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Abstract
Background: Genetic regulation of gene expression, revealed by expression quantitative trait loci (eQTLs),
varies across tissues in complex patterns ranging from highly tissue-specific effects to effects shared across
many or all tissues. Improved characterization of these patterns may allow us to better understand the
biological mechanisms that underlie tissue-specific gene regulation and disease etiology.
Results: We develop a constrained matrix factorization model to learn patterns of tissue sharing and tissue
specificity of eQTLs across 49 human tissues from the Genotype-Tissue Expression (GTEx) project. The
learned factors include patterns reflecting tissues with known biological similarity or shared cell types, in
addition to a dense factor representing a universal genetic effect across all tissues. To explore the regulatory
mechanisms that generate tissue-specific patterns of expression, we evaluate chromatin state enrichment and
identify specific transcription factors with binding sites enriched for eQTLs from each factor.
Conclusions: Our results demonstrate that matrix factorization can be applied to learn the tissue specificity
pattern of eQTLs and that it exhibits better biological interpretability than heuristic methods. We present a
framework to characterize the tissue specificity of eQTLs, and we identify examples of tissue-specific eQTLs
that may be driven by tissue-specific transcription factor (TF) binding, with relevance to interpretation of
disease association.
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Background
Understanding the genetic effects on gene expression
is essential to characterizing the gene regulatory land-
scape and provides insights into the molecular ba-
sis of phenotypes. Expression quantitative trait locus
(eQTL) studies using genotype and gene expression
data have demonstrated that the genetic regulation of
gene expression is pervasive [1, 2, 3, 4, 5]. Additionally,
numerous studies have leveraged eQTLs to character-
ize the molecular basis of complex phenotypic variation
[6, 7, 8, 9, 10].

Tissues in the human body carry out universal cellu-
lar processes in addition to performing highly special-
ized functions, driven in large part by patterns of gene
expression in each cell type. Characterizing the tissue
sharing and tissue specificity of genetic effects on gene
expression is therefore critical to understanding how
genetic variation leads to phenotypic changes. Recent
work has identified eQTLs across a broad range of hu-
man tissues. The Genotype-Tissue Expression (GTEx)
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project has collected eQTL data across 49 human tis-
sues (Additional file 1: Figure S1), which provide an
unprecedented opportunity to uncover the universal
and tissue-specific patterns of genetic regulation of
gene expression [1].

Several methods have been developed to capture the
underlying tissue-specific architecture in eQTLs across
tissues. The simplest such method is based on the ef-
fect sizes or P values of eQTLs to identify eQTLs spe-
cific to individual tissues or cell types [11, 12]. This
method, while easily implemented, requires subjective
thresholds and ignores the underlying similarity of tis-
sues. Statistical frameworks have been developed to
jointly analyze eQTLs from different datasets, such as
eQTL-BMA and Meta-Tissue [13, 14]. These methods
are more computationally demanding but potentially
more accurate in their estimation of tissue specificity.
However, neither class of method addresses the inher-
ent patterns of similarity of multiple tissues in datasets
such as GTEx, which may be relevant to patterns of
shared mechanism.

For example, a regulatory mechanism relevant to
endothelium would affect several related tissues, but
would not be universal across all tissues. Evaluating
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functional properties of eQTLs that are highly spe-
cific only to the stomach would exclude those shared
across endothelial tissues, and thus would not reveal
the regulatory mechanisms shared across endothelial
tissues. Manually identifying relevant groupings of tis-
sues is not always obvious or feasible, and, further-
more, such groupings do not form mutually exclusive
sets of tissues. Matrix factorization applied to eQTL
statistics offers a more flexible and natural approach
for identifying underlying patterns across eQTLs that
may indeed better reflect biological mechanisms which
likewise act across related, non-mutually exclusive sub-
sets of tissues or samples [15]. Recently, matrix factor-
ization has been applied in a Bayesian setting to cap-
ture the structure of genetic regulation in human tis-
sues, however specific modelling choices for factorizing
eQTL effects in various domains remain to be compre-
hensively evaluated [16]. It is further unexplored what
insights into regulatory mechanism and functional con-
sequences can be gained by evaluating these complex
patterns of universal and tissue-specific eQTL effects.

In this study, we propose a constrained matrix
factorization model called weighted semi-nonnegative
sparse matrix factorization (sn-spMF) and apply it
to analyze eQTLs across 49 human tissues from the
GTEx consortium. We learn a lower-dimensional rep-
resentation of eQTL effects across tissues, captur-
ing both tissue-shared and tissue-specific patterns of
eQTL activity. We leverage this atlas of universal and
tissue-specific eQTLs to begin to characterize the reg-
ulatory mechanisms that underlie this specificity, and
compare this approach to standard methods of iden-
tifying tissue-specific eQTLs. We demonstrate that
the universal and tissue-specific eQTLs exhibit dis-
tinct patterns of cis-regulatory element enrichment
and identify specific TFs that appear to drive tissue-
specific genetic effects.

Results
Matrix factorization of multi-tissue eQTL effects
The effect of eQTL variants on gene expression varies
across tissues, as has been previously observed [1, 2,
17]. To better understand common patterns of genetic
impact across tissues and to characterize the mech-
anisms that underlie tissue specificity, we developed
and applied a matrix factorization model called semi-
nonnegative sparse matrix factorization (sn-spMF).
This model assumes that the effect of an eQTL across
tissues is a linear combination of “factors”, where every
factor represents a common pattern of eQTL sharing
across particular sets of tissues (Fig. 1A). Then, for a
given eQTL, the loadings, or “weights,” on each factor
reflect how strongly that eQTL’s effects are explained
by that factor (and corresponding tissues). Given a

multi-tissue dataset of eQTL association statistics as
input, we identified a set of explanatory tissue fac-
tors by minimizing an objective function combining
two components: (1) a weighted squared error term
that captures how well the learned weights and factors
reconstruct the observed eQTL effect sizes and (2) a
regularization term that encourages sparsity in both
factors and weights through an L1 penalty (Fig. 1B).
Since it has previously been shown that inconsistent
directions of effect for eQTLs will often arise from al-
lelic heterogeneity rather than true sharing [18], we
constrained factors to be nonnegative.

By optimizing the objective function using alternat-
ing least squares applied to the GTEx v8 data across
49 tissues, we learned a factor matrix F with 23 factors
(see Methods, Additional file 1: Figure S1, S2). These
factors can be categorized into two major types: a uni-
versal factor, which captures eQTLs with largely con-
sistent effects across all 49 tissues, and tissue-specific
factors, which reflect effects only found among subsets
of individual tissues. Tissue-specific factors include two
subtypes: 8 factors representing combinations of tis-
sues and 14 factors representing single tissues. Each of
the 8 multi-tissue factors involves closely related tis-
sues. For example, factor 2 represents effects of eQTLs
in 13 brain regions; factor 15 represents effects in trans-
verse colon and small intestine. For interpretability,
each factor is named based on the tissues it represents
(Additional file 1: Figure S2). In total 41 out of 49 tis-
sues are represented by nonzero values in at least one
tissue-specific factor. The 8 tissues that do not appear
in any tissue-specific factor have significantly smaller
sample sizes compared to the 41 tissues captured by
one or more factors (two-sided t-test P value = 0.024),
and thus fewer eQTLs are detected that are unique to
those tissues.

Identification of universal and tissue-specific eQTLs
For each individual eQTL, we identified the relevant
patterns of tissue sharing by estimating the contribu-
tion from each of our learned factors to the eQTL’s
effect sizes, using a second pass of weighted linear re-
gression (See Methods). The observed patterns of tis-
sue sharing and how they are decomposed by matrix
factorization are illustrated in the four following ex-
amples. First, an eQTL for GLT1D1 is highly specific
to liver, and loads only on the corresponding liver fac-
tor (Fig. 2A). Second, an eQTL for AATF loads on
the brain tissues factor and the tibial nerve factor to
explain its combined effect size profile (Fig. 2B). Al-
though this eQTL has small effects (or large variance)
in some brain sub-regions, the model is able to iden-
tify a brain-wide effect as a likely explanatory factor
for this eQTL. Third, an eQTL for U2AF1 with rela-
tively consistent effects across tissues loads only on the
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universal factor (Fig. 2C). Finally, an eQTL for CD14
has consistent effects across all tissues in addition to a
stronger effect specific to the testis (Fig. 2D).

In summary, 1, 076, 761 eQTLs (20% of tested
eQTLs) load on the universal factor; we refer to these
eQTLs as “universal eQTLs” (u-eQTLs). For each
tissue-specific factor, 76, 976 to 431, 585 eQTLs (1.5%
to 8.1% of tested eQTLs) have significant loadings; we
call these eQTLs “tissue-specific eQTLs” (ts-eQTLs)
(Fig. 3A). In total across factors, 2, 821, 650 eQTLs
(53% of tested eQTLs) are found to use at least one
tissue-specific factor (Fig. 3B). There are 638, 784
eQTLs that load on both the universal factor and
tissue-specific factors (59% of the u-eQTLs and 22%
of the ts-eQTLs, Fig. 3C), indicating that in addition
to a broad, shared effect across tissues, these eQTLs
have a much stronger effect on expression in a particu-
lar subset of tissues. eQTLs tend to load on a small set
of tissue-specific factors, with 3, 083, 103 eQTLs (99%
among the eQTLs loaded on at least one factor) using
less than six tissue-specific factors (Fig. 3D).

The number of factors an eQTL loads on should pro-
vide a more biologically interpretable indication of the
number of independent contexts in which an eQTL is
active, rather than simply counting individual signif-
icant tissues. Datasets often contain multiple similar
or even duplicate tissues, such as the thirteen brain
regions in GTEx, or the two skin tissues that only dif-
fer by sun exposure. It may be misleading to count a
neuron-specific eQTL as active in thirteen tissues, not
at all comparable to a very general eQTL active in
thirteen highly distinct tissues. Here, we demonstrate
that eQTLs tend to be active in just a few factors, tail-
ing off rapidly, but these factors sometimes correspond
to numerous tissues (Fig. 3D, E), providing some in-
terpretation for the familiar “U-shape” curve that has
been reported previously ([19], The GTEx Consortium
2019, in submission). However, we note that 8 tissues
are not significantly represented by any tissue-specific
factor and, therefore, can’t be captured in this analy-
sis.

Matrix factorization improves biological interpretation
over heuristic methods of determining tissue relevance
The method most commonly used to determine ts-
eQTLs is simply to apply heuristic thresholds to effect
sizes, P values, or meta-analysis results for individual
tissues [11, 12, 14, 17]. If an eQTL statistic exceeds
the chosen threshold for a given tissue, and remains
below another threshold for other tissues, it is consid-
ered to be tissue specific. None of these approaches
consider the common patterns of tissue sharing and
may obscure eQTL mechanisms shared across a sub-
set of tissues (such as brain or endothelium) that were
not manually predefined for investigation.

Based on heuristic thresholding on individual tissue
P values (see Methods), we identified 312, 502 u-eQTLs
and between 1, 374 and 102, 414 ts-eQTLs per tissue –
far fewer eQTLs are confidently assigned to each cate-
gory compared to results from sn-spMF (Additional
file 1: Figure S3). This difference is partly because
thresholding allows only one pattern (a single tissue
or a universal effect) to be assigned to each eQTL,
while matrix factorization allows multiple factors and
tissues to be involved in explaining the effect size of
an eQTL. In addition, thresholding often misses small
effects from similar tissues, while matrix factorization
is able to aggregate effects for similar tissues. In sub-
sequent sections, we show that matrix factorization al-
lows for the identification of more biologically coherent
eQTLs than heuristic approaches do.

Tissue-specific eQTL gene function

To examine the functional relevance of ts-eQTL genes,
we ran enrichment analysis using biological processes
from the Gene Ontology (GO) project [20]. We first
evaluated genes with ts-eQTLs and no u-eQTL. For sn-
spMF, these eQTL genes are enriched for 546 unique
GO terms at FDR < 0.05 (Additional file 1: Figure
S4), and the top enriched GO terms are relevant to the
corresponding tissues (Additional file 1: Figure S5, S6,
S7). The ts-eQTL genes from the standard threshold-
ing method, however, are less enriched in GO biological
processes (110 enriched at FDR < 0.05, Additional file
1: Figure S8).

After initial enrichment analysis, we used a more
stringent definition of tissue-specificity to restrict the
analysis to the genes most unique to each factor. For
sn-spMF, we selected genes appearing in less than 6
tissue-specific factors (on average 252 genes per fac-
tor). 63 unique GO terms are enriched at FDR < 0.1.
The enriched GO terms are related to the matched
tissue(s) of the eQTLs (Fig. 4). For example, five GO
terms are enriched among liver-specific genes includ-
ing four metabolic processes (for steroid, drug, uronic
acid, and flavonoid) and response to xenobiotic stim-
ulus, each relevant to liver function. For the heuris-
tic method, we selected genes appearing in less than
7 tissues (on average 325 genes per tissue) such that
the gene sets are of comparable sizes. No GO term
is enriched among these gene sets (Additional file 1:
Figure S8). These results indicate that sn-spMF is
able to identify eQTL genes with biological functions
relevant in the corresponding tissues more effectively
than heuristic methods, even with comparably strin-
gent definitions of tissue-specific eQTL genes providing
similar numbers of genes for analysis.
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eQTL variant enrichment in cis-regulatory regions
eQTL variants are enriched in cis-regulatory elements,
including cell-type-specific promoters and enhancers
[1, 21, 22]. Consistent with prior observations, u-eQTL
variants identified by sn-spMF are more enriched in
promoters (OR = 1.9, P value < 2.2 × 10−16) than
ts-eQTL variants (OR = 1.6, P value < 2.2 × 10−16),
while ts-eQTL variants are more strongly enriched in
enhancers (OR = 1.3, P value = 1.6× 10−10) than u-
eQTL variants (OR = 1.0, P value = 0.40, Additional
file 1: Figure S9) [1, 23, 24]. Compared to sn-spMF,
heuristically defined ts-eQTLs exhibit comparable en-
richment magnitude in enhancers (OR = 1.3, P value
= 1.2×10−6), but sn-spMF provides an order of magni-
tude more ts-eQTLs (Additional file 1: Figure S3, S9).
While heuristic methods identify highly tissue-specific
eQTLs by selecting those with effects clearly limited to
a single tissue, sn-spMF identifies many more eQTLs
relevant to each tissue-specific factor, each related to
a shared set of cis-regulatory elements.

eQTL enrichment in transcription factor binding sites
To systematically assess whether eQTLs for each fac-
tor are enriched in binding sites for specific TFs, we
performed enrichment analysis for each of the 579 TF
motifs available in the JASPAR database [25]. As a
proxy for TF binding sites (TFBS) in individual tis-
sues, we identified TF motif instances overlapping pre-
dicted enhancers and promoters [26, 27, 28, 29].

Enrichment analysis was performed separately for
TFBS in promoters and TFBS in enhancers (Meth-
ods). In promoters, u-eQTLs and ts-eQTLs are en-
riched for TFBS of 147 and 185 unique TFs (median
= 22 across factors), respectively (FDR < 0.05, Fig.
5A, B). In enhancers, u-eQTLs and ts-eQTLs are en-
riched for TFBS of 22 and 265 unique TFs (median
= 43 across factors), respectively (FDR < 0.05, Fig.
5A, B). Among these 265 TFs, 246 (93%) are en-
riched for fewer than six tissue-specific factors (Fig.
5C). 0% − 23% (among factors, median 8%) TFs are
enriched in both promoters and enhancers (Additional
file 1: Figure S10). These results indicate that ts-
eQTLs are more enriched in binding sites of partic-
ular TFs in enhancers than promoters, while u-eQTLs
yield more enrichment in promoters than enhancers.
The heuristic approach for identifying ts-eQTLs yields
no enrichment of TFBS in promoters and only 11 TFs
enriched in enhancers. Similarly, there are fewer TFs
enriched for heuristic u-eQTLs (75 in promoters, and 4
in enhancers, Fig. 5A, Additional File 1: Figure S11).
The relatively low enrichment of TFBS from heuristi-
cally identified eQTLs is presumably due to the much
more limited number of eQTLs identified in each cat-
egory.

Impact of matrix factorization methodological choices
In addition to our sn-spMF model, there are a variety
of matrix factorization approaches available. Method-
ological choices include the selection of priors on load-
ing and factor entries, which may encourage sparsity or
other properties, nonnegativity constraints, and hyper-
parameter selection. One method that has also been
applied to eQTL data, flashr, uses a Bayesian frame-
work to automatically learn the sparse structure of ef-
fects across tissues, but does not by default impose
a nonnegativity constraint on factor values and allows
different sparsity penalties to be applied to each factor
[16].

To explore matrix factorization choices, we applied
flashr to the GTEx data, capturing both universal
and sparse factors (Additional file 1: Figure S12) as
previously reported [16]. With no nonnegativity con-
straint, some factors do have mixed signs across tis-
sues, without a clear biological interpretation of this
property. Each factor is also somewhat more dense
than sn-spMF factors. We used the same second pass
linear regression pipeline as in sn-spMF to identify
flashr factors relevant to each eQTL. We thus iden-
tified 1, 785, 127 u-eQTLs and 21, 676 to 487, 071 ts-
eQTLs (Additional file 1: Figure S13), a comparable
number to sn-spMF.

Flashr ts-eQTL genes are comparably enriched for
GO biological processes as sn-spMF factors, far ex-
ceeding heuristic ts-eQTL genes, with 643 enriched
pathways (FDR < 0.05, Additional file 1: Figure S8).
However, flashr eQTL variants are not strongly en-
riched in enhancers (OR = 1.1, Additional file 1: Fig-
ure S9). This appears to be due to the denser flashr
factors not isolating tissue-specific effects from univer-
sal effects as strongly. Assessing TF enrichment, how-
ever, because analysis is restricted to enhancers in the
relevant tissues, is still able to identify enrichment for
236 TFBS across flashr factors (Fig. 5A, Additional
File 1: Figure S14). While regulatory element enrich-
ment appears sensitive to matrix factorization method-
ological choices, both versions of matrix factorization
show advantages over heuristic approaches for identi-
fying tissue-relevant eQTL genes, and for identifying
particular transcription factors whose binding sites are
impacted by ts-eQTL variants.

Transcription factors enriched in u-eQTLs and ts-eQTLs
Given the limited systematic research on the con-
sequences of genetic variation within tissue-specific
TFBS, we examined the characteristics of TFBS en-
riched in ts-eQTLs for each factor and in u-eQTLs.
We focused on the TFBS found within enhancers be-
cause of their generally increased tissue-specific func-
tions (Additional file 1: Figure S9). Binding sites for
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TFs with broad activity are enriched for u-eQTLs,
such as CCAAT/enhancer-binding proteins (CEBPB,
CEBPD, CEBPG), T-box 1 (TBX1), AP-1 Transcrip-
tion Factor Subunit FOSL2 [30, 31, 32, 33] (Fig. 5D).
The enrichment of these TFBS in u-eQTLs reflects
their participation in a wide range of regulatory pro-
cesses across tissues.

The enrichment of binding sites for 265 TFs in ts-
eQTLs demonstrates their role in regulating gene ex-
pression in particular subsets of tissues correspond-
ing to each factor. Among these, binding sites for
176 TFs display enrichment in ts-eQTLs for multi-
ple factors that represent related tissues. For exam-
ple, hepatic nuclear factor HNF1A, known to be cru-
cial for the development and function of the liver,
pancreas and gut epithelium, are enriched for the
liver-specific eQTLs, pancreas-specific eQTLs, and ts-
eQTLs in colon and small intestine [34, 35]. Further-
more, 89 TFBS are enriched in ts-eQTLs for one tissue-
specific factor. Examples include binding sites for the
well-characterized cardiac TF GATA4, which are en-
riched for heart-specific eQTLs [36, 37] (Fig. 5E); hep-
atocyte nuclear factor HNF4A, which are enriched for
liver-specific eQTLs [38, 39] (Fig. 5F); and myogenic
factor 4 MYOG, which are enriched for skeletal muscle
specific eQTLs [40] (Additional file 1: Figure S15). We
continue to explore two TFs in more detail in the fol-
lowing sections. More examples of enriched TFs with
previously characterized tissue-specific functions can
be found in Additional file 1: Figure S15 and Addi-
tional file 2: Table S1.

Heart-specific eQTLs are enriched in GATA4 binding
sites
Previous studies have demonstrated the essential roles
of GATA4 in heart morphogenesis [41]. In mouse stud-
ies, GATA4 has been shown to recruit the histone
acetyltransferase p300 in a tissue-specific manner in
the heart [36]. This GATA4-p300 complex deposits
H3K27ac at cardiac enhancers, thus stimulating tran-
scription of genes necessary for heart development. In
human, missense mutations in GATA4 are associated
with multiple heart diseases such as cardiac septal de-
fects and cardiomyopathy [42, 43]. However, common
genetic variants affecting GATA4 TFBS have not pre-
viously been shown to be enriched for effects on expres-
sion in cardiac tissues. Binding sites of GATA4 in heart
enhancers are enriched for heart-specific eQTLs (OR
= 1.7, P value = 0.004, Fig. 5E), highlighting the im-
portance of GATA4 in normal physiological conditions
of the heart. Among the 48 genes loading on the heart-
specific eQTL factor with variants located in TFBS of
GATA4, we note that STAT3 has been reported to
exhibit a crucial role in cardiomyocyte resistance to
physiological stress stimuli [44].

Liver-specific eQTLs are enriched in HNF4A binding
sites

Variants in liver-specific HNF4A binding sites are en-
riched for eQTLs loading on the liver-specific factor
(OR = 2.9, P value = 3.3 × 10−5, Fig. 6F), which
has not been previously shown. HNF4A is an essen-
tial TF during liver organogenesis and development
[38, 39] and harbors a missense mutation (rs1800961)
strongly associated with liver relevant traits includ-
ing high-density lipoprotein levels and total cholesterol
[45, 46, 47] (Additional file 1: Figure S16).

With the availability of Chromatin Immunoprecipi-
tation followed by high-throughput Sequencing (ChIP-
seq) data for HNF4A in human liver tissues in EN-
CODE, we are able to directly map the genome-wide
binding sites of HNF4A. Replicating the motif-based
enrichment described above, liver-specific eQTLs are
strongly enriched in HNF4A ChIP-seq peaks (OR =
3.6, P value < 2.2× 10−16). The enrichment is not as
strong in ts-eQTLs for other tissues (OR = 1.8 in testis
to 2.6 in pancreas). Also, liver-specific eQTLs are sig-
nificantly more enriched in HNF4A binding sites than
are u-eQTLs (OR = 1.7, P value < 2.2× 10−16).

We hypothesized that variants in HNF4A binding
sites lead to liver-specific eQTLs via differential bind-
ing of HNF4A. We quantified allele-specific binding
(ASB) of HNF4A and, as a tissue-shared control,
CTCF (see Methods). Liver-specific eQTLs are indeed
significantly enriched for ASB of HNF4A (OR = 1.4,
P value = 0.003), but not CTCF (OR = 0.8, P value
= 0.4). This finding supports the possibility that the
enrichment of liver-specific eQTLs in HNF4a motifs re-
flects altered binding affinity of HNF4A at these eQTL
variants, providing a testable hypothesis for experi-
mental validation.

Example eQTL variant in HNF4A binding site relevant
to liver phenotypes

Among the liver-specific eQTLs identified by sn-spMF,
rs9987289 exhibits significant ASB for HNF4A (Fig.
6A,B, Additional file 1: Figure S17). The A allele is
associated with increased HNF4A binding (ChIP-seq
read ratio = 7.7, two-tailed binomial test P value =
8.8 × 10−5) and with significantly lower expression of
the eGene TNKS (Fig. 6B, C). HNF4A may act as a
repressor of TNKS, and these data suggest that the
A allele of rs9987289 may act by increasing binding
of HNF4A and therefore reducing expression levels of
TNKS. Though HNF4A has been widely reported as
a transcriptional activator, it has also been associated
with transcriptional repression [48, 49, 50, 51, 52] (Fig.
6D). Rs9987289 is located in a flanking active pro-
moter (TssAFlank) region surrounded by enhancers
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in liver, while it is found in quiescent or heterochro-
matin regions in all 13 non-liver tissues where HNF4A
is expressed (Additional file 1: Figure S18, S19).

Furthermore, rs9987289 is significantly associated
with several liver-related phenotypes, including low-
density lipoproteins (LDL) cholesterol levels and high-
density lipoproteins (HDL) cholesterol levels [REF
GTEx GWAS companion] [45] (Additional file 1: Fig-
ure S20). The liver eQTL of TNKS and the association
statistics for LDL are strongly co-localized (posterior
probability of rs9987289 being causal for the shared
signal = 0.64) [53] (Fig. 6E, F). Though TNKS has
been widely recognized for its role in controlling telom-
ere length, there is emerging evidence of TNKS par-
ticipating in liver metabolism [54, 55].

Together, these results support the hypothesis that
the tissue-specific regulatory effect of ts-eQTL variant
rs9987289 in liver may have phenotypic consequences:
an active cis-regulatory element unique to liver, allele-
specific binding of liver TF HNF4A in hepatocytes,
and finally co-localization of the eQTL effect with lipid
GWAS hit. Such examples can provide testable hy-
potheses regarding multiple steps of the mechanism
through which genetic variation may affect a high-level
phenotype.

Discussion and Conclusions
In this study, we explored the genomic context and po-
tential mechanisms underlying tissue-specific effects of
genetic variation by applying a constrained matrix fac-
torization model (sn-spMF) to multi-tissue eQTL data
from the GTEx project. Using sn-spMF, we learned
factors representing the common patterns of eQTL
sharing across tissues, such as factors corresponding
to universal effects across all tissues and effects shared
among only brain tissues or among muscle tissues.
This allowed us to explore eQTL effects shared across
overlapping subsets of tissues that share cis-regulatory
mechanisms due to shared cell types or developmen-
tal origin, without having to manually prespecify each
such pattern. These learned factors enabled us to eval-
uate potential mechanisms relevant to genetic effects
following these patterns of tissue sharing.

sn-spMF identified much larger sets of tissue-specific
eQTLs than did heuristic methods. The ts-eQTLs
from sn-spMF were also equally or more enriched for
GO biological processes, transcription factor binding
sites, and tissue-specific cis-regulatory elements than
the heuristic ts-eQTLs. These results suggest that sn-
spMF identifies larger numbers of ts-eQTLs that re-
main biologically coherent, offering an opportunity for
novel mechanistic insights. Other versions of matrix
factorization, such as flashr, also provide meaningful
views of tissue specificity.

The large set of ts-eQTLs provided by sn-spMF en-
abled a detailed evaluation of eQTLs in transcription
factor binding sites that was not possible from heuris-
tic approaches. We evaluated 76, 976 to 431, 585 ts-
eQTLs for enrichment in promoter and enhancer el-
ements, and were able to identify 185 and 265 TFs
enriched among these, respectively. This list of 265
TFs enriched in ts-eQTL enhancers provides exper-
imentally testable hypotheses about specific genetic
variants within TFBS that alter expression in a tissue-
specific fashion.

Matrix factorization is inherently limited by the
eQTL data used as input to the method – any tis-
sue that is underpowered or not well represented in
the original eQTL dataset is unlikely to be captured
strongly by a ts-eQTL factor with sn-spMF. Further,
sn-spMF does not explicitly model linkage disequilib-
rium (LD) or consider allelic heterogeneity, rather it re-
lies on the user to pre-select candidate causal variants
using fine-mapping tools or other approaches. Addi-
tionally, many matrix factorization approaches, priors,
and constraints remain to be explored that may cap-
ture different properties of the eQTL data than repre-
sented here. Different applications, such as time series
or perturbation-response eQTL data may ultimately
benefit from specialized matrix factorization formula-
tions [15].

In conclusion, we have developed a constrained ma-
trix factorization model to learn patterns of eQTL tis-
sue specificity across 49 human tissues using data from
GTEx v8. We observed improved enrichment of bi-
ologically relevant genes and cis-regulatory elements
compared to heuristic methods. Matrix factorization
also revealed the potential impact of ubiquitous TFs
on universal eQTLs and provided a list of candidate
TFs relevant to each tissue-specific set of eQTLs.

Methods
Data
GTEx Release v8 project has collected both genotype
data from whole genome sequencing (WGS) and RNA
sequence (RNA-seq) data of 15, 253 samples, consist-
ing of 47 tissues and two cell lines from 838 indi-
viduals (The GTEx Consortium 2019, in submission).
GTEx v8 data release includes cis-eQTL analyses that
test for association between gene expression and vari-
ants within 1MB of the genes’ transcription start sites
(TSS). To restrict the analysis to potential casual vari-
ants, we used cis-eQTLs that are in the 95% credible
set for at least one tissue [56]. That is to say, for each
eQTL gene, the credible set consists of eQTL variants
that include the causal variant with 95% probability.
In total, 5, 301, 827 eQTLs with 17, 480 unique protein
coding eQTL genes are included in the analysis. For
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these 5, 301, 827 eQTLs, we collected the effect size and
standard deviation from univariate cis-eQTL analysis
across tissues. Missing data was filled by 0s since it was
mostly due to low gene expression in the corresponding
tissue and thus little genetic regulation should exist.
The lead variants with the most extreme geometric
mean P values for the 17, 480 eQTL genes were used
as input (matrix X and W ) to learn the factor matrix
(matrix F ).

Learn the lower dimensional representation of tissues
(factor matrix F )
eQTL effects across tissues can be represented by a
matrix XN×T where N is the number of eQTLs and
T is the number of tissues. Each row is the effect of an
eQTL across all tissues, and each column is the effect
of all eQTLs for one tissue. The effect values are in
the set R of all real numbers (ie. have mixed signs).
The goal is to learn a factor matrix FT×K such that
X ≈ LFT .

Weighted sparse semi-nonnegative matrix
factorization algorithm
In order to describe the eQTL effects, we designed the
objective function with several features: 1) Weighted
sum of residuals: in order to account for uncertainty in
effect size estimates, the residual for each data point
was weighted by the reciprocal of its standard error.
In this way, the data point with larger effect size con-
tributes more influence over estimating the param-
eters. 2) Sparseness: to alleviate over-fitting, an l1
penalty was applied to the decomposed matrices. 3)
Semi-nonnegativity of the decomposed matrices: the
factors capture the pattern of tissues, and thus it was a
natural constraint to make the factors nonnegative for
ease of interpretation. At the same time, because the
input matrix has mixed signs, there was no such con-
straint on the loading matrix. The factorization can be
summarized as: X+− = L+−F

T
+ . The objective func-

tion was formulated as below:

min
F,L

1

2D
||(X − LFT )�W ||2F + α||L||1 + λ||F ||1

Where F is nonnegative, W is the element-wise recip-
rocal of the standard error of eQTL across M tissues.

This objective function is biconvex, that is, convex
only in F or in only L given the other. We used al-
ternating least squares (ALS) with gradient descent
to solve the problem (Algorithm 1, implemented in
R version 3.5.1, [57, 58]). At each iteration, we fixed
F and updated L, and then fixed L and updated F .
The update was finished when the Frobenius norm of

difference in F between two iterations was < 0.01. In
each update step the optimization problem was a lin-
ear regression with constraints. Since the solution to
linear regression was guaranteed to minimize the sum
of mean squared error and penalty, the cost function
monotonically decreased.

Model selection
In the sn-spMF model, we need to decide the rank of
the decomposition (K) and the sparsity level (α, λ).
Because of the stochastic nature of matrix factoriza-
tion, Brunet et al. proposed a method looking for the
most stable factorization result, and this method has
been applied in various studies [59, 60]. We obtained
the consensus matrix CM×M after 30 runs with ran-
dom initialization. The values in C are between 0 to
1, representing the proportion of runs in which a pair
of tissues are assigned to the same factor. Using the C
matrix, we computed the cophenetic correlation which
is used to measure the degree of dispersion for the C
matrix. Higher cophenetic correlation indicates more a
stable factor matrix. We selected K using this criteria.
Because factors should be independent from each other
to alleviate multicollinearity, we selected the penalty
parameters resulting in smallest correlation between
the factors.

Assignment of eQTLs to factors
After we have learned the factors, we mapped the effect
of each eQTL to the factors by weighted linear regres-
sion. For each eQTL, the weighted linear regression is
fit: x = Fl weighted by its reciprocal of standard error.
To alleviate multiple testing burden, we removed the
eQTLs those variants in perfect LD (R2 = 1) with vari-
ants from another eQTL before running regression for
the remaining 3, 601, 800 eQTLs [61]. Statistical im-
portance is captured by the P values of the factors. We
applied Benjamini Hochburg correction to get the cor-
rected P value for every factor [62]. We then mapped
the P values back to all 5, 301, 827 eQTLs where the
SNPs are in an LD block with the tested SNPs and
the genes are the same. We observed that occasion-
ally there were factors assigned negative regression co-
efficients when the actual observed effect sizes in the
corresponding tissues were positive, or vice versa. This
discrepancy arose due to colinearity between the fac-
tors, and, in such cases, the discrepant factors were
not included for downstream analysis. We also re-
moved those factors that caused one tissue to have an
oppositely-signed small effect (absolute Z-score < 3, or
P value > 0.00135) when compared to the factor where
this eQTL has the strongest effect; such discrepancies
may often reflect allelic heterogeneity or LD contami-
nation rather than true opposite effects from the same
causal variant [18]
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Algorithm 1 Weighted semi-nonnegative MF algorithm
1: Input: XN×M

2: Output: LN×K , FM×K

3: Randomly Initialize nonnegative F
4: while not converged do
5: for i = 1...N do
6: li ← minli ||(xi − liF

T )� wi||2F + α||li||1
7: which is equivalent to
8: li ← minli ||xi � wi − li(FT diag(wi))||2F + α||li||1
9: end for

10: for j = 1...M do
11: fj ← minfj ||(xj − fjL

T )� wj ||2F + λ||fj ||1, ||fj || ≥ 0

12: which is equivalent to
13: fj ← minfj ||(xj � wj − fj(LT diag(wj)))||2F + λ||fj ||1, ||fj || ≥ 0

14: end for
15: end while

Background SNP-gene pairs
For enrichment analyses, random SNP-gene pairs were
sampled from all SNP-gene pairs to match for eQTLs
by three criteria: (1) SNP MAF was matched to the
eQTL variants’ MAF, (2) distance from the SNP to
TSS of the gene was matched to eQTL, and (3) number
of SNPs per gene were matched as in eQTLs.

Enrichment analysis of eQTLs in different chromatin
states
For each 5bp window centered on each SNP, we
identified overlapping (1) chromatin state predictions
from the Roadmap Epigenomics project and (2) re-
gions of open chromatin identified by DNAse-seq from
ENCODE[26, 27, 63, 64, 65]. In Roadmap, chromatin
states are predicted for each tissue or cell type that in-
clude enhancers, promoters, and transcribed regions.
We used the standard 15-state Roadmap segmenta-
tions independently for each of the samples that were
matched to GTEx tissues (Additional file 2: Table S2,
S3). If a tissue had more than one data set available,
we merged the data sets using BEDTools [66]. For
the data sets using genome assembly hg19, we used
liftOver to map the peaks to GRCh38 [67]. We built
the 2 × 2 contingency table for eQTLs from each fac-
tor and across the 15 chromatin states. In the table,
the first row includes eQTL variants in the factor, and
the second row includes randomly matched SNPs. The
columns indicate number of SNPs that are located in
the tested chromatin state in the tested tissues. Both
tissues matched for the factor and tissues not matched
for the factor were tested. We then ran a two-sided
Fisher’s exact test for each contingency table and cor-
rected the P values using BH-correction. To summarize
the results across tissues and across factors, we used a
random-effects model (rma() in R) to obtain the com-
bined odds ratio and combined standard error [68].

Use thresholding to derive u-eQTLs and ts-eQTLs
We defined ts-eQTLs in a tissue as those with P value
> 0.001 in at least 44 other tissues, and with P value

< 100× the most extreme P value of the eGene in the
tissue (Additional file 1: Figure S3). The thresholds
were chosen such that we have a reasonable number
of ts-eQTLs, and at the same time only eQTLs with
a high probability of being casual were included. U-
eQTLs were restricted to those found in the credible
sets for at least 5 tissues.

Enrichment analysis of transcription factor binding sites
To examine the enrichment of TF binding sites in u-
eQTLs and in ts-eQTLs, we constructed the 2×2 con-
tingency tables across factors for each TF. For each
TF, we first annotated its binding sites by overlapping
tissue-specific enhancer predictions from RoadMap
and its TFBS predictions on the genome from JAS-
PAR [25, 26]. We then used genes with at least one
variant located in TFBS to avoid genes intrinsically
lacking variants in TFBS. In the contingency table for
each TF, the first row includes eQTLs, and the second
row includes randomly matched SNP gene pairs. For
u-eQTLs, the columns indicate the number of genes
with or without universal variants in the TFBS. For
ts-eQTLs, first column indicates the number of genes
with or without tissue-specific variants in the TFBS.
One thing to note is that the TFBS were annotated us-
ing matched tissues for each factor. Fisher’s exact test
was performed for each of these contingency tables,
and the P values were corrected using BH-correction.

For eQTLs from each factor, the analysis was done
for TFs with median TPM > 1 in at least half of the
corresponding tissues with available data. TFs with a
total number of genes in TFBS < 10 were removed.
We checked to show that the tissue specificity of the
enriched TFs is unlikely to result from filtering TFs
based on expression level and the number of hits (Ad-
ditional file 1: Figure S21, S22).

Identification of allele specific binding sites using
ChIP-seq data
FASTQ files from human liver samples of HNF4A and
CTCF were downloaded from ENCODE web portal
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and aligned to GRCh38 genome assembly by STAR
[69] (Additional file 2: Table S4). Reads that mapped
to variants in GTEx and passed WASP filters were
extracted [70]. BAM files of the samples and controls
from the same ENCODE repository were downloaded
and peak-calling was performed using MACS2 [71].
Only reads that mapped to peaks at q-value < 0.1 were
included and ASB was computed for each variant with
more than 10 reads by examining if the numbers of
reads at each allele were significantly different, using a
two-tailed binomial test. Variants with significant ASB
events were called at BH corrected P value < 0.05.
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10. Porcu, E., Rüeger, S., Lepik, K., Santoni, F., Reymond, A., Kutalik,

Z.: Mendelian randomization integrating gwas and eqtl data reveals

genetic determinants of complex and clinical traits. Nature

Communications 10 (2019). doi:10.1038/s41467-019-10936-0

11. Gutierrez-Arcelus, M., Ongen, H., Lappalainen, T., B Montgomery, S.,

Buil, A., Yurovsky, A., Bryois, J., Padioleau, I., Romano, L., Planchon,

A., Falconnet, E., Bielser, D., Gagnebin, M., Giger, T., Borel, C.,

Letourneau, A., Makrythanasis, P., Guipponi, M., Gehrig, C.,

Dermitzakis, E.: Tissue-specific effects of genetic and epigenetic

variation on gene regulation and splicing. PLOS Genetics 11, 1004958

(2015). doi:10.1371/journal.pgen.1004958

12. Mckenzie, M., K Henders, A., Caracella, A., Wray, N., Powell, J.:

Overlap of expression quantitative trait loci (eqtl) in human brain and

blood. BMC Medical Genomics 7, 31 (2014).

doi:10.1186/1755-8794-7-31

13. Flutre, T., Wen, X., Pritchard, J., Stephens, M.: A statistical

framework for joint eqtl analysis in multiple tissues. PLOS Genetics 9,

1003486 (2013). doi:10.1371/journal.pgen.1003486

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 6, 2019. ; https://doi.org/10.1101/785584doi: bioRxiv preprint 

https://github.com/heyuan7676/ts_eQTLs
http://dx.doi.org/10.1038/nature25160
http://dx.doi.org/10.1371/journal.pgen.1002003
http://dx.doi.org/10.1101/gr.155192.113
http://dx.doi.org/10.1371/journal.pgen.1002078
http://dx.doi.org/10.1371/journal.pgen.1000952
http://dx.doi.org/10.1186/s13072-015-0050-4
http://dx.doi.org/10.1186/s13073-016-0338-4
http://dx.doi.org/10.1038/ng.3538
http://dx.doi.org/10.1038/s41588-019-0351-9
http://dx.doi.org/10.1038/s41467-019-10936-0
http://dx.doi.org/10.1371/journal.pgen.1004958
http://dx.doi.org/10.1186/1755-8794-7-31
http://dx.doi.org/10.1371/journal.pgen.1003486
https://doi.org/10.1101/785584
http://creativecommons.org/licenses/by-nc-nd/4.0/


He et al. Page 10 of 11

14. Sul, J.H., Han, B., Ye, C., Choi, T., Eskin, E.: Effectively identifying

eqtls from multiple tissues by combining mixed model and

meta-analytic approaches. PLOS Genetics 9, 1003491 (2013)

15. Strober, B., Elorbany, R., Rhodes, K., Krishnan, N., Tayeb, K., Battle,

A., Gilad, Y.: Dynamic genetic regulation of gene expression during

cellular differentiation. Science 364, 1287–1290 (2019).

doi:10.1126/science.aaw0040

16. Wang, W., Stephens, M.: Empirical bayes matrix factorization.

arXiv:1802.06931 (2018)

17. S Dimas, A., Deutsch, S., Stranger, B., B Montgomery, S., Borel, C.,

Attar, H., Ingle, C., Beazley, C., Gutierrez-Arcelus, M., Sekowska, M.,

Gagnebin, M., Nisbett, J., Deloukas, P., Dermitzakis, E., Antonarakis,

S.: Common regulatory variation impacts gene expression in a cell

type-dependent manner. Science 325, 1246–50 (2009).

doi:10.1126/science.1174148

18. Wen, X., Luca, F., Pique-Regi, R.: Cross-population joint analysis of

eqtls: Fine mapping and functional annotation. PLOS Genetics 11,

1005176 (2015). doi:10.1371/journal.pgen.1005176

19. G. Ardlie, K., Deluca, D., V. Segrè, A., J. Sullivan, T., Young, T.,
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Guigó, R., Ferrer, J.: Hnf1 (mody3) controls tissue-specific

transcriptional programs and exerts opposed effects on cell growth in

pancreatic islets and liver. Molecular and Cellular Biology 29, 2945–59

(2009). doi:10.1128/MCB.01389-08

35. D’Angelo, A., Bluteau, O., Garcia-Gonzalez, M., Gresh, L., Doyen, A.,

Garbay, S., Robine, S., Pontoglio, M.: Hepatocyte nuclear factor 1 and

control terminal differentiation and cell fate commitment in the gut

epithelium. Development 137, 1573–82 (2010).

doi:10.1242/dev.044420

36. He, A., Gu, F., Hu, Y., Ma, Q., Ye, L.Y., Akiyama, J.A., Visel, A.,

Pennacchio, L.A., Pu, W.T.: Dynamic gata4 enhancers shape the

chromatin landscape central to heart development and disease. Nature

Communications 5, 4907 (2014). doi:10.1038/ncomms5907

37. Ang, Y.-S., Rivas, R., Ribeiro, A., Srivas, R., Rivera, J., Stone, N.,

Pratt, K., Mohamed, T., Fu, J.-D., Spencer, C., Tippens, N., Li, M.,

Narasimha, A., Radzinsky, E., Moon-Grady, A., Yu, H., Pruitt, B.,

Snyder, M., Srivastava, D.: Disease model of gata4 mutation reveals

transcription factor cooperativity in human cardiogenesis. Cell 167
(2016). doi:10.1016/j.cell.2016.11.033

38. P. Hayhurst, G., Lee, Y.-H., Lambert, G., M. Ward, J., J. Gonzalez,

F.: Hepatocyte nuclear factor 4 (nuclear receptor 2a1) is essential for

maintenance of hepatic gene expression and lipid homeostasis.

Molecular and Cellular Biology 21, 1393–403 (2001).

doi:10.1128/MCB.21.4.1393-1403.2001

39. Parviz, F., Matullo, C., D Garrison, W., Savatski, L., W Adamson, J.,

Ning, G., Kaestner, K., Rossi, J., S Zaret, K., Duncan, S.: Hepatocyte

nuclear factor 4 controls the development of a hepatic epithelium and

liver morphogenesis. Nature Genetics 34, 292–6 (2003).

doi:10.1038/ng1175

40. Hasty, P., Bradley, A., Morris, J.H., Edmondson, D.G., Venuti, J.M.,

Olson, E.N., Klein, W.H.: Muscle deficiency and neonatal death in

mice with a targeted mutation in the myogenin gene. Nature 364,

501–506 (1993). doi:10.1038/364501a0

41. Kuo, C., Morrisey, E., Anandappa, R., Sigrist, K., Lu, M., Parmacek,

M.S., Soudais, C., Leiden, J.M.: Gata4 transcription factor is required

for ventral morphogenesis and heart tube formation. Genes and

development 11, 1048–60 (1997). doi:10.1101/gad.11.8.1048

42. Chen, J., Qi, B., Zhao, J., Liu, W., Duan, R., Zhang, M.: A novel

mutation of gata4 (k300t) associated with familial atrial septal defect.

Gene 575 (2015). doi:10.1016/j.gene.2015.09.021

43. Li, J., Liu, W.-D., Yang, Z.-L., Yuan, F., Xu, L., Li, R.-G., Yang,

Y.-Q.: Prevalence and spectrum of gata4 mutations associated with

sporadic dilated cardiomyopathy. Gene 548 (2014).

doi:10.1016/j.gene.2014.07.022

44. Haghikia, A., Ricke-Hoch, M., Stapel, B., Gorst, I., Hilfiker-Kleiner,

D.: Stat3, a key regulator of cell-to-cell communication in the heart.

Cardiovascular Research 102 (2014). doi:10.1093/cvr/cvu034

45. Willer, C., M Schmidt, E., Sengupta, S., M Peloso, G., Gustafsson, S.,

Kanoni, S., Ganna, A., Chen, J., L Buchkovich, M., Mora, S.,

Beckmann, J., Bragg-Gresham, J., Chang, H.-Y., Demirkan, A., den

Hertog, H., Do, R., A Donnelly, L., B Ehret, G., Esko, T., R Abecasis,

G.: Discovery and refinement of loci associated with lipid levels.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 6, 2019. ; https://doi.org/10.1101/785584doi: bioRxiv preprint 

http://dx.doi.org/10.1126/science.aaw0040
http://dx.doi.org/10.1126/science.1174148
http://dx.doi.org/10.1371/journal.pgen.1005176
http://dx.doi.org/10.1126/science.1262110
http://dx.doi.org/10.1073/pnas.0506580102
http://dx.doi.org/10.1038/nrg3891
http://dx.doi.org/10.1038/nature13602
http://dx.doi.org/10.1038/nature07829
http://dx.doi.org/10.1038/nature09906
http://dx.doi.org/10.1093/nar/gkx1126
http://dx.doi.org/10.1038/nprot.2017.124
http://dx.doi.org/10.1038/nature14248
http://dx.doi.org/10.1038/nrg3207
http://dx.doi.org/10.1186/gb-2012-13-9-r50
http://dx.doi.org/10.1038/nature10595
http://dx.doi.org/10.1186/s12929-014-0110-2
http://dx.doi.org/10.1242/dev.104471
http://dx.doi.org/10.1242/jcs.01589
http://dx.doi.org/10.1128/MCB.01389-08
http://dx.doi.org/10.1242/dev.044420
http://dx.doi.org/10.1038/ncomms5907
http://dx.doi.org/10.1016/j.cell.2016.11.033
http://dx.doi.org/10.1128/MCB.21.4.1393-1403.2001
http://dx.doi.org/10.1038/ng1175
http://dx.doi.org/10.1038/364501a0
http://dx.doi.org/10.1101/gad.11.8.1048
http://dx.doi.org/10.1016/j.gene.2015.09.021
http://dx.doi.org/10.1016/j.gene.2014.07.022
http://dx.doi.org/10.1093/cvr/cvu034
https://doi.org/10.1101/785584
http://creativecommons.org/licenses/by-nc-nd/4.0/


He et al. Page 11 of 11

Nature Genetics 45 (2013). doi:10.1038/ng.2797

46. Mahajan, A., Taliun, D., Thurner, M., R. Robertson, N., M. Torres, J.,

William Rayner, N., J. Payne, A., Steinthorsdottir, V., A. Scott, R.,

Grarup, N., Cook, J., M. Schmidt, E., Wuttke, M., Sarnowski, C.,
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Figure 1 Matrix factorization model to dissect eQTL effects across tissues. A Simplified example of 
the relationship between eQTL effect sizes and factors. Upper panel: The effect of an eQTL in spleen 
can be represented by a spleen specific factor. Middle panel: The effect of an eQTL in four brain 
tissues and three skin tissues can be summarized as the summation of brain-specific effect and skin-
specific effect. Lower panel: The effect of an eQTL in all nine tissues can be summarized as a 
universal effect across all tissues. B Learning factors underlying eQTL effects from GTEx. X matrix 
represents the effect size of eQTLs across tissues. For visualization, a subset of the eQTLs are 
shown. Patterns of tissue sharing and tissue specificity are observed in X. Matrix factorization is 
implemented to learn the factor matrix F , where each factor captures a pattern of eQTL effect sizes 
across the tissues. GTEx tissues are color-coded for reference (Additional File 1: Figure S1) 

Universal effect

A

+
Brain-specific effect

Skin-specific effectBrain tissues Skin tissues

Spleen

Spleen-specific effect

eQTL effect across tissues
 Linear combination of effects in different factors

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 6, 2019. ; https://doi.org/10.1101/785584doi: bioRxiv preprint 

https://doi.org/10.1101/785584
http://creativecommons.org/licenses/by-nc-nd/4.0/


Liver specific 

factor

Nerve Tibial  
specific factor

Brain  
specific factor

Universal factor

Testis 
specific factor

.

.

.

.

Universal factor

Figure 2 Assignment of eQTLs to factors. In each panel, the effect size and 95% confidence interval of 
an eQTL across 49 tissues is illustrated. At right, the fitted linear combination of factors is displayed. 
Factors that have coefficients with FDR >= 0.05 are filled with faded colors. A A liver specific eQTL 
(GLT1D1 - rs1012994). B An eQTL (AATF - rs76014915) with activity in brain tissues and tibial nerve. C 
A universal eQTL (U2AF1 - rs234719). D An eQTL (CD14 - rs2563249) with universal and testis 
specific effects. 
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Figure 3 Identification of tissue-specific and universal eQTLs. A Fraction of tested eQTLs that load on 
each factor. B Fraction of eQTLs that load on the universal and tissue-specific factors. C Number of 
tested eQTLs that load on the universal factor and overall on any tissue-specific factor (ts-eQTLs). D 
Fraction of eQTLs that load on different number of tissue-specific factors. Because of the uniqueness 
of the universal factor that is different from the tissue-specific factors, the numbers are shown in two 
subgroups depend on whether the eQTL has the universal factor. E Fraction of eQTLs with activity in 
different numbers of tissues. The numbers of unique tissues represented in the set of factors for each 
eQTL are summed. 
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Figure 4 Enriched GO terms for eQTL genes from sn-spMF at FDR < 0.1. Color represents the level of 
enrichment (− log 10 P value). The GO terms that are significantly enriched are annotated by numbers that 
represent the odds ratio. GO terms and factors are ordered by hierarchical clustering. Examples of relevant 
GO terms in related tissues are annotated.
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Figure 5 Enrichment of TFBS for 
u-eQTLs and ts-eQTLs. A Number 
of TFs whose binding sites are 
enriched for eQTLs across factors 
at FDR < 0.05 for sn-spMF, flashr, 
and heuristic methods. Enh - 
Enhancers, TssA - Active 
transcription start sites. B Total 
number of TFs with binding sites 
enriched for either only u-eQTLs, 
or only ts-eQTLs, or both. C 
Distribution of the number of 
tissue-specific factors each TF is 
enriched in. D, E, F Enrichment for 
example TFs among eQTLs 
across each factor (-log10(P 
value) ) where the TF was 
expressed in corresponding 
tissues for (D) FOSL2, (E) GATA4, 
(F) and HNF4A. Black bars 
represent that the BH corrected P 
value is < 0.05. 
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Figure 6 Example liver-specific eQTL, TNKS - rs9987289, in a TFBS of HNF4A and co-localizing with liver-
specific phenotypes. A Effect size and 95% confidence interval of TNKS - rs9987289 across 49 tissues in 
GTEx. B Allele-specific HNF4A ChIP-seq reads over rs9987289 in the liver (See Methods). C Transcripts 
Per Kilobase Million (TPM) of TNKS in the liver among individuals with different genotypes at rs9987289. D 
Schematic illustration of hypothesized mechanims: allele specific binding of HNF4A at rs9987289 and 
altered levels of expression of TNKS. E Manhattan plot (LocusZoom v0.4.8) [69] of TNKS expression levels 
in the liver around rs9987289. F Manhattan plot for LDL GWAS around rs9987289. 
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