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1 Comparison of exact method with MaBoSS simulations

The derivation of the stationary states from the full dynamical equations in Section 2.1 of the main text (that
we adopted from (Mirzaev and Gunawardena, 2013)) means that the values of the stationary probabilities
from stochastic simulations and the exact calculation method must be identical, up to the limit due to
noise in Monte Carlo simulations, that increases with a lower number of sample trajectories. To test if
our implementation of the exact calculation method is correct, we compared the results from MaBoSS
simulations to calculations in our ExaStoLog toolbox (https://github.com/mbkoltai/exact-stoch-log-mod)
for several different logical models.

The full dynamics of model state probabilities with a small 3-node model is shown in Figure 1. The
MaBoSS input files for this model can be found in the GitHub repository in
model files/maboss/toymodel cellfate.bnd,
model files/maboss/toymodel cellfate.cfg

Figure 1: Time course of exact calculation and stochastic simulations of a simple logical model. The dynamics
of the probabilities of states of a 3-node logical model with the following rules: A = A,B =!A,C = B|C
are shown for the exact calculation (left panel) and stochastic simulations (right). The number of sample
trajectories used for stochastic simulations was 1.000. Timecourse calculations are not contained in the
released version of ExaStoLog because of their high calculation costs.
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We similarly compared results for the cell cycle model of Traynard et al. (2016) that has a large cyclic
attractor of 270 states, again finding discrepancies not larger than 1%. The MaBoSS files for this simulation
are model files/maboss/traynard2016 mammalian cellcycle.bnd,
model files/maboss/traynard2016 mammalian cellcycle.cfg.

The probability values of states from MaBoSS simulations of a cyclic attractor were averaged over the
last 5000 time steps of the simulations to be comparable to the exact solution. We can again see on Figure
2 that the exact method is identical to stochastic simulations up to 1% deviations. We similarly compared
ExaStoLog calculations to MaBoSS simulations for other models with fixed point attractors, again getting
identical results.
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Figure 2: Exact calculation and stochastic simulations of the 13-node mammalian cell cycle model Traynard
et al. (2016). The stationary probability values for states and (activation of) model variables are shown by
the x-axis. The number of sample trajectories for stochastic simulations was 5.000. (A) Probabilities by
model variables. (B) Probabilities by states. Only states with at least 1% probability are shown.

2 List of models analyzed

2.1 Traynard 2015 mammalian cell cycle model (13 nodes)

Source file at GitHub repository: model files/mammalian cc.bnet
This is a 13-node model of the mammalian cell cycle, published in Traynard et al. (2016), its influence

graph shown on SI Fig. 3. The model has two separate subgraphs. In one subgraph there are 2 fixed point
attractors (where Rb b2, p27 b2=1 and CycD, Skp2=0, the value of CycA differentiating the two states), in
the other a large cyclic attractor of 270 states. We analyzed if the stationary probabilities of the two fixed
point attractors and the states within the cyclic attractor are sensitive to the transition rates. Results of
parameter scans are shown on SI Fig. 9.
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Figure 3: Influence graph of 13-node model of mammalian cell cycle, from Traynard et al. (2016)

2.2 Zanudo 2017 breast cancer model (20 nodes)

Source file at GitHub repository: model files/breast cancer zanudo2017.bnet
This model is the 20-node subnetwork of the full model published in Zañudo et al. (2017), shown on

Figure 5A of Zañudo et al. (2017) in the main text. The influence graph is shown on SI Fig. 4. The
model has 4 input nodes: Alpelisib, Everolimus, PDK1, PIM, and the state transition graph is made up
of 36 disconnected subgraphs. Due to the high number of disconnected subgraphs if we populate all of
them by uniform initial conditions we have a large number of attractor states, shown on SI Fig. 5, all of
which are separate stable states. The calculation time (see Table 1 in main text) depends on the choice of
initial conditions and how many of the subgraphs are populated. Calculation for one subgraph is below one
second. The model has two phenotypic nodes: Proliferation and Apoptosis. We analyze the dependence of
the stationary probabilities of these two variables under different initial conditions in terms of the value of
Alpelisib, Everolimus and the PIM node, as shown on Figure 4 of the main text. The initial values of these
input nodes can be interpreted as the presence of the two drugs and the mutational status of the PIM family
of oncoproteins.
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Figure 4: Influence graph of 20-node model of drug resistance in breast cancer, from Zañudo et al. (2017)
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Figure 5: Stationary probability values of states and variables of the breast cancer model from Zañudo et al.
(2017) with uniform initial conditions across all model states, so all subgraphs of the STG have their states
with a positive uniform initial probability.

2.3 Cohen 2015 EMT model (20 nodes)

Source file at GitHub repository: model files/EMT cohen ModNet.bnet
This is the 20-node modularized version of the full model of epithelial-mesenchymal transition (EMT) from
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Cohen et al. (2015). The influence graph is shown on SI Fig. 6. The model has two groups of phenotypic
nodes:
- Apoptosis and CCA (cell cycle arrest)
- EMT, Invasion, Migration and Metastasis

There are two input nodes: DNAdamage and ECMicroenv. We analyzed the parameter-dependence of
the attractor states, characterized by co-activation of one group of phenotypic nodes under the 4 different
initial conditions. The results of the sensitivity analysis are summarized on Figures 5, 6 of the main text
as well as SI Fig. 10. We have learned from the sensitivity analysis that it is primarily the transition
rates d miRNA, u p53, d p63 73, u EMTreg and d Notch pthw that determine the cell fate decision between
apoptosis and EMT/proliferation/invasion. Also, we have recapitulated a known (see Cohen et al. (2015))
synergistic effect of p53 loss-of-function and Notch pathway gain-of-function mutations in a continuous sense
by our two-dimensional scan shown on SI Fig. 11.

Figure 6: Influence graph of the 20-node model of EMT and invasion from Cohen et al. (2015)

2.4 Sahin 2009 breast cancer ERBB-model (20 nodes)

Source file at GitHub repository: model files/sahin breast cancer refined.bnet
This is a 20-node model on the role of ERBB receptor overexpression/mutations and its inhibition by
trastuzumab (a monoclonal antibody) in breast cancer from Sahin et al. (2009). The influence graph is shown
on SI Fig. 7. The model’s output node is pRB that represents the phosphorylation of the retinoblastoma
protein, that is a proxy for G1/S transition (cell cycle progression) and proliferation. This model’s attractor
is robust to changes in the values of transition rates: it has only one attractor if all transition rates have a
positive value. We simulated knockdowns by setting the initial value and the ’upward’ (0-¿1) transition rate
u node of nodes to 0. For some knockdowns there is another attractor with pRB=0, meaning that the G1/S
transition (and hence proliferation) cannot occur. These knockdowns are shown on SI Fig. 8.
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Figure 7: Influence graph of the 20-node model of the role of ERBB receptor in breast cancer from Sahin
et al. (2009)
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Figure 8: Effects of knockdowns in the 20-node model of breast cancer from Sahin et al. (2009)

3 Parameter sensitivity analysis

3.1 One-dimensional parameter scans

3.1.1 Values of states/variables as a function of transition rates

We can generate lineplots of parameter scans grouped by the transition rates with the function fcn onedim parscan plot by params,
as shown below for the mammalian cell cycle model. This plot can be produced either for the value of model
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states (SI Fig. 9) or variables. On each subplot we have the stationary probability of those states or variables
that show variation above a user-defined threshold as a function of the given transition rate.

With the function fcn onedim parscan plot parsensit we plot the one-dimensional parameter scan with
the values of one state/variable on each subplot as a function of the transition rates, for example on Fig. 4
and 5 of the main text.
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Figure 9: One-dimensional parameter scan for the states of the mammalian cell cycle model, Traynard et al.
(2016). Each subplot is for one transition rate (values on x-axis), with states showing at least 15% change
in their probability (y-axis) shown. The states that are separate fixed points (1415,1447) are shown with
thicker lines (panel 2 and 9). All other states are part of the cyclic attractor of 270 states. Legends show
the index of the states, with a numbering going from [0000000000000] to [1111111111111].

3.1.2 Local sensitivity of variables to transition rates

Besides the stationary value of the model’s states/nodes it can be informative to plot the local sensitivity
of the stationary solutions to the transition rates by visualizing their response coefficients, a metric from
metabolic control analysis Kacser et al. (1995). The response coefficient Rx

p of a variable x with respect to
a parameter p is its derivative normalized by the local value of the variable and the parameter:

Rx
p =

∂logx

∂logp
=

∂x/x

∂p/p
=

∂x

∂p

p

x
(1)

As we do not compute stationary solutions symbolically we do not have the symbolic derivatives, but
they can be numerically approximated by ∂x

∂p
p
x ≈

∆x
∆p

p
x This metric tells us how a variable reacts in relative

terms to a small change in a parameter. If Rx
p = 1 (-1) this means a 1% change in p induces a 1% increase

(decrease) in x.
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On SI Fig. 10 we show the response coefficients for the EMT model, highlighting stronger responses for
the parameters d p63 73, u p53 and d Notch pthw consistently with Fig. 5 of the main text that shows the
values of the same variables.
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Figure 10: Response coefficients from one-dimensional parameter scan of the attractor states (title above
subplots) of the EMT model. The transition rates are shown on the x-axis of the bottom row of subplots,
the y-axis shows the values covered by the parameter scan. The color code, going from -1 to 1 shows the
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3.2 Multidimensional parameter sensitivity analysis with uniform resolution

With the function fcn calc paramsample table we can perform multidimensional parameter sampling with a
uniform resolution. We recommend to do this in two dimensions, for easy visualization and since otherwise
it can be computationally expensive, eg. if the number of value for each parameter is 5, for n parameters we
need 5n calculations. For two dimensions we can visualize the results by the function fcn plot twodim parscan.
Synergistic effect between transition rates can be visualized, as in SI Fig. 11 for u p53 and u Notch pthw
with respect to Metastasis in the EMT model of Cohen et al. (2015).
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Figure 11: Two-dimensional parameter scan of the EMT model Cohen et al. (2015), with the stationary
probability value of the Metastasis model variable shown as a function of the transition rates u p53 and
u Notch pthw.

3.3 Multidimensional parameter sensitivity analysis by Latin Hypercube Sam-
pling (LHS)

Latin Hypercube Sampling (LHS) is a method to efficiently explore a high-dimensional parameter space. In
ExaStoLog we can perform LHS by the function fcn multidim parscan latinhypcube, defining the sample size,
as well as the type, mean and standard deviation of the distribution we sample from. From one-dimensional
parameter scans (with the function fcn onedim parscan plot parsensit) we have the transition rates where
there is significant variation in the stationary solutions and perform LHS for only these. Results of the LHS
are analyzed visually and statistically by the functions described below.

3.3.1 Scatter plots of LHS

With the function fcn multidim parscan scatterplot we can visualize the stationary probability values (of
model states or variables) from LHS as a function of transition rates as a scatterplot. The mean value of the
stationary probabilities is shown by the red trend line. To calculate the mean the user needs to select the
number of bins across the range of values for transition rates.
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Figure 12: Result of Latin Hypercube Sampling for selected transition rates for the Zañudo et al. (2017)
breast cancer model. The stationary value of the Apoptosis node is shown, with the red line showing its mean
value in 50 bins. The visually discernible trends for d BAD and u AKT are confirmed by Sobol sensitivity
analysis shown on SI Fig. 15

3.3.2 Correlations between stationary probability values of model variables

Pearson correlation coefficients between the stationary probability values of variables following LHS for
the Cohen et al. (2015) model are shown on SI Fig. 13. The calculation and plotting is by the function
fcn multidim parscan parvarcorrs in ExaStoLog. This metric is useful for model reduction: some variables
show 100% correlation that suggests that these can be merged into single variables.
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Figure 13: Correlation coefficients between stationary probability values of model variables from LHS for
the model Cohen et al. (2015)

3.3.3 Coefficient of determination (R2) between the transition rates and the stationary prob-
ability values of nodes/states

With the function fcn multidim parscan parvarcorrs we can also perform linear regression on the stationary
probability values of model states/variables as a function of the transition rates. In the case of lognormal
sampling for the LHS, it is recommended to do the regression as a function of the logarithm of transition
rates (a built-in feature of the function). The R2 value for each parameter-variable/state pair indicates to
what extent the given transition rate predicts the stationary value. Values for the Cohen et al. (2015) model
are shown on SI Fig. 14. This measure assumes a monotonic effect of transition rates on the stationary
probability values, which is usually, but not necessarily the case. An alternative measure that does not have
this problem is the Sobol sensitivity index. In the case of transition rates with a monotonic effect these two
measures show similar, but not identical values as shown on Fig. 6 in the main text.

3.3.4 Sobol sensitivity index

Sobol sensitivity index is a global parameter sensitivity index that also quantifies nonlinear and non-
monotonic effects of parameters on variables. Following LHS the Sobol sensitivity index is calculated by
splitting the matrix of randomly generated transition rates from the LHS into two and in one of the sub-
matrices replacing one column (corresponding to a transition rate) with newly generated random values.
Following that we recalculate the stationary solution of the model. The Sobol sensitivity index quantifies
how much of the total variance in a variable is due to variation in the transition rate that was changed. The
formulas for the usual numerical approximation are described in Constantine and Diaz (2017). A comparison
of the Sobol sensitivity index with R2 values can be seen on Fig. 6. The result of Sobol sensitivity analysis
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Figure 14: R2 values between model variables and transition rates for the model Cohen et al. (2015).
Variables that have identical values with those on the plot are not shown. Also transition rates with no or
negligible effects were omitted.

for the Zañudo et al. (2017) breast cancer model’s Apoptosis variable is shown on SI Fig. 15, with u AKT
and d BAD dominating apoptotic behavior.
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Figure 15: Sobol sensitivity index of transition rates of the Zañudo et al. (2017) breast cancer model with
respect to the model’s Apoptosis variable.
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4 Parameter fitting

We can fit the stationary probability value of either the model’s attractor states or its variables, the latter
being linear combinations of the former. With the function fcn handles fitting of ExaStoLog we create
anonymous functions (fcn statsol sum sq dev, fcn statsol values) to calculate the sum of squared error (SSE)
of the value of the model’s states/variables with respect to a vector of values (data) provided by the user.
The transition rates that we want to fit are selected by the user.

4.1 Parameter fitting by simulated annealing

We use a simulated annealing algorithm anneal from MATLAB Central, with some modifications of the script
for ExaStoLog (see Tutorial on GitHub). Simulated annealing is a gradient-free, probabilistic parameter
fitting method. It often shows slow convergence, requiring thousands of iterations (recalculations of the
stationary solution). An example is shown on Fig. 7 of the main text. Results from parameter fitting are
plotted by the function fcn plot paramfitting.

4.2 Parameter fitting by numerical gradient descent

For the models we analyzed in this paper the effect of transition rates on the stationary probability value of
model variables is monotonic. Therefore in some cases we can perform parameter fitting by calculating an
initial gradient for the sum of squared error as a function of transition rates and reduce the SSE down to a
defined level by incrementing the transition rates by this initial direction. At least in the case of some models,
such as the Cohen et al. (2015) EMT model, this method is faster and leads to a larger error reduction than
simulated annealing, as shown by SI Fig. compared to Fig. 7 of the main text. This method is implemented
in the function fcn num grad descent, that automatically stops (after 2 steps) if the error starts to grow or
stagnate. Plotting is with the same function as for simulated annealing, fcn plot paramfitting.
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Figure 16: Parameter fitting by numerical gradient descent for the Cohen et al. (2015) EMT model. The
panel on the left shows the convergence process, the panel on the right shows the data, the initial and the
fitted values of the model’s variables.
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