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S1 Structural Identifiability
The specific dynamics of the model determine structural identifiability, which is considered to be an analytical property of
the model independent of clinical data. In general, a lack of structural identifiability can only be addressed by reformulating
the model and reducing the number of parameters. Such a step is crucial since most numerical approaches will be unable to
estimate non-identifiable parameters accurately [1].

The general idea behind structural identifiability is addressing whether the model parameters can be uniquely estimated
given a perfect collection of data on the model variables. Commonly used methods to determine structural identifiability
include the Taylor series approach and the generating series method. We refer to [1] for a brief review of these and other
methods. Here, we use the Matlab toolbox GenSSI 2.0, a multi-experiment structural identifiability analysis toolbox. It is the
first toolbox for structural identifiability analysis to implement Systems Biology Markup Language import, state parameter
transformations, and multi-experiment structural identifiability analysis [2, 3]. GenSSI 2.0 uses a generating series approach to
determine identifiability, and the results are presented in identifiability tableaus.

The generating series approach establishes a system of non-linear algebraic equations where the observables are expanded
in series with respect to time and inputs by calculating subsequent derivatives. The coefficients of such series are the output
functions and their successive Lie derivatives [1, 2, 3]. These Lie derivatives are evaluated at t = t0, put into vector equation
form. Using the inverse function theorem, this vector equation can be uniquely solved (locally) if and only if the Jacobian
matrix has full rank. This is known as the rank-test introduced by Pohjanpalo in 1978 [4].

One disadvantage of this method is that the minimum number of Lie derivatives needed is unknown, and the process must
be done with an initial guess. This can result in several iterations before obtaining results, especially using GenSSI 2.0. It is
worth noting that, although conceptually simple, this approach may generate algebraic equations that may be challenging or
impossible to solve, even with the aid of a symbolic manipulation software [1].

Identifiability tableaus are a powerful tool that can help overcome some of the limitations by providing information about
the relationship between parameters. They represent the non-zero elements of the Jacobian of the series of coefficients with
respect to the parameters, as explained in [5]. Each tableau has as many columns as parameters are studied and as many rows as
non-zero series coefficients. A black square in the coordinate (i, j) indicates that the non-zero generating series coefficient
i depends on the jth parameter [1]. Parameters may be unidentifiable when the Jacobian rank is deficient, presenting empty
columns. When the rank of the Jacobian is full (i.e., coincides with the number of parameters) all parameters are, at least,
locally identifiable. The analysis has three possible outcomes: globally identifiable, that is the parameter could be found no
matter the range of the parameters; locally identifiable, that is the uniqueness of the parameters can only be determined within a
neighborhood of parameter values, not all the possible parameter values; and unidentifiable, that is the parameter does not have
a unique solution [2, 3].

In the case when the rank of the Jacobian is equal to the number of parameters, identifiability tableaus are particularly
useful. Usually, the number of non-zero coefficients is larger than the number of non-zero parameters. This means that we can
generate a minimal square tableau by choosing rows that guarantee a full rank in the Jacobian. In such minimal tableaus if a
parameter is the unique non-zero element in a particular row, then the parameter is structurally identifiable. In that case, we
calculate the parameter as a function of the power series coefficients and eliminate it to create a reduced tableau. Once all the
possible reductions are made, we solve the remaining equations. The tableu also helps determine what equations are necessary
to solve for each parameter, since it is not often the case where all the power series depend on all parameters.

Our proposed model is divided into the sub-cellular and the population scale. Since clinical data needed to estimate the
parameters in each of these scales comes from various sources, and in each case the model needs to be reduced to be consistent
with the experiments set up, we do not consider the full model for structural identifiability of all parameters, but rather we
performed the study in each reduced model. We first performed identifiability analysis in equations (??), the system of equations
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for DNA damage. We remark that the PK/PD structure in the intracellular-extracellular transport of TMZ renders the model
unidentifiable. Unidentifiability arises from the volume distributions Vo and Vi. This phenomenon is a well-known result for
these types of models, where the volume distributions need to be prescribed. Once these two parameters were fixed for the
analysis, four Lie derivatives guaranteed full Jacobian rank (six), thus deeming all parameters at least structurally locally
identifiable. Upon further analysis, we determined that the parameters γoi,γio, and Kd are structurally globally identifiable,
while the rest of the parameters (kN

f ,k
O
f ,k

N
r ,k

O
r ,k

N
p , and kO

p ) are locally identifiable. However, given the biological nature of
our model, we do not need to change the structure of the model since we will be able to provide a range for these parameters’
values a priori. Identifiability tableaus for this analysis are presented in figure S1A-E. Similarly, an analysis of equations (??),
the system of equations for DNA repair, was performed. In this case, we achieved the rank of the full Jacobian, ten, with only
two Lie derivatives. All the parameters (kA

f ,k
M
f ,k

A
r ,k

M
r ,kA

p ,k
M
p ,SAPNG,SMGMT ,λAPNG, and λMGMT ) are structurally globally

identifiable. Identifiability tableaus for this analysis are presented in figure S1F-H.
Finally, we performed the analysis in the population model equations (??), where a discretization of the age-structured

was needed to use the generating series approach. After eight Lie derivatives, the rank of the Jacobian was full and local
identifiability was guaranteed for all parameters. In this case, α,K,µ, and ρ were determined to be globally identifiable.
However, a0,b1,b2,c1,c2, and c3 are simply locally identifiable.

An important conclusion from the analysis is that, if a0 = 0, losing the age-structured in arrested cells, structural identifia-
bility of the model is no longer achievable. Therefore, we claim that the age-structure is essential not only to capture biological
detail but also for mathematical well-posedness.

S2 Parameter Estimation
The following parameters are found by fitting to available clinical data: proliferation rate (α) and carrying capacity (K)
of tumor cells; enzymatic production and degradation (SAPNG,SMGMT ,λAPNG,λMGMT ); rates constants related to DNA
methylation (kN

f ,k
N
r ,k

N
p ,k

O
f ,k
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r ,k
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p ) and DNA repair (kA

f ,k
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r ,k
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p ,k
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f ,k
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r ,kM

p ); parameters related drug transport in/out of cells
(Vout ,Vin,γoi,γio,Kd); and parameters governing cell arrest (µ), cell repair (ρ), and cell death (b1,b2,c1,c2,c3). Clinical data
is obtained from a variety of sources in the literature, hence for each series of experiments, the model is simplified to fit the
conditions the experiments were carried out in. We now present a description of this process.

Tumor Growth (α,K) – In a series of experiments described in [6, 7, 8, 9, 10], GBM cell lines A172, U251, C6, and T98G
were cultured and recorded periodically. Cell lines A172 were plated for 6 days in modified Eagle’s medium containing 406
mg/l L-alanyl-L-glutamine, 10% fetal calf serum, 100 µg/ml penicillin, and 100 µg/ml streptomycin [6, 7]. Cell lines U251
were plated and serum-starved for one day, with an initial count of 0.75×104 cells [8]. Cell lines C6 were seeded into ten
dishes, 35 mm in diameter, with an initial count of 5×104 cells [9]. Cell lines T98G were seeded in triplicate in tissue culture
dishes with an initial count of 0.2×106 cells [10]. These data were used to fit α and K in the reduced equation of proliferating
cells

dP
dt

= αP(t)
(

1− P(t)
K

)
. (S1)

Best fits are shown in figure S2A, with the parameter value estimates recorded in table S3.

Repair Enzymes half life – The half-life of MGMT in the presence of methylating agents is approximately 160 min [11], so
that λMGMT = 0.0043 min−1. The half-life of APNG is approximately 120 min [12], thus λAPNG = 0.00577 min−1.

DNA Damage Rates (kN
f ,k

N
r ,k

N
p ,k

O
f ,k

O
r ,k

O
p ) – In a series of experiments described in [13] Big Blue Rat2 cells were treated

with TMZ to investigate the rates of DNA methylation. Briefly, Big Blue Rat2 cells were grown in 175 cm2 flasks containing 25
ml of medium. Various amounts of TMZ were added directly to the culture medium, and after three hours the cells were washed.
DNA was isolated from the cellular pellets, and the levels of N7-meG and O6-meG adducts were collected. Figures S2B and C
show these data as a function of drug added. In the same experiments, time course data of adduct formation was also recorded.
DNA was incubated with 500µM TMZ for various lengths of time at 37oC. Figure S2D shows the corresponding time courses.
In all these experiments DNA was isolated from the cells; thus a population model is not valid to estimate these parameters.
We also neglect intracellular transport of TMZ in/out of cells since DNA was not collected until TMZ concentration was
homogeneous everywhere. Lastly, because the cells were washed after only a few hours of TMZ exposure, we assume that DNA
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damage repair would not have been initiated. These data were used to estimate kN
f ,k

N
r ,k

N
p ,k

O
f ,k

O
r ,k

O
p in the reduced model

dTin

dt
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f N7Tin − kO
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r D7 + kO
r D6,

dN7
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p D7,
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r D6 − kO

p D6,

dA6
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= kN

p D6.

(S2)

Best fits are shown in S2B-D, with the parameter value estimates recorded in table S4.

TMZ Transport in/out of Cells (γoi,γio,Kd) – In a series of experiments described in [14], human GBM cells were exposed to
TMZ to study the transport of the drug in an out of the cell. A total of 106 U87 cells were seeded onto 60 mm Petri dishes and
cultured overnight. Next, 50 µmol/l of TMZ was added, and intracellular and extracellular concentration of TMZ were sampled
for two hours. These data were used to estimate γoi,γio, and Kd , as well as the initial values of DNA that can be methylated in
the N7 and O6 positions in the reduced equations:

dTout

dt
=−γoiTout + γio

Vin

Vout
Tin −KdTout ,

dTin

dt
= γoi

Vout

Vin
Tout − γioTin.

(S3)

Best fits for extracellular and intracellular TMZ concentrations are shown in figure S2E, and F (blue and red lines respectively),
and parameter values in table S4. Volumes of distribution were taken from [14].

DNA Repair Rates (kA
f ,k

A
r ,k

A
p ,k

M
f ,k

M
r ,kM

p ) – In a series of experiments described in [15] clinical data of the MGMT repair
process was obtained. DNA containing O6-meG oligonucleotides was incubated with different concentrations of MGMT.
Reactions were initiated by rapid mixing of MGMT (12.5 µl) with DNA substrate (10.9 µl). The mixtures were incubated at
37oC for 30 min. Demethylation rate of O6-meG DNA for different concentrations of MGMT was recorded and are shown in
figure S2D (blue circles). These data were used to estimate the parameters in the reduced equations

dO∗
6

da
= kM

p C∗
6 ,

dA∗
6

da
=−kM

f A∗
6MGMT + kM

r C∗
6 ,

dC∗
6

da
= kM

f A∗
6MGMT − kM

r C∗
6 − kM

p C∗
6 ,

dMGMT
da

= SMGMT −λMGMT MGMT − kM
f A∗

6MGMT + kM
r C∗

6 .

(S4)

We consider C∗
6 to be at quasi-steady state assuming Michaelis-Menten kinetics, and since the total amount of DNA should

be conserved while the repair process is happening we can further simplify our model by taking O∗
6 +A∗

6 +C∗
6 = DNA(0) a

constant. Under these assumptions a functional solution for C∗
6(a) and A∗

6(a) reads

KM =
kM

r + kM
p

kM
f

,

C∗
6(a) =

(DNA(0)−O∗
6 −A∗

6)MGMT
KM +MGMT

,

A∗
6(a) =

(DNA(0)−O∗
6 −C∗

6)K
M

KM +MGMT
,

(S5)
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and the velocity of O6-meG demethylation is given by

vO6(a) =
kM

p MGMT
KM +MGMT

. (S6)

Best fist are shown in figure S2D, and estimations for kM
p and KM are redorded in table S4. Likewise, the velocity of DNA

repair by APNG can be derived from the reduced model
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(S7)

by taking C∗
7 to be at quasi-steady state, which under the previous assumptions resolves

KA =
kA

r + kA
p
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f

,
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7(a) =
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,
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7)K
A

KA +A
,

(S8)

which yields

vN7(a) =
kA

pAPNG
KA +APNG

. (S9)

Estimates of kA
p and KA are available in [16].

Damage in vitro (µ,ρ,b1,b2,c1,c2,c3) – In a series of experiments described in [17], the human cell line A172 was used to
investigate whether APNG and MGMT confers TMZ resistance. A172 are human GBM cells that do not express MGMT nor
APNG; thus, they are an optimal choice to understand how APNG and MGMT expression affects cell viability. The cells were
transfected with constructs containing APNG, MGMT, or both, and incubated with various concentrations of TMZ (0−250
µM) to conduct survival assays. A total of 1×105 cells were plated into six-well dishes in 2 ml. After incubation with various
concentrations of TMZ, cells were collected and analyzed. This data was used to estimate the parameters related to cell arrest,
recovery, and cell death µ,ρ,b1,b2,c1,c2, and c3, and the full model was used. Best fits are shown in figure S3B, and parameter
estimations are recorded in table S4.

S3 Parameter Validation
Following the experiments described in [17], cell viability assays were performed with different GBM cell lines that are known
to express various levels of APNG and MGMT. The cell lines studied were: T98G expression both APNG and MGMT, A172
cells expressing neither, C6 rat glioma cells which express predominantly MGMT and moderate to low APNG, and U251
human GBM cells which express APNG but not MGMT. Using appropriate values of α and K for each cell line we conducted
model simulations treating cell lines with 0− 250 µM of TMZ, and recorded cell viability. Clinical data along with such
model simulations are shown in figure S3. The model simulations show good agreement with this data, validating our model
formulation.

S4 Energy Inequality
We derive an energy constraint inequality to which all cells must adhere motivated by the approach of Nagy et al. [18]. They
introduced an energy model with the view to explaining the angiogenic switch in cancer with a multi-scale model that includes
an energy management system in an evolving angiogenic tumor.
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We consider tumor cells to divide their efforts into maintaining normal physiological function, proliferating, and production
of repair enzymes. The total maintenance rate is taken to be ηβ = 8 min−1, and the proliferation effort to be ηP = 3.5 min−1

(as described in section 4.3 in [18]). Additionally, we consider the efforts to produce APNG (ηA) and MGMT (ηM). Tumor
cells are assumed to grow at their maximum rate burning adenosine triphosphate (ATP) at a rate of approximately 22 fmol
min−1 while maintaining their ATP level at 1.5 fmol:

1.5(ηβ +ηP +ηM +ηA)≈ 22. (S10)

Thus, assuming repairing both types of DNA damage is equally expensive, we can calculate that ηA = ηM = 1.58 min−1.
Now, we can think of cellular energy in terms of production of cellular material such as APNG, MGMT, or any cellular

material needed for cell division. In such terms, we define energy as the effort required to create 1 µM of cellular material in 1
min, where effort related to the rate of ATP consumption. We assume that total cellular energy available is kept constant in all
cells and that it can be decomposed as

EC = ηPSP +ηASAPNG +ηMSMGMT +ηβ Sβ . (S11)

Where SP is the production of cellular material, SAPNG is the production of APNG, SMGMT is the production of MGMT, and Sβ

is the production of any cellular material needed to maintain normal physiological function. Further we consider

SP = αx, (S12)

Where α is the proliferation rate of tumor cells, and x is a characteristic concentration of cellular material, that for simplicity
we take to be x = 1 µM. Moreover, Sβ is considered to be constant for all cell lines. Under these assumptions, we propose an
upper bound for EC, MEC given by the cellular energy of T98G cells, an established GBM cell line known for its virulence.
Thus all virtual cell lines must satisfy the constraint

ηPSP +ηASAPNG +ηMSMGMT ≤ 2373.46. (S13)

We create multiple virtual cohorts of tumor cell lines where α,SAPNG, and SMGMT are randomly selected in such a way that
equation (S13) is satisfied. The three studied cohorts are as follows:

• Monoclonal in vitro cohort: 500 monoclonal tumors grown in vitro. Each tumor is comprised of a single cell type. This
cohort is equally divided into four groups of cell lines depending on their expression of APNG and MGMT. The first
group is characterized by low expressions of MGMT and APNG; the second by low expression of APNG and high of
MGMT; the third by low expression of MGMT and high of APNG; and the last group by high expression of MGMT and
APNG. This cohort resembles in vitro experiments done with established cell lines such as A172, U251, C6, and T98G.

• Heteroclonal xenograft cohort: 500 heteroclonal tumors grown in mice. Each tumor is comprised of 10 different cell
lines. This cohort resembles xenograft experiments done with GBM samples from patients.

• Heteroclonal human cohort: 100 heteroclonal tumors grown in patients. Each tumor is comprised of 10 different cell
lines. This cohort resembles GBM patients. Specifically, tumors are allowed to grow exponentially, without a carrying
capacity K, because patients’ death is assumed once the number of tumor cells reaches a certain threshold. Further, the
range of α values is adjusted so that the mean doubling time is 49.6 days, matching clinical data of growth dynamics of
untreated GBMs in vivo [19].

S5 Genetic Algorithm Details
Genetic algorithms mimic the principles of genetic evolution to find the solution to an optimization problem, in our case, tumor
response to treatment. An initial pool of treatment strategies is created randomly. The treatments are sorted based on their
fitness which is measured in terms of cell survival post-treatment. The top 20% of strategies are paired to create offspring. As
in evolution, the offspring strategies inherit different properties from each of their parents. The resulting offspring are also
allowed a small chance of mutation, thus creating a new generation of treatment protocols that are sorted again based on fitness,
and the process repeated until convergence.

Genetic algorithms have been shown to converge rapidly to optimal solutions of problems that have multiple constraints,
are irregular, or even discontinuous, which are difficult to solve by other traditional optimization methods. They implement
multidirectional search, explore the search space using stochastic processes rather than deterministic rules, and are very flexible
in the choice of the function that is being optimized [20]. We implemented our genetic algorithm using Julia, setting the
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selection rate to be 20%, mutation rate to be 5%, an initial population of 20 treatment strategies, and a total number of iterations
of 20, since consistent results were achieved past that number of iterations in initial studies. Each treatment strategy is assumed
to be a 28-day cycle, where treatment is given in days 1 to 5 of week 1, following the current schedule of TMZ given to GBM
patients. Each day of treatment three decisions are made: TMZ dose, administration of MGMT inhibitor, APNG inhibitor, both,
or neither. Thus a treatment strategy will comprise a varying dose of TMZ coupled with a schedule of APNG and MGMT
inhibitors.

Algorithm: Genetic Algorithm for selecting treatment strategies

1. Create a set of 20 treatment strategies chosen randomly.

(a) TMZ dose: Create a vector of length 5 selecting values randomly. Check that the total dose does not surpass the
maximum dose.

(b) MGMT inhibitor: Create a vector of length 5 with 0’s and 1’s chosen randomly.

(c) APNG inhibitor: Create a vector of length 5 with 0’s and 1’s chosen randomly.

2. Treat the cell line under each of the 20 strategies.

3. Rank strategies based on the number of tumor cells after treatment.

4. Select the top 20% of strategies.

5. Randomly paired the selected strategies and create 20 offspring strategies:

(a) TMZ dose: Create a vector of length 5 with 1’s and 2’s chosen randomly, w. Now, create a vector of length 5 v, for
i = 1, ...,5, if wi = 1, then vi is the same TMZ value as the parent strategy 1 had on day i. If wi = 2, then vi is the
same TMZ value parent strategy 2 had on day i. Once all the entries in the vector are selected, check that maximum
dosage is not surpassed. If the total TMZ dosage is too high, repeat the process.

(b) MGMT inhibitors: Create a vector of length 5 with 1’s and 2’s chosen randomly, w. Now, create a vector of length
5 v, for i = 1, ...,5, if wi = 1, then vi is the same decision about MGMT inhibitor as the parent strategy 1 had on
day i. If wi = 2, then vi is the same TMZ value parent strategy 2 had on day i.

(c) APNG inhibitors: Create a vector of length 5 with 1’s and 2’s chosen randomly, w. Now, create a vector of length 5
v, for i = 1, ...,5, if wi = 1, then vi is the same decision about APNG inhibitor as the parent strategy 1 had on day i.
If wi = 2, then vi is the same TMZ value parent strategy 2 had on day i

6. Allow a small chance of mutation in the resulting strategies

7. Repeat from step 2.
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Name Description Units
t Time min
a Time of Arrest min
P Proliferating Cells number of cells
A Arrested Cells number of cells

Tout Extracellular Drug Concentration µM
Tin Intracellular Drug Concentration µM
N7 Healthy N7-guanines in proliferating cells µM
O6 Healthy O6-guanines in proliferating cells µM
N∗

7 Healthy N7-guanines in arrested cells µM
O∗

6 Healthy O6-guanines in arrested cells µM
D7 N7-guanine bound to TMZ µM
D6 O6-guanine bound to TMZ µM
A7 N7-methylguanine adducts in proliferating cells µM
A6 O6-methylguanine adducts in proliferating cells µM
A∗

7 N7-methylguanine adducts in arrested cells µM
A∗

6 O6-methylguanine adducts in arrested cells µM
MGMT MGMT repair enzyme µM
APNG APNG repair enzyme µM

C∗
7 Repairing compound of N7-methylguanine and APNG µM

C∗
6 Repairing compound of O6-methylguanine and MGMT µM

Table S1. List of model variables with biological descriptions and units.
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Name Description Units
kN

f Rate of N7-G and drug binding min−1 µM−1

kN
r Reverse rate of N7-G and drug binding min−1

kN
p Rate of N7-G methylation min−1

kO
f Rate of O6-G and drug binding min−1 µM−1

kO
r Reverse rate of O6-G and drug binding min−1

kO
p Rate of O6-G methylation min−1

kA
f Rate of N7-meG and APNG binding min−1 µM−1

kA
r Reverse rate of N7-meG and APNG binding min−1

kA
p Rate of N7-meG repair min−1

kM
f Rate of O6-meG and MGMT binding min−1 µM−1

kM
r Reverse rate of O6-meG and MGMT binding min−1

kM
p Rate of O6-meG repair min−1

Vout Volume of extracellular drug distribution ml
Vin Volume of intracellular drug distribution ml
Kd Rate of degradation of drug min−1

γoi Rate of TMZ entry into the cell min−1

γio Rate of TMZ exit out of the cell min−1

SMGMT Production of MGMT min−1 µM
SAPNG Production of APNG min−1 µM
λMGMT Degradation of MGMT min−1

λAPNG Degradation of APNG min−1

α Proliferation rate of proliferating cells min−1

K Carrying capacity of proliferating cells number of cells
µ Rate of cell arrest min−1

ρ Rate of cell repair min−1

b1 Rate of cell death caused by N7-meG damage min−1

b2 Rate of cell death caused by O6-meG damage min−1

c1 Rate of cell death caused by long arrest min−1

c2 Effect of MGMT on cell death µM−1

c3 Effect of N7-meG adducts on cell death µM−1

a0 Characteristic waiting time of arrested cells min

Table S2. List of model parameters with biological descriptions and units.
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Cell Line α (day−1) K (number of cells)
A172 0.4535 5.8×106

U251 0.8505 6.77×106

T98G 0.9913 11.6072×106

C6 0.963 8.0483×106

Table S3. Tumor growth parameter estimations.

Parameter Value Units Reference
λMGMT 0.0043 min−1 [11]
λAPNG 0.0057 min−1 [12]

kA
p 0.35 min−1

[16]
KA 0.025 µM
Vout 2×10−3 l [14]
Vin 7×10−6 l
kN

f 0.1270 min−1 µM−1

Fitted

kN
r 0.0973 min−1

kN
p 0.0130 min−1

kO
f 0.5003 min−1 µM−1

kO
r 0.0457 min−1

kO
p 0.0159 min−1

kM
p 0.1717 min−1

KM 0.0916 µM
γoi 0.0440 min−1

γio 29.086 min−1

Kd 0.0143 min−1

µ 174.2872 min−1

ρ 2.9288 min−1

b1 2.6411 min−1

b2 7.2196 min−1

c1 24.383 min−1

c2 55.0068 µM−1

c3 0.0112 µM−1

Table S4. Other parameter estimations.
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Figure S1. Identifiability Tableaus. Identifiability analysis was performed with GenSSI 2.0. The rows correspond to the
generating series coefficients of the successive Lie derivatives of the model output. The columns correspond to the different
parameters. A black square indicated that the corresponding non-zero generating series coefficient depends on the parameter
corresponding to the column [1]. A-C Identifiability tableau, reduced identifiability tableau order 1, and reduced identifiability
tableau order 2 for equations (??). The Jacobian matrix has rank 6. D-E Identifiability tableau, and reduced identifiability
tableau order 1 for the intracellular PK/PD equations. The Jacobian matrix has rank 3. F-H Identifiability tableau, reduced
identifiability tableau order 1, and reduced identifiability tableau order 2 of equations (??). The Jacobian matrix has rank 10.
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Figure S2. Best fits to clinical data. Clinical data used for parameter estimation is shown with the best fist of the model. In
all cases, markers represent clinical data, and lines represent the model output. A Control data for cell lines A172, T98G, U251,
and C6 was taken from multiple sources [6, 8, 9, 10]. Briefly between 0.75×104 and 2×106 cells were platted and harvested
at different time points. B-D In a series of experiments described in [13] Big Blue Rat2 cells were treated with TMZ to
investigate the rates of DNA methylation. B Time course of DNA adduct formation after 3h of treatment with 500 µM of TMZ.
C Formation of N7-meG adducts as a function of TMZ. D Formation of O6-meG adducts as a function of TMZ. E-F In a series
of experiments described in [14], human GBM cells were exposed to TMZ to study the transport of the drug in an out of the
cell. E Time course of extracellular concentration of TMZ. F Time course of Intracellular concentration of TMZ. G In a series
of experiments described in [15] clinical data of the MGMT repair process was obtained. DNA containing O6-meG
oligonucleotides was incubated with different concentrations of MGMT. The velocity of O6-meG demethylation is shown (blue
circles), along with model best fits. The velocity of N7-meG demethylation rate of N7-meG was obtained using parameter
values reported in [16] and model simulations are shown in red. H In a series of experiments described in [17] A172 cells were
transfected with constructs containing APNG, MGMT, or both, and incubated with various concentrations of TMZ. Cell
viability of A172 was recorded in each case at the end of the experiment.
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Figure S3. Parameter Validation. Clinical data of cell lines A172, U251, C6, and T98G treated with TMZ was used to
validate the model parametrization. Briefly, cell lines were incubated with 0−250 µM of TMZ and data was collected at
different time points [17]. The data in this picture was not used for parameter estimation. The curves were obtained by using
the model with appropriate values of α and K obtained in figure S2A.
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Figure S4. Additional local sensitivity analysis. A, Survival percentage for different enzyme expressions of APNG when
APNG/MGMT are active or inhibited. B, Survival percentage for different enzyme expressions of MGMT when
APNG/MGMT are active or inhibited.
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