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Abstract 49 

The volume of biological database records is growing rapidly, populated by complex records 50 

drawn from heterogeneous sources. A specific challenge is duplication, that is, the presence of 51 

redundancy (records with high similarity) or inconsistency (dissimilar records that correspond to 52 

the same entity). The characteristics (which records are duplicates), impact (why duplicates are 53 

significant), and solutions (how to address duplication), are not well understood. Studies on the 54 

topic are neither recent nor comprehensive. In addition, other data quality issues, such as 55 

inconsistencies and inaccuracies, are also of concern in the context of biological databases. A 56 

primary focus of this paper is to present and consolidate the opinions of over 20 experts and 57 

practitioners on the topic of duplication in biological sequence databases. The results reveal that 58 

survey participants believe that duplicate records are diverse; that the negative impacts of 59 

duplicates are severe, while positive impacts depend on correct identification of duplicates; and 60 

that duplicate detection methods need to be more precise, scalable, and robust. A secondary 61 

focus is to consider other quality issues. We observe that biocuration is the key mechanism used 62 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 5, 2019. ; https://doi.org/10.1101/788034doi: bioRxiv preprint 

https://doi.org/10.1101/788034
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
 

3 

to ensure the quality of this data, and explore the issues through a case study of curation in 63 

UniProtKB/Swiss-Prot as well as an interview with an experienced biocurator. While biocuration 64 

is a vital solution for handling of data quality issues, a broader community effort is needed to 65 

provide adequate support for thorough biocuration in the face of widespread quality concerns. 66 

 67 
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Introduction 69 

The major biological databases represent an extraordinary collective volume of work. Diligently 70 

built up over decades and comprised of many millions of contributions from the biomedical 71 

research community, biological databases provide worldwide access to a massive number of 72 

records (also known as entries) [1]. Starting from individual laboratories, genomes are 73 

sequenced, assembled, annotated, and ultimately submitted to primary nucleotide databases such 74 

as GenBank [2], ENA [3], and DDBJ [4] (collectively known as INSDC). Translations of those 75 

nucleotide records, protein records, are deposited into central protein databases such as the 76 

UniProt KnowledgeBase (UniProtKB) [5] and the Protein Data Bank [6]. Sequence records are 77 

further accumulated into different databases for more specialised purposes: RFam [7] and PFam 78 

[8] for RNA and protein families respectively, such as DictyBase [9] and PomBase [10] for 79 

model organisms, ArrayExpress [11] and GEO [12] for gene expression profiles. These 80 

databases are selected as examples; the list is not intended to be exhaustive. However, they are 81 

representative of biological databases that have been named in the “golden set” of the 24th 82 

Nucleic Acids Research database issue. The introduction of that issue highlights the databases 83 

that “consistently served as authoritative, comprehensive, and convenient data resources widely 84 

used by the entire community and offer some lessons on what makes a successful database” [13]. 85 

The associated information about sequences is also propagated into non-sequence databases, 86 

such as PubMed (https://www.ncbi.nlm.nih.gov/pubmed/) for the scientific literature, or GO [14] 87 

for function annotations. Those databases in turn benefit individual studies, many of which use 88 

these public available records as the basis for their own research. 89 

   Inevitably, given the scale of these databases, some submitted records are redundant [15], 90 

inconsistent [16], inaccurate [17], incomplete [18], or outdated [19]. Such quality issues can be 91 

addressed by manual curation, with the support of automatic tools, and by processes such as 92 

reporting of the issues by contributors detecting mistakes. Biocuration plays a vital role in 93 

biological database curation [20]. It de-duplicates database records [21], resolves inconsistencies 94 

[22], fixes errors [17], and resolves incomplete and outdated annotations [23]. Such curated 95 

records are typically of high quality and represent the latest scientific and medical knowledge. 96 

However, the volume of data prohibits exhaustive curation, and some records with those quality 97 

issues remain undetected. 98 
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   In other work, we (Chen, Verspoor, and Zobel) have explored a particular form of quality 99 

issue, which we have characterized as duplication [24,25]. As described in that work, duplicates 100 

are characterized in different ways in different contexts, but they can be broadly categorized as 101 

redundancies or inconsistencies. The perception of a pair of records as duplicates depends on the 102 

task. As we wrote in previous work, “a pragmatic definition for duplication is that a pair of 103 

records A and B are duplicates if the presence of A means that B is not required, that is, B is 104 

redundant in the context of a specific task or is superseded by A.” [24]. Many such duplicates 105 

have been found through curation, but the prevalence of undetected duplicates is unknown, as is 106 

the accuracy and sensitivity of automated tools for duplicate or redundancy detection. Other 107 

work has explored the detection of duplicates, but often under assumptions that limit the impact. 108 

For example, some researchers have assumed that similarity of genetic sequence is the sole 109 

indicator of redundancy, whereas in practice some highly similar sequences may represent 110 

distinct information and some rather different sequences may in fact represent duplicates [26]. 111 

We detail the notion and impacts of duplication in the next section. 112 

 113 

Authors’ contributions 114 

In this work, a main focus is to explore the characteristics, impacts, and solutions to duplication 115 

in biological databases; a secondary focus is to further investigate other quality issues. We 116 

present and consolidate the opinions of over 20 experts and practitioners on the topic of 117 

duplication and other data quality issues, via a questionnaire-based survey. To address different 118 

quality issues, we introduce biocuration as a key mechanism for ensuring the quality of 119 

biological databases. To our knowledge, there is no one-size-fits-all solution even to a single 120 

quality issue [27]. We thus explain the complete UniProtKB/Swiss-Prot curation process, via a 121 

descriptive report and an interview with its curation team leader, which provides a reference 122 

solution to different quality issues. Overall, the observations on duplication and other data 123 

quality issues highlight the significance of biocuration in data resources, but a broader 124 

community effort is needed to provide adequate support to facilitate thorough biocuration. 125 

 126 
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The notion and impact of duplication 127 

Our focus is on database records – that is, entries in structured databases – not on biological 128 

processes such as gene duplication. Superficially, the question of what constitutes an exact 129 

duplicate in this context can seem obvious: two records that are exactly identical in both data 130 

(e.g., sequence) and annotation (e.g., meta-data including species and strain of origin) are 131 

duplicates. However, the notion of duplication varies. We demonstrate a generic biological data 132 

analysis pipeline involving biological databases and illustrate different notions of duplication.  133 

   Figure 1 shows the pipeline; we explain the three stages of the pipeline using the databases 134 

managed by the UniProt Consortium (http://www.uniprot.org/) as examples. 135 

   “pre-database” stage: records from various sources are submitted to databases. For instance, 136 

UniProt protein records come from translations of primary INSDC nucleotide records (directly 137 

submitted by researchers), direct protein sequencing, gene prediction and other sources 138 

(http://www.uniprot.org/help/sequence_origin). 139 

   “within database” stage: database curation, search, and visualisation. Records are annotated 140 

in this stage, automatically (UniProtKB/TrEMBL) or through curation (UniProtKB/Swiss-Prot). 141 

Biocuration plays a vital role at this stage. For instance, UniProt manual curation not only 142 

merges records and documents discrepancies, it also annotates the records with biological 143 

knowledge drawn from the literature [28]. Also, the databases need to manage the records for 144 

search and visualisation purposes [29]. During this stage, UniProt undertakes extensive cross-145 

referencing by linking hundreds of databases to provide centralized knowledge and resolve 146 

ambiguities [30].   “post-database” stage: record download, analysis, and inference. Records 147 

are downloaded and analysed for different purposes. For instance, both UniProtKB records and 148 

services have been extensively used in the research areas of biochemistry and molecular biology, 149 

biotechnology and computational biology, according to citation patterns [31]. The findings of 150 

studies may in turn contribute to new sources. 151 

   Duplication occurs in all of these stages, but its relevance varies. Continuing with the UniProt 152 

example, the first stage primarily concerns entity duplicates (often referred to as true duplicates): 153 

records that correspond to the same biological entities regardless of whether there are differences 154 

in the content of the database records. Merging those records into a single entry is the first step in 155 
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UniProtKB/Swiss-Prot manual curation [28]. The second stage primarily concerns near-identical 156 

duplicates (often referred to as redundant records): the records may not refer to the same 157 

entities, but nevertheless have high similarity. UniProt has found those records lead to 158 

uninformative BLAST search results (http://www.uniprot.org/help/proteome_redundancy). The 159 

third stage primarily concerns study-dependent duplicates: studies may further de-duplicate sets 160 

of records for their own purposes. For instance, studies on secondary protein structure prediction 161 

may further remove protein sequences at a 75% sequence similarity threshold [32]. This clearly 162 

shows that the notion of duplication varies and in general has two characteristics: redundancy 163 

and inconsistency. Thus it is critical to understand their characteristics, impacts, and solutions.  164 

   We have found numerous discussions of duplicates in the previous literature. As early as in 165 

1996, Korning et al. [33] observed duplicates from the GenBank Arabidopsis thaliana dataset 166 

when curating those records. The duplicates were of two main types: the same genes that were 167 

submitted twice (either by the same or different submitters), and different genes from the same 168 

gene family that were similar enough that only one was retained. Similar cases were also 169 

reported by different groups [21, 34–36]. Recently, the most significant case was the duplication 170 

in UniProtKB/TrEMBL [15]: in 2016, UniProt removed 46.9 million records corresponding to 171 

duplicate proteomes (for example, over 5.9 million of these records belong to 1,692 strains of 172 

Mycobacterium tuberculosis). They identified duplicate proteome records based on three criteria: 173 

belonging to the same organisms; sequence identity of over 90%; and the proteome ranks 174 

designed by biocurators (such as whether they are Reference proteome and the annotation level).  175 

   As this history shows, investigation of duplication has persisted for at least 20 years. 176 

Considering the type of duplicates, as the above discussion illustrates, duplication appears to be 177 

richer and more diverse than was originally described (we again note the definition of 178 

‘duplication’ we are following in this paper, which includes the concept of redundancy). This 179 

motivates continued investigation of duplication. 180 

   An underlying question is: does duplication have positive or negative impact? There has been 181 

relatively little investigation of the impact of duplication, but there are some observations in the 182 

literature: (1) “The problem of duplicates is also existent in genome data, but duplicates are less 183 

interfering than in other application domains. Duplicates are often accepted and used for 184 

validation of data correctness. In conclusion, existing data cleansing techniques do not and 185 
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cannot consider the intricacies and semantics of genome data, or they address the wrong 186 

problem, namely duplicate elimination.” [38]; (2) “Biological data duplicates provide hints of the 187 

redundancy in biological datasets ... but rigorous elimination of data may result in loss of critical 188 

information.” [34]; (3) “The bioinformatics data is characterized by enormous diversity matched 189 

by high redundancy, across both individual and multiple databases. Enabling interoperability of 190 

the data from different sources requires resolution of data disparity and transformation in the 191 

common form (data integration), and the removal of redundant data, errors, and discrepancies 192 

(data cleaning).” [39]. Thus the answers to questions on the impact of duplicates are not clear. 193 

The above views are inconsistent, are opinions rather than conclusions drawn from studies, and 194 

are not supported by extensive examples. Moreover, they are not recent, and may not represent 195 

the current environment. Answering the question of the impact of duplications requires a more 196 

comprehensive and rigorous investigation. 197 

 198 

From duplication to other data quality issues 199 

Biological sources suffer from data quality issues other than duplication. We summarise diverse 200 

biological data quality issues reported in the literature: inconsistencies (such as conflicting 201 

results reported in the literature) [22], inaccuracies (such as erroneous sequence records and 202 

wrong gene annotations) [40–42], incompleteness (such as missing exons and incomplete 203 

annotations) [38, 40] and outdatedness (such as out-dated sequence records and annotations) 204 

[41].  This shows that while duplication is a primary data quality issue, other quality issues are 205 

also of concern. Collectively, there are five primary data quality issues: duplication, 206 

inconsistency, inaccuracy, incompleteness and outdatedness identified in general domains [43]. 207 

It is thus also critical to understand what quality issues have been observed and how they impact 208 

database stakeholders under the context of biological databases. 209 

 210 

Practitioner viewpoint: survey questions  211 

Studies on data quality broadly take one of three approaches: domain expertise, theoretical or 212 

empirical. The first is opinion-based: accumulating views from (typically a small group of) 213 

domain experts [44–46]. For example, one book summarises opinions from domain experts on 214 
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elements of spatial data quality [44]. The second is theory-based: inference of potential data 215 

quality issues from a generic process of data generation, submission, and usage [47–49]. For 216 

example, a data quality framework was developed by inferring the data flow of a system (such as 217 

input and output for each process) and estimating the possible related quality issues [47]. The 218 

third is empirically based: analysis of data quality issues in a quantitative manner [50–52]. For 219 

example, an empirical investigation on what data quality means to stakeholders was performed 220 

via a questionnaire [50]. Each approach has its own strengths and weaknesses; for example, 221 

opinion-based studies represent high domain expertise, but may be narrow due to the small group 222 

size. Quantitative surveys in contrast have a larger number of participants, but the level of 223 

expertise may be relatively lower. 224 

   Our approach integrates opinion-based and empirical-based approaches: the study presents 225 

opinions from domain experts; but the data was gathered via a questionnaire; the survey 226 

questions are provided in the Supplementary Material File S1. We surveyed 23 practitioners on 227 

the questions of duplicates and other general data quality issues. These practitioners are from 228 

diverse backgrounds (including experimental biology, bioinformatics, and computer science), 229 

with a range of affiliation types (such as service providers, universities, or research institutes) but 230 

all have domain expertise. These practitioners include senior database staff, project and lab 231 

leaders, and biocurators. The publications of the participants are directly relevant to databases, 232 

data quality and curation; as illustrated by some instances [10, 15, 28, 53–69]. They were 233 

selected by personal approach at conferences and in a small number of cases by email; most of 234 

the practitioners were not known to the originating authors (Chen, Verspoor, Zobel) before this 235 

study. 236 

   A limitation is that the small participant size may mean that we have collected unrepresentative 237 

opinions. However, the community of biocuration is small and the experience represented by 238 

these 23 is highly relevant. A 2012 survey conducted by the International Society of Biocuration 239 

(ISB) had 257 participants [67]. Of those 257 participants, 57% of them were employed in short-240 

term contracts and only 9% were principal investigators. A similar study initiated by the 241 

BioCreative team had only 30 participants, including all the attendees of the BioCreative 242 

conference in that year [68]. Therefore, the number of participants of this study reflects the size 243 
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of the biocuration community; moreover, the relatively high expertise ensures the validity of the 244 

opinions.  245 

   The survey asked three primary questions about duplication: (1) What are duplicates? We 246 

asked practitioners what records they think should be regarded as duplicated; (2) Why care about 247 

duplicates? We asked practitioners what impact duplicates have; (3) How to manage duplicates? 248 

We asked practitioners whether, and how, duplicates should be resolved. 249 

   In detail, the questions and their possible responses were as follows: 250 

   Defining duplicate records (The ‘what’ question). We provided five options for experts to 251 

select: (1) Exact duplicate records: two or more records are exactly identical; (2) Near identical 252 

duplicates: two or more records are not identical but similar; (3) Partial or fragmentary records: 253 

one record is a fragment of another; (4) Duplicate records with low similarity: records have 254 

relatively low similarity but belong to the same entity; (5) Other types: if practitioners also 255 

consider other cases as duplicates. 256 

   Respondents were asked to comment on their choices. We also requested examples to support 257 

the choice of options 4 or 5, given that in our review of the literature we observed that the first 258 

three options were prevalent [70, 71]. Option 1 refers to exact duplicates, option 2 refers to 259 

(highly) similar or redundant records or to some quantitative extent, records share X% similarity, 260 

option 3 refers to partial or incomplete records, and option 4 refers to entity duplicates that are 261 

inconsistent. The “Other types” option provides capture of remaining types of duplicates. 262 

   Quantifying the impacts of duplication (The ‘Why’ question). We asked in two steps: first, 263 

whether respondents believed that duplicates have impact. The second question was presented 264 

only if the answer to the first was yes. It is used to comment on positive and negative impacts 265 

respectively. We also asked respondents to explain their opinion or give examples.  266 

   Addressing duplication (The ‘How’ question). We offered three subquestions: (1) Do you 267 

believe that duplicate detection is useful/needed? (2) Do you believe that current duplicate 268 

detection methods/software are sufficient to satisfy your requirements? (We also asked 269 

respondents to explain what they expected if they selected ‘no’.) (3) How would you prefer that 270 

duplicate records be handled? These were the suggested options: label and remove duplicates, 271 

label and make duplicates obsolete, label but leave duplicates active, and other solutions. 272 
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Practitioner viewpoints: summary  273 

In this section, we present the survey results on duplication and other quality issues. 274 

Duplication: practitioners’ opinions 275 

The responses are summarized below, in the same order as the three primary questions.  For each 276 

question, we detail the response statistics, summarise the common patterns, augmented by 277 

detailed responses, and draw conclusions. 278 

   The views on what are duplicates are summarised in Figure 2. Out of 23 practitioners, 21 have 279 

made a choice by selecting at least one option. While the other two did not select any options, 280 

they have considered that duplicates have impacts for later questions. We therefore do not regard 281 

the empty responses as an opinion that duplication does not exist; rather simply do not track the 282 

response in this case.     283 

   The results show (1) all types of duplicates have been observed by some of practitioners, but 284 

none is universal. The commonest type is similar record, which was selected by over half of the 285 

respondents; but the other types (exact duplicates, partial records, and low similarity duplicates) 286 

were also selected by at least a third of the respondents. Three of them considered other 287 

duplicate types, and (2) more than 80% of respondents indicated that they have observed at least 288 

two types.  289 

   Also recall that existing literature rarely covers the fourth type of duplication – that is, 290 

relatively different records that should in fact be considered as duplicates. However, close to 291 

40% of respondents acknowledge having seen such cases and further point out that identifying 292 

them requires significant manual effort. The following summarises several cases (each identified 293 

by respondent ID, tabulated at the end of this paper). 294 

   Low similarity duplicates within a single database. Representative comments are “We have 295 

such records in ClinVar [64]. We receive independent submissions from groups that define 296 

variants with great precision, and groups that define the same variant in the same paper, but 297 

describe it imprecisely. Curators have to review the content to determine identity.” [R19] and 298 

“Genomes or proteomes of the same species can often be different enough even they are 299 

redundant.” [R24] 300 
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   Low similarity duplicates in databases having cross-references. Representative comments are 301 

“Protein-Protein Interaction databases: the same publication may be in BioGRID [72] annotated 302 

at the gene level and in one of the IMEx databases (http://www.imexconsortium.org/) annotated 303 

at the protein level.” [R20] and “Also secondary databases import data (e.g. STRING sticking to 304 

the PPI example) but will only import a part of what is available.” [R20]. 305 

   Low similarity duplicates in databases having the same kinds of contents. For instance, 306 

“Pathway databases (KEGG29, Reactome30, EcoCyc31 etc) tend to look at same pathways but are 307 

open to curator interpretation and may differ.” [R20] 308 

   The results of the “why care about duplicates” question are shown in Figure 3. All 309 

practitioners made a choice. Most (21 out of 23) believe that duplication does matter. Moreover, 310 

19 out of 21 experts weighted on potential impact of duplicates: only one believed that the 311 

impact is purely positive, compared to 8 viewing it solely negative; the remaining 10 thought the 312 

impact has both positive and negative sides. We assembled all responses on impacts of 313 

duplicates as follows below. 314 

   Impact on database storage, search and mapping. Representative comments are (1) “When 315 

duplicates (sequence only) are in big proportion they will have an impact on sequence search 316 

tool like BLAST, when pre-computing the database to search against. Then it'll affect the 317 

statistics on the E-value returned.” [R10], (2) “Duplicates in one resource make exact mappings 318 

between 2 resources difficult.” [R21], “Highly redundant records can result in: Increasing bias in 319 

statistical analyses; Repetitive hits in BLAST searches.” [R24], and (3) “Querying datasets with 320 

duplicate records impacts the diversity of hits and increase overall noise; we have discussed this 321 

in our paper on hallmark signatures” [56]. [R8] 322 

   Impact on meta-analysis in biological studies. Representative comments are (1) “Duplicate 323 

transcriptome records can impact the statistics of meta-analysis.” [R1], (2) “Authors often state a 324 

fact is correct because it has been observed in multiple resources. If the resources are re-using, or 325 

recycling the same piece of information, this statement (or statistical measure), is incorrect.” 326 

[R20] (Note that it has been previously observed that cascading errors may arise due to this type 327 

of propagation of information [73].) and (3) “Duplicates affect enrichments if duplicate records 328 

used in background sets.” [R21] 329 
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   Impact on time and resources. Representative comments are (1) “Archiving and storing 330 

duplicated data may just be a waste of resources.” [R12], (2) “Result in time wasted by the 331 

researcher.” [R19], and (3) “As a professional curation service; our company suffers from the 332 

effects of data duplication daily. Unfortunately there is no pre-screening of data done by 333 

Biological DBs and thus it is up to us to create methods to identify data duplication before we 334 

commit time to curate samples. Unfortunately, with the onset of next generation data, it has 335 

become hard to detect duplicate data where the submitter has intentionally re-arranged the reads 336 

without already committing substantial computational resources in advance”. [R9] 337 

   Impact on users. Representative comments are (1) “Duplicate records can result in confusion 338 

by the novice user. If the duplication is of the ‘low similarity’ type, information may be 339 

misleading.” [R19], “Duplicate gene records may be misinterpreted as species paralogs.” [R21], 340 

(2) “When training students, they can get very confused when a protein in a database has 341 

multiple entries -which one should they use, for example. Then I would need to compare the 342 

different entries and select one for them to use. It would be better if the information in the 343 

duplicate entries was combined into one correct and more complete entry.” [R23], and (3) “Near 344 

identical duplicate records: two or more records are not strictly identical but very similar and can 345 

be considered duplicates; because users don't realise they are the same thing or don’t understand 346 

the difference between them.” [R25]. 347 

   In contrast, practitioners also pointed out two primary positive impacts: (1) identified 348 

duplicates enrich the information about an entity; for example, “When you try to look sequence 349 

homology across species, it is good to keep duplicates as it allows to build orthologous trees.” 350 

[R10] and “When they are isoforms of each other - so while they are for the same entity, they 351 

have distinct biological significance.” [R25], and (2) identified duplicates verify the correctness 352 

as replications; for example, “On the other hand, if you have many instances of the same data, or 353 

near identical data, one could feel more confident on that data point.” [R12] (Note that 354 

confidence information ontology can be used to capture “confidence statement from multiple 355 

evidence lines of same type” [74].), and “If it is a duplicate record that has arisen from different 356 

types of evidence, this could strengthen the claim.” [R13]  357 

   The cases outlined above detail the impact of duplication.. Clearly duplication does matter. The 358 

negative impacts are broad. They range from databases to studies, from research to training, and 359 
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from curators to students. The potential impacts are severe: valuable search results may be 360 

missed, statistical results may be biased, and study interpretations may be misled. Management 361 

of duplication during is a significant amount of labour. 362 

   Our survey respondents identified duplicates as having two main positive impacts: enriching 363 

the information and verifying the correctness. This has an implicit yet important prerequisite: the 364 

duplicates need to be detected and labelled beforehand. For instance, in order to achieve 365 

information richness, duplicate records must first be accurately identified and cross-references 366 

should be explicitly made. Similarly, for confirmation of results, the duplicate records need to be 367 

labelled beforehand. Researchers then can seek labelled duplicates to find additional interesting 368 

observations made by other researchers on the same entities, that is, to find out whether their 369 

records are consistent with others. 370 

   The views on how to manage duplicates are summarised in Figure 4. None of the practitioners 371 

regards duplicate detection as unnecessary; 10 practitioners further believe that current duplicate 372 

detection methods are not sufficient. We propose the following suggestions accordingly. 373 

   Precision matters. The methods need to find duplicates accurately: “It should correctly remove 374 

duplicate records, while leaving legitimate similar entries in the database.” [R15] and “Duplicate 375 

detection method need to be invariant to small changes (at the file level, or biological sample 376 

level); otherwise we would miss the vast majority of these.” [R9] 377 

   Automation matters. In some fields few duplicate detection methods exist: “We re-use GEO 378 

public data sets, to our knowledge there is no systematic duplicate detection.” [R7], “Not aware 379 

of any software.” [R3] and “I do not use any duplicate detection methods, they are often difficult 380 

to spot are usually based on a knowledge of the known size of the gene set.” [R21] 381 

   Characterisation matters. The methods should analyse the characteristics of duplicates: “A 382 

measure of how redundant the database records are would be useful.” [R24] 383 

   Robustness and generalisation matter. “All formats of data need to be handled cross-wise; it 384 

does not help trying to find duplicates only within a single file format for a technology.” [R9] 385 

      To our knowledge, there is no universal approach to managing duplication. Similar databases 386 

may use different de-duplication techniques. For instance, as sequencing databases, ENCODE 387 

uses standardized metadata organisation, multiple validation identifiers, and its own merging 388 
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mechanism for the detection and management of duplicate sequencing reads; the Sequence Read 389 

Archive (SRA) uses hash functions whereas GEO uses manual curation in addition to hash 390 

functions [27]. Likewise, different databases may choose different parameters even when using 391 

the same de-duplication approach. For instance, protein databases often use clustering methods 392 

to handle redundant records. However, the values of chosen similarity thresholds for clustering 393 

range from 30% to 100% in different databases [75]. Thus, it is impossible to provide a uniform 394 

solution to handling of duplication (as well as other quality issues). We introduce sample 395 

solutions used in UniProtKB/Swiss-Prot that demonstrate how quality issues are handled in a 396 

single database. The approaches or software used in the UniProtKB/Swiss-Prot curation pipeline 397 

may also provide insights into others.  398 

 399 

Beyond duplication: other data quality issues 400 

We also extend the investigation to general quality issues other than duplication, to complement 401 

the key insights. We asked the respondents for their opinions on general data quality issues. The 402 

two primary questions asked were: what data quality issues have been observed in biological 403 

databases? and why care about data quality? The style is the same as the above questions on 404 

duplication. The detailed results are summarized in Supplementary Material File S2. Overall it 405 

shows the quality issues can be widespread; for example, each data quality issue has been 406 

observed by at least 80% of the respondents.  407 

    408 

Limitations 409 

It is worth noting that while we have carefully phrased the questions in the survey, it may still be 410 

the case that different respondents may have different internal definitions of duplicates in mind 411 

when responding. For example, some respondents may only consider records with minor 412 

differences as redundant records whereas others may also include records with larger differences, 413 

even though they selected the same option. We acknowledge that this diversity of interpretation 414 

is inevitable – data is multifaceted; hence so is data quality and the associated perspectives on it. 415 

The internal definitions of duplicate records depend on more specific context and there is indeed 416 

no universal agreement [24]. However, we argue that this does not detract from the results of the 417 

survey; respondents provided clear examples to support their choices and those examples 418 
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demonstrate that the duplicate types do impact biological studies, regardless of internal variation 419 

in specific definitions. Such internal differences are also observed in other data quality studies, 420 

such as reviews on general data quality [76] and detection of duplicate videos [77].  421 

   It is also noteworthy that some databases primarily serve an archival purpose, such as INSDC 422 

and GEO. The records in these databases are directly coordinated by record submitters; 423 

therefore, the databases have had relatively little curation compared to databases like 424 

UniProtKB/Swiss-Prot. Arguably, data quality issues are not major concerns from an archival 425 

perspective. We do not examine the quality issues in archival databases; rather, we suggest 426 

labelling duplicate records or records with other quality issues (without withdrawing or removing 427 

the records) could potentially facilitate database usage. The archival purpose does not limit other 428 

uses; for example, studies including BLAST searches against GenBank for sequence 429 

characterization [78–80]. In such cases, the sequences and annotations would impact the related 430 

analyses.   431 

However, quality issues may be important in archival databases. Indeed, in some instances the 432 

database managers have been aware of data quality issues and are working on solutions. A recent 433 

work proposed by the ENCODE database team concerns the quality issues, in particular 434 

duplication in sequencing repositories such as ENCODE, GEO and SRA [27]. They 435 

acknowledge that, while archival databases are responsible for data preservation, duplication 436 

affects data storage and could mislead users. As a result, they propose three guidelines to prevent 437 

duplication in ENCODE and summarise other de-duplication approaches in GEO and SRA; 438 

furthermore, the ENCODE work encourages making a community effort (such as archival 439 

databases, publishers, and submitters) to handle quality issues.   440 

 441 

Biocuration: a solution to data quality issues in biological databases  442 

In this section, we introduce solutions to data quality issues in biological databases. Biocuration 443 

is a general term that refers to addressing data quality issues in biological databases. We provide 444 

a concrete case study on the UniProtKB/Swiss-Prot curation pipeline – consisting of a detailed 445 

description on the curation procedure and an interview with the curation team leader. It provides 446 

an example of a solution to different quality issues.   447 

 448 
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The curation pipeline of UniProtKB/Swiss-Prot 449 

UniProtKB has two data sections: UniProtKB/Swiss-Prot and UniProtKB/TrEMBL. Sequence 450 

records are first deposited in UniProtKB/TrEMBL and then selected records are transferred into 451 

UniProt/Swiss-Prot. Curation in UniProtKB has two stages: (1) automatic curation in 452 

UniProt/TrEMBL, where records are curated by software automatically without manual review, 453 

and (2) expert (or manual) curation in UniProtKB/Swiss-Prot on selected records from 454 

UniProtKB/TrEMBL. A major task in automatic curation is to annotate records using annotation 455 

systems; for example, UniRules, which contains rules created by biocurators, and external rules 456 

from other annotation systems, such as RuleBase [81] and HAMAP [82], are used in this task. 457 

Rule UR000031345 is an example of UniRules (http://www.uniprot.org/unirule/UR000031345); 458 

Record B1YYB is also a sequence record example that was annotated using the rules during 459 

automatic curation. For expert curation, biocurators run a comprehensive set of software, search 460 

supporting information from range of databases, manually review the results and interpret the 461 

evidence level [31]. Table 1 describes representative software and databases used in expert 462 

curation [14, 83–98]. This expert curation in UniProtKB/Swiss-Prot has 6 dedicated steps, shown 463 

in Table 1 and explained below. 464 

   Sequence curation. This step focuses on de-duplication. It has two components: (1) Detect and 465 

merge duplicate records. (2) Analyse and document the inconsistencies caused by duplication. In 466 

this specific case ‘duplicates’ are records belonging to the same genes: an example of entity 467 

duplicates. Biocurators perform BLAST searches and also search other database resources to 468 

confirm whether two records are the same genes, and merge them if they are. The merged 469 

records are explicitly documented in the record’s Cross-reference section. Sometimes the 470 

merged records do not have the same sequences, mostly due to errors. Biocurators have to 471 

analyse the causes of those differences and document the errors.  472 

   Sequence analysis. Biocurators analyse sequence features after addressing duplication and 473 

inconsistencies. They run standard prediction tools, review and interpret the results, and annotate 474 

the records. The complete annotations for sequence features cover 39 annotation fields under 7 475 

categories: Molecule processing, Regions, Sites, Amino acid modifications, Natural variations, 476 

Experimental info, and Secondary structure (http://www.uniprot.org/help/sequence_annotation). 477 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 5, 2019. ; https://doi.org/10.1101/788034doi: bioRxiv preprint 

https://doi.org/10.1101/788034
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
 

18 

As such, it involves a comprehensive range of software and databases to facilitate sequence 478 

analysis, some of which are shown in Table 1. 479 

   Literature curation. This step often contains two processes: retrieval of relevant literature and 480 

application of text mining tools to analysis of text data, such as recognising named entities [99] 481 

and identifying critical entity relationships [100]. The annotations are made using controlled 482 

vocabularies (the complete list is in the UniProt keyword documentation via 483 

http://www.uniprot.org/docs/keywlist) and are explicitly labelled as “Manual assertion based on 484 

experiment in literature”. Record Q24145 is an example that was annotated based on findings 485 

published in literature (http://www.uniprot.org/uniprot/Q24145). 486 

   Family-based curation. This step transitions curation from single-record level to family-level, 487 

finding relationships amongst records. Biocurators identify putative homologs using BLAST 488 

search results and phylogenetic resources and make annotations accordingly. The tools and 489 

databases are the same as those in the Sequence curation step. 490 

   Evidence Attribution. This step standardises the curations made in the previous steps. Curations 491 

are made manually or automatically from different types of sources, such as sequence similarity, 492 

animal model results and clinical study results. This step uses the Evidence and Conclusion 493 

Ontology (ECO) to describe evidence in a precise manner: it details the type of evidence and the 494 

assertion method (manual or automatic) used to support a curated statement [98]. As such, 495 

database users can know how the decision was made and on what basis. For example, 496 

ECO_0000269 was used in the literature curation for Record Q24145.   497 

   Quality assurance, integration and update. The curation is complete at this point. This step 498 

finally checks everything and integrates curated records to the existing UniProtKB/Swiss-Prot 499 

knowledgebase. Those records will then be available in the new release. In turn, it helps further 500 

automatic curation within UniProtKB/Swiss-Prot. The newly made annotations will be used as 501 

the basis for creating automatic annotation rules. 502 

 503 

The curation in UniProtKB/Swiss-Prot: an interview 504 

We interviewed UniProtKB/Swiss-Prot annotation team leader Sylvain Poux. The interview 505 

questions covered how UniProtKB/Swiss-Prot handles general data quality issues. Some of the 506 
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responses are also related to specific curation process in UniProtKB/Swiss-Prot which shows that 507 

the solutions are database-dependent as well. The detailed interview is summarized in the 508 

Supplementary Material File S3. We have edited the questions for clarity, and omitted answers 509 

where Poux did not offer a view. 510 

   The above case study demonstrates that biocuration is an effective solution to diverse quality 511 

issues. Indeed, since 2003, when the first regular meeting amongst biocurators was held [101], 512 

the importance of biocuration activities has widely been recognised [20, 102–104]. Yet, on the 513 

other hand, the biocuration community still lacks broader support. A survey of 257 former or 514 

current biocurators showed that biocurators suffered from a lack of secured funding for primary 515 

biological databases, exponential data growth, and underestimation of the importance of 516 

biocuration [69]; consistent results were also demonstrated in other studies [105, 106]. 517 

According to recent reports, the funding for model-organism databases will be cut 30%-40% and 518 

the same threat applies to other databases [107–109]. 519 

 520 

Conclusion 521 

In this study, we explored the perspectives of both database managers and database users on the 522 

issue of data duplication – one of several significant data quality issues. We also extended the 523 

investigation to other data quality issues to complement this primary focus. Our survey of 524 

individual practitioners showed that duplication in biological databases is of concern: its 525 

characteristics are diverse and complex, its impacts cover almost all stages of database creation 526 

and analysis, and methods for managing the problem of duplication, either manual or automatic, 527 

have significant limitations. The overall impacts of duplication are broadly negative, and the 528 

positive impacts such as enriched entity information and validation of correctness rely on the 529 

duplicate records being correctly labelled or cross-referenced. This suggests a need for further 530 

development of methods for precisely classifying duplicate records (accuracy), detecting 531 

different duplicate types (characterisation), and achieving scalable performance in different data 532 

collections (generalisation). In some specific domains duplicate detection software (automation) 533 

is a critical need.  534 
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   The responses relating to general data quality further show that data quality issues go well 535 

beyond duplication. As can be inferred from the survey we conducted, curation – dedicated 536 

efforts to ensure that biological databases represent accurate and up-to-date scientific knowledge 537 

– is an effective tool for addressing quality issues. We provide a concrete case study on the 538 

UniProtKB/Swiss-Prot curation pipeline as a sample solution to quality issues. However, manual 539 

curation alone is not sufficient to resolve all data quality problems due to rapidly growing data 540 

volumes in a context of limited resources. A broader community effort is required to manage 541 

data quality and to provide support to facilitate data quality and curation. 542 
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Figures and Tables 789 

 790 

Figure 1  Biological analysis pipeline 791 

Three stages of a biological analysis pipeline, heavily involving biological databases, are 792 

presented. 793 

 794 

Figure 2  Characteristics of duplicate records  795 
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What are duplicates? The X-axis shows different duplicate types; the Y-axis shows the 796 

associated number of participants who selected that type.  797 

 798 

Figure 3  Impacts of duplicate records 799 

A. Do duplicates have impacts? The number of participants who believed whether duplication 800 

has impacts or not is shown. B. a more detailed breakdown by type of impact, for those who 801 

believed duplication has impacts, is illustrated. 802 

 803 

 804 

Figure 4  Solutions to duplicate records 805 
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How to address duplication? The X-axis represents the options to address duplication; the Y-axis 806 

represents the corresponding number of participants selected that option. 807 

  808 

Table 1  Representative software and resources used in expert curation 809 

Curation steps 
Software/ 

Databases 
Purpose Ref. 

Sequence curation  

Identify homologs 

 

Document inconsistencies 

BLAST Sequence alignment [83] 

Ensembl Phylogenetic resources [84] 

T-Coffee 

Muscle 

ClustalW 

Analysis of causes of 

inconsistencies due to 

duplication 

[85] 

[86] 

[87] 

Sequence analysis  

Predict topology Signal P Signal peptides prediction [88] 

TMHMM Transmembrance domain 

prediction 

[89] 

Post-translations NetNGlyc N-glycosylation sites 

prediction 

[90] 

Sulfinator Tyrosine sulfation sites 

prediction 

[91] 

Identify domains InterPro Retrievals of motif matches [92] 

REPEAT Identification of repeats [93] 

Literature curation  

Identify relevant literature PubMed 

iHOP 

Literature resources [94] 

[95] 

Text mining PTM 

PubTator 

Information extraction [96] 

[97] 

Assign GOs GO Gene ontology terms [14] 

Family curation Same as identify homologs  

Evidence attribution ECO Evidence code ontology [98] 
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Note: A complete set of the software, including the detailed versions of the software, can be 810 
found in UniProt manual curation standard operating procedure documentation 811 
(www.uniprot.org/docs/sop_manual_curation.pdf). 812 
 813 

 814 

Supplementary material 815 

File S1  Survey questions 816 

File S2  Results and discussions on quality issues beyond duplication 817 

File S3  UniProtKB/Swiss-Prot annotation team leader interview details 818 
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