the gamma band substantially after movement
onset (735 -795 ms). Green line - movement onset defined by the data glove; blue regions -
significant peaks in representational similarity between MEG data and the model (1000 shuffled
permutations of candidate model RDMs; cluster-forming threshold: p< 0.01; maximal cluster
distribution (↵ = 0.001)) ; dashed line - correlation noise ceiling.
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matic model across sessions and participants was subject to non-classical

multidimensional scaling for visualisation of the relative dissimilarity of each

movement across two dimensions (Video S2). In both the spatial and tempo-

ral representational similarity analysis, the kinematic model was investigated

alongside two other models. A muscle based model was constructed from

high-density EMG recordings (15 channels) made in an independent cohort

of 10 participants performing the same range of hand movements (Figure 1:

Bottom row). An additional ethological action model classified movements

into precision prehensile, power prehensile, and non-prehensile, based on the

notion of ethological maps in primate M117,16 (Figure S17).

We first used high-resolution fMRI data to perform a cross-validated cortical

surface-based searchlight representational similarity analysis to find evidence

for the spatial encoding of kinematic information during movement. In each

participant and each cortical searchlight, the unsmoothed pattern of fMRI

activity during movement was used to construct a representational dissim-

ilarity matrix (RDM)19. The RDM was compared to kinematic, muscle,

or ethological action model, resulting in representational similarity cortical

surface maps of Spearman’s ⇢ values for each participant and model. Spear-

man’s ⇢ surface maps for each model were subject to an omnibus threshold

(↵ = 0.01) and used to construct a cross-participant heatmap. This analy-

sis assessed where the relative dissimilarities in the kinematic, muscle, and

ethological actions across the different hand movements were mirrored by

the relative differences in the pattern of fMRI activity elicited by performing

the same movements.

For the kinematic model, the searchlight revealed a strong and very consis-

tent representational similarity in the contralateral pre-central region of the

anatomical hand-knob20 across participants (Figure 1: top row). Specifi-

cally, the fMRI searchlight results revealed the consistent encoding of the

7
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kinematic information in Brodmann Area 4 during the production of hand

movements across participants (Table 2)21. Inspection of the single-subject

cortical searchlight results for the kinematic model highlights the consistent

and spatially limited correspondence of the kinematic model and fMRI data

at the level of individual participants in contralateral M1 (Figure 2A). In

the contralateral hemisphere, the peak spatial overlap in the encoding of

kinematic information across participants was observed in Brodmann area

4 and 3a; other regions to reach significance at the level of individual par-

ticipant searchlight analyses, but were not observed consistently across the

entire group includes Brodmann Area 3a, Brodmann area 2, 3b, and Brod-

mann area 6. A highly comparable result was also observed using the kine-

matic model constructed from the data glove recordings made in the be-

havioural testing session (Figure S18), highlighting the applicability of this

result to real-world hand use in an upright sitting position. No such consis-

tent representational similarity was observed in the corresponding searchlight

of movement-related activity in the ipsilateral hemisphere at the group level,

however at the level of individual participants significant encoding was ob-

served in greater than three participants included Brodmann areas 4, 3a,

and 6 (Figure 2B and Figure S18B).

Equivalent spatial searchlight analyses for the muscle model also revealed

supra-threshold activity consistent with encoding in the pre-central region

of the anatomical hand knob (Figure 1: bottom row). The muscle model

shared representational structure with patterns of brain activity in more

rostral and ventral regions compared with the kinematic model, including

both areas of Brodmann areas 4 and 6, as well as areas of Brodmann area

3b. This pattern showed less spatial consistency across participants Figures 1

and S6.

In light of the interest in contrasting the kinematic and muscle models12,

8
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a Wilcoxon signed-rank test (one-sided) was used to compare the vertex-

wise ⇢ maps of these two models, which demonstrated the superior fit of the

kinematic model in comparison to the muscle model in a localised region

principally corresponding to Brodmann Area 4 and 3a19 (Figure 3).

The ethological action model (Figure S17A) revealed more limited evidence

of consistent cortical encoding across participants, centred on somatosen-

sory cortex in the post-central gyrus; specifically Brodmann Area 3b (Fig-

ure S17B).

Ultra high field fMRI data analysed at the level of individual subjects of-

fered detailed spatial resolution, revealing spatially distinct encoding of kine-

matic and muscle information information in the hand knob region of M1.

However, fMRI offers relatively poor temporal resolution to understand the

point in time at which the kinematic and muscle models match the pattern

of brain activity in M1. The boundary between motor and somatosensory

cortex is increasingly blurred by evidence of sensory processing in M114 and

motor modulation of sensory afferents22. The encoding of muscle and kine-

matic information observed from patterns of fMRI activity may result from

top-down control of motor function, or from bottom-up proprioceptive in-

formation passed back to M1 and S1. In order to dissociate the driving force

behind the spatial model fit observed in the fMRI data, a temporal repre-

sentational similarity analysis of MEG data was used to identify the point

during movement preparation or execution at which kinematic and muscle

information is encoded in the M1.

A cross-validated fixed-effects representational similarity analysis was ap-

plied, comparing a group average of kinematic and muscle models to the

pattern of alpha (7-14 Hz), beta (15-30 Hz), gamma (30-100 Hz) and broad

(5-100Hz) band MEG brain activity in M1 (Figure S8) in 20 ms sliding win-

dows during movement preparation and execution. The ethological action

9
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model was assessed in equivalent analysis. In light of the interest in contrast-

ing the kinematic and muscle models, the kinematic and muscle models were

assessed using a Spearman’s correlation, as well as in a partial correlation to

discount the contribution of the other (Figure S20).

Temporal MEG searchlight analysis using the broadband MEG signal re-

vealed encoding of kinematic information around the time of movement onset

(5-120 ms relative to movement onset) (Figure 3: top row). Decomposition

of the MEG signal into alpha, beta, and gamma frequencies revealed distinct

encoding of the kinematic and muscle models across bands. The kinematic

model showed significant encoding in the alpha band after movement onset

(55-135 ms). In the beta band, the kinematic model mirrored the pattern

of brain activity in a significant peak from before movement onset (-205 to

-90 ms). In contrast, the muscle model showed significant encoding in the

broadband analysis substantially after movement onset (735 - 785 ms), which

originated from a temporal correspondence with information encoded in the

gamma band (735 - 795 ms relative to movement onset) (Figure 3).

An analogous MEG temporal searchlight analysis during action observation

revealed evidence of a correspondence between the kinematic model and

brain activity during the movement videos preceding each movement block

(Figure S4). During action observation a correspondence between the MEG

signal and kinematic model was observed from 220-255 ms and 890-955 ms

in the alpha band, 705-735 ms in the beta band, and 545-560 ms in the

gamma band, relative to stimulus onset. No peaks in any frequency band

were observed for the muscle model or the ethological action model during

the period of action observation.

Taken together, the MEG and fMRI results presented here strongly impli-

cate the distinct spatial and temporal encoding of kinematic and muscle

information in M1. Specifically, fMRI data suggest kinematic information is

10
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Model

Peak heatmap

overlap

(Participants)

Peak Vertex
Anatomical

location

Kinematic 10 8053/5378 Brodmann Area 4

Muscle 10 5070
8015/8044

Brodmann area 4
Brodmann area 3b

Ethological 8 8070 Area 3b

Table 2: Outline of peak anatomical correspondence between movement models and fMRI cal-
culated using across participant cortical heatmaps. Peak regions calculated as centre of gravity of
areas of peak overlap; peaks separated by a minimum of 20mm. Vertex positions and anatomical
definitions are based on HCP S1200 32k release21.

represented more caudally in M1, in Brodmann area 4 and 3a, while comple-

mentary MEG data suggested kinematic information is encoded prior to and

immediately following movement onset in alpha and beta frequencies (Fig-

ure 3). In other words, the relative differences in the kinematic structure of

a range of different hand movements is encoded in M1 up to 210 ms before

the onset of movement can be detected in the hand. In contrast, the muscle

based movement model was encoded in more caudal regions of M1, including

Brodmann areas 4 and 6 (Figures 1 and 3). Temporally, the muscle model

was encoded much later in the cycle of movement, starting at 735 ms after

movement onset in the gamma frequency (Figure 3).

These results present strong new evidence in our understanding of move-

ment encoding in M1: suggesting that kinematic features of movements are

encoded immediately prior to and around the start of movement, consistent

with a role for this organisation’s structure in top-down motor control, while

muscle-based organisation was observed in more anterior motor cortex; this

information structure was evident in patterns of brain activity at a time sug-

gestive of a role in bottom up signalling later during movement production.

The observation of distinct rostral and caudal representational structures

in human M1 is in keeping with an extensive primate literature reporting

11
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markedly distinct connectivity profiles along this axis of M1 in non-human

primates. Specifically, retrograde labelling studies have reported that the

evolutionarily newer caudal region of M1 contains a very high density of

cortico-motorneuronal cells (CM cells): those which make monosynaptic

connections with motoneurons and are associated with highly skilled move-

ments. In contrast the evolutionarily older rostral M1 contains few, if any,

CM cells, relying instead on integrative processes mediated via connections

to interneurons in the spinal intermediate zone23.

Our current observation of kinematic information encoding in caudal M1 is

in keeping with the notion of this cortical region containing CM cells that

facilitate specific muscle synergies24. The evolutionary development of this

caudal M1 region has been specifically associated with the rise of manual

dexterity in non-human primates: for example, the existence of large pop-

ulations of CM cells with monosynaptic connections to motoneurons in the

ventral horn of the spinal cord is a hallmark of the ability for independent

finger use in the cebus monkey when compared to the squirrel monkey, which

has a similar hand structure, but lacks direct cortico-motoneuronal projec-

tions25. These direct connections via CM cells are not present at birth, but

rather develop during early life, and mirror patterns of enhanced dexterous

function during infancy and childhood26.

In contrast to encoding of kinematic information in caudal M1, we observed

encoding of muscle information in more rostral regions of M1 (Figure 3).

Lacking CM cells, rostral M1 has been associated with movement via pat-

tern generators or motor primitives via connections to spinal interneurons. In

cats, which exhibit only a rostral M1, electrical stimulation to motor cortex

elicits movements restricted to very precise muscular anatomy27, rather than

the patterns of complex movement observed in similar studies of non-human

primates16. In addition, the inputs to rostral M1 differ from caudal M1:
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neurons responsive to deep muscle or joint sensory input are concentrated

in rostral M1, while cutaneous sensory inputs are concentrated in caudal

M128,29,30. Our results provide functional evidence for organisational and

temporal differences in the previously described rostral and caudal divisions

of M1. Caudal M1, with its direct motoneuronal projections, here showed

evidence of encoding movement kinematics, prior to and immediately follow-

ing movement onset, during the production hand movements. Rostral M1,

with its strong deep muscle/joint sensory inputs, showed evidence for the

encoding of muscle-based information derived from EMG recordings, which

occurred 735-795ms after movement onset, strongly consistent with bottom

up sensory signalling from deep joint and muscle receptors. This spatial and

temporal dissociation of functional organisation in M1 provides a unique

insight into the cortical control of dexterous movements.

Information contained in the kinematic model showed temporally distinct

correspondence to information contained in the alpha and beta bands of

the MEG data. From 210 ms to 90 ms before movement is detected, the

representational structure in the M1 beta band corresponds significantly to

the representational similarity of the kinematics of the upcoming movement.

The correspondence between the kinematic model and the information con-

tained in the beta frequency band is consistent with the broad literature

concerning the role of this oscillatory frequency in motor control. Beta os-

cillations are observed at rest; it is well established that beta activity is

suppressed immediately prior to and during movement: movement-related

beta desynchronisation (MRBD), and then rebounds following movement

cessation: post-movement beta rebound (PMBR)31. The magnitude of the

reduction in beta-band power observed prior to movement onset in motor

cortex has been shown previously to relate to the degree of uncertainty in

the upcoming movement32 or action anticipation33. Previous comparisons of
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beta desychronisation made across kinematic and kinetic tasks concur: the

strength of MRBD is correlated with the physical kinematic displacement of

a given hand movement rather than the magnitude of muscle contraction34.

Similar patterns of desynchronisation are observed in alpha band activity,

where ERD in M1 corresponds to increased activation in the region31, with

post-motion event related synchronisation in M135. Here we demonstrate

that there is a link between information contained in the beta frequency in

M1 before movement onset and the subsequent kinematics of hand move-

ments (Figures 1 and 3), suggesting that important information about the

upcoming motor command may be encoded within these oscillations34,36.

The post-movement peak in kinematic information encoding in the alpha

band was observed early after movement onset, during a window of time

in which the magnitude of ERD continues to increase after movement has

begun37.

The observed concurrence between the muscle model and patterns of brain

activity measured by MEG occurred some time after movement onset (735-

795 ms, Figure 3). An increase in the amplitude of gamma oscillations has

previously been reported during motor execution: movement-related gamma

synchronisation (MRGS)38,39. Increased gamma frequency power is corre-

lated with the size of a given movement, but their strength does not persist

during isometric contraction. However, increases in gamma power in M1 are

not observed in passive movement conditions, suggesting that gamma activ-

ity is not directly associated with muscle activity alone, but rather muscle

activity associated with limb movement in combination with the associated

sensory feedback40. The observed pattern of muscle information encoding

in the gamma frequency after movement onset in this study is therefore in

keeping with known temporal patterns of MRGS in M1 during movement.

Hand kinematics have previously been investigated in the context of hu-
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man fMRI. Relative differences in target joint position at the end of a hand

movement have been shown previously to mirror the relative differences in

the fMRI signal in a broad region of sensorimotor cortex12. Additional work

considering unidigit and multidigit flexion has demonstrated that patterns

of M1 fMRI activity associated with such movements are better explained by

kinematic models of digit co-use than by competing muscle-based models13.

In the present study we have used MEG and 7T BOLD fMRI to funda-

mentally extend on these findings. Specifically in the context of fMRI, high

spatial resolution fMRI data enabled us to reveal a spatial dissociation in

muscle and kinematic information encoding in M1 along the rostro-caudal

axis (Figure 3). Specifically, we have been able to pinpoint a region of caudal

Brodmann area 4 in which kinematic information shows significantly greater

encoding than muscle information20. Taken alongside evidence from MEG

for a temporal dissociation of kinematic and muscle information during the

movement cycle, these data strongly implicate kinematic organisation struc-

ture in top-down control of hand movements.

The fMRI spatial searchlight analysis did not reveal evidence of consistent

encoding of kinematic information in ipsilateral M1 across participants (Fig-

ure 2). Previous fMRI studies provide evidence for the activation of ipsilat-

eral M1 during the production of individual uni-digit movements41,42 but not

multi-digit sequences of uni-digit movements43. The present study consid-

ered a broad array of naturalistic hand movements, engaging a wide variety

of hand kinematics, involving simultaneous and/or sequential movement of

different digits. It is possible that unlike sequences of uni-digit movement,

these more complex movements do not drive the circuits of ipsilateral M1 as

uni-digit movements do41,42.

Previous studies have made direct comparisons between muscle-based models

and kinematic models, arguing for the latter as an organising principle in the
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encoding of hand movements13,12. As with previous studies, the present find-

ings do not rule out the existence of muscle representations in M1, but rather

support the existence of highly organised muscle representations structured

around movement kinematics rather than muscle anatomy. The assertion

perhaps explains the fractures and repetitions observed in muscle represen-

tations during the search for an M1 body map44.

The ethological action model reported less consistent patterns of fMRI en-

coding, centred on the postcentral gyrus, consistent with activation in S1

(Figure S17). The ethological action model also did not reveal any signifi-

cant peak in the temporal representational analysis. It is possible that while

at a coarse level, ethological maps exist in the primate cortex, the concept

of ethological organisation does not extend down to the fine-grain level of

individual encoding of human hand movements; in other words, the broad

motor reportoire of the human hand may not be encoded on the basis of

the functional role of each movement. However, in the case of the primate,

the coarser division of movements based on the functional role of the entire

upper limb, including the hand (e.g. feeding, reaching), may play a role in

the way the cortex is organised45. The observed patterns of post-central

activity may alternatively result from selective disinhibition of S1 by M1

during motor activity, though such direct cortico-cortical signalling remains

speculative in the human brain22,46,47.

Analysis of the action observation period of the MEG data preceding each

movement block also provided some support for the kinematic encoding of

information in M1 (Figure S4). Previous MEG data acquired during action

observation have demonstrated characteristic changes in M1 activity com-

parable to action execution48. Analyses of event related desynchronisation

(ERD) in M1 during action observation have suggested a peak change in the

mu frequency as the observed movement evolves49. These observations are
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potentially consistent with the pattern of kinematic model fit observed in the

alpha and beta band MEG data during action observation, when the trajec-

tory of movement has become clear (Figure S4). Additional work considering

the encoding of kinematic information in oscillatory alpha band activity in

M1 suggests that the observation of stimuli consistent with biological motion

is sufficient to induce ERD in this frequency band50, potentially consistent

with the notion that during observation of biological motion, M1 may encode

kinematic information.

The data presented in this study rely on complementary information ac-

quired from BOLD fMRI and MEG, though the remit of this work does

not extend to fusion of the two modalities. BOLD fMRI provides only an

indirect measure of neuronal activity based on haemodynamic changes as-

sociated with the execution of a given task51, which can be resolved with

a relatively high degree of spatial specificity with 7T imaging. In contrast,

MEG reflects a more direct, temporally-rich, measure of neuronal activity.

While the origins of the measured signals differ, compelling recent evidence

provides non-coincidental data to support the notion of shared information

across MEG and fMRI measures of brain activity across a wide range of

frequency bands52; similar correspondences have been reported from inva-

sive electrocorticography data53. However, the spatial component of MEG

data must be inferred from mathematical modelling. Despite advances in

the context of MEG source localisation, this feature of MEG analysis limits

the spatial specificity of the measured signals, which integrate information

across relatively large tissue volumes in comparison with fMRI54. It is there-

fore not possible to definitely co-localise the signals from MEG and fMRI

data. Thus the motor cortex MEG signal used in the temporal multivariate

searchlight analysis could have been influenced by signals from adjacent so-

matosensory cortex; mu-rhythm activity has been shown to associate with
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sensorimotor BOLD activity55. However, previous data from comparative

MEG/fMRI studies has suggested a broad association of the sensorimotor al-

pha frequency signal with the BOLD activity in the post-central gyrus, and

the beta frequency with BOLD activity in the precentral gyrus56,57,58,59,

a similar gradient has been supported broadly by intracortical recordings

from non-human primates60,61. Here we observe a pre-movement encoding

of kinematic information in the beta frequency, and a similar peak immedi-

ately after movement onset in the alpha frequency (Figure 3). It is therefore

possible to speculate that the beta frequency encoding is more likely to rep-

resent pre-central activity in motor cortex, which would again support the

conclusion that kinematic information is involved in the top-down control of

dexterous movement.

In light of the inability to definitively co-localise fMRI and MEG signals, we

have harnessed the respective spatial and temporal strengths of these two

methods in independent analyses, rather than using the spatial information

from the fMRI to directly inform the temporal analysis of the MEG, making

assumptions regarding the shared spatial precision of these two methods.

In this work we apply a rich multi-modal design with multivariate analysis

to provide evidence for spatial and temporal dissociations of kinematic and

muscle-based information in human M1 during hand movement. Mounting

evidence for the encoding of complex kinematic information in M1 from this

and other work continues to blur the boundary between primary somatosen-

sory and primary motor cortex: even M1 neurons have been shown to rapidly

consolidate sensory torque information across multiple joints15. The notion

of kinematic representation in M1 is compatible with recent evidence of the

tight integration of information across the central sulcus62, whereby S1 en-

codes the current body state, while M1 encodes the kinematics necessary

to achieve the intended body state. Such a system of motor control would
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see kinematic information encoded prior to movement onset as a prediction

for the future sensory inputs expected by S1 when a movement has been

achieved63.
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