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Abstract

In single-cell RNA sequencing data, biological processes or technical factors may induce an
overabundance of zero measurements. Existing probabilistic approaches to interpreting these
data either model all genes as zero-inflated, or none. But the overabundance of zeros might be
gene-specific. Hence, we propose the AutoZI model, which, for each gene, places a spike-and-slab
prior on a mixture assignment between a negative binomial (NB) component and a zero-inflated
negative binomial (ZINB) component. We approximate the posterior distribution under this
model using variational inference, and employ Bayesian decision theory to decide whether each
gene is zero-inflated. On simulated data, AutoZI outperforms the alternatives. On negative
control data, AutoZI retrieves predictions consistent to a previous study on ERCC spike-ins and
recovers similar results on control RNAs. Applied to several datasets and instances of the 10x
Chromium protocol, AutoZI allows both biological and technical interpretations of zero-inflation.
Finally, AutoZI’s decisions on mouse embyronic stem-cells suggest that zero-inflation might be
due to transcriptional bursting.
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Introduction

In single-cell RNA sequencing (scRNA-seq) data, some genes have more zero measurements than
can be modeled by a unimodal distribution centered at the mean expression level [1]. These
zeros may be due to technical factors such as limited capture efficiency and sequencing depth,
particularly for non-UMI protocols [2] and for infrequently expressed genes [1]. Zeros may also
result from biological factors such as stochasticity inherent to the process of transcription (i.e,
bursting) [3] or more stable differences between the milieus of genes that are present in different
cell states.

Zero-inflated models are therefore commonly used for analyzing these data [1]. A first notable
example is ZIFA [4], which uses a zero-inflated factor analysis to model the log-normalized data.
ZINB-WaVE [5] and scVI [6] instead both rely on a zero-inflated negative binomial (ZINB)
distribution to model the observed counts. Under the ZINB distribution, zeros can be attributed
to either the limited sampling effects (NB) or to “surprising” zeros (ZI) which are not accounted
for by NB. Indeed, it has previously demonstrated that under the scVI model, zeros attributable
to the NB component better reflect the limitation in mRNA capture efficiency whereas the ZI
component has a stronger association with the extent of read alignment errors [6].

A recent study [7] however questioned the universality of zero-inflation added to NB models
for scRNA-seq data. This analysis was primarily based on datasets of ”negative controls” (e.g.,
ERCC spike-ins) – namely exogenous transcripts that are constitutively expressed, thus reducing
the contribution of biological factors as a cause for zero measurements. While the author found
these negative controls to be adequately modeled by a NB with no zero-inflation, the question
remains of whether this is also the case for cell-endogenous transcripts, and whether in such cases
zero-inflation is a property specific only to a subset of the genes (e.g., due to their promoter
kinetics [8]).

We address these questions by proposing a gene-specific treatment of zero-inflation. We
present AutoZI, a novel generative model for scRNA-seq data which employs a spike-and-slab
prior [9, 10] on a zero-inflation mixture assignment for every gene (Section 1). We propose a
tractable inference procedure for AutoZI using variational methods (Section 2). A Bayesian de-
cision rule based on AutoZI’s variational distribution gives a decision boundary between inferred
ZINB and NB genes (Section 3). On simulated datasets, AutoZI outperforms other approaches
in identifying zero-inflation (Section 4). On real datasets, AutoZI labels as zero-inflated only a
small fraction of the negative controls (spike ins and control RNAs) while doing so for larger
fractions of the endogenous genes, although this fraction tends to decrease with technical im-
provements in library preparation protocols (Section 5). In an application of AutoZI to mouse
embryonic stem cells (mESC), we find that it is capable of distinguishing genes with a likely
bursty promoter kinetics, labeling them as ZI. Such results suggest that : (i) negative binomial
may not be globally appropriate for scRNA-seq data and that zero-inflation might be required
to ensure a good fit for a significant fraction of the genes, and (ii) the patterns of genes detected
as zero-inflated may be interpreted from both biological and technical perspectives.

1 The AutoZI probabilistic model

For each gene g, latent variable δg ∼ Beta(α, β) indicates the probability of the absence of
zero-inflation shared across all cells. Priors α and β are set to 0.5 to enforce sparsity while
keeping symmetry. Latent variable mg ∼ Bernoulli(δg) dictates whether gene g has its zero-
inflation parameter sampled from the slab component (used for representing zero-inflation) or
the spike component (otherwise) [9, 10]. For each cell n, let latent variable zn ∼ N (0, I) be
a low-dimensional random vector describing the cell’s biology, as in [6]. Let latent variable
ln ∼ LogNormal(lµ, l

2
σ) be a random scaling factor representing sequencing depth. For each

gene g in each cell n, let latent variable πslab
ng | zn ∼ p(. | ψslab

g , zn) where ψslab
g are parameters

be a zero-inflation rate taking value in a set of non-negligible values (the “slab” component).
Similarly, latent variable πspike

ng | zn ∼ p(. | ψspike
g , zn) defines a zero-inflation rate taking value in

a set of negligible values (the “spike”). Latent variable

πng = (1−mg)π
slab
ng +mgπ

spike
ng
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represents the effective zero-inflation rate. Finally, observed gene expression level xng is defined
by

xng|zn, ln,mg ∼ ZINB(lnwg(zn), θg, πng),

where w is a neural network taking value in the simplex (as in [6]) and θg are inverse-dispersion
parameters learned via maximum likelihood.

In AutoZI, we define the spike and the slab by

p(πspike
ng | ψspike

g , zn) = δ{0}

p(πslab
ng | ψslab

g , zn) = δ{hg(zn)},

where δ{x} denotes the Dirac distribution on x and h is a neural network taking values on the
hypercube [, 1]G. 0 << 1 is used to lower bound the range of zero-inflation rates that can be ac-
counted for by our model. Such a parameter avoids the possibility of having a nested mixture for
the distribution πng (which happens for h = 0 and makes decision-making ill-defined). Without
this constraint on the output of the neural network, we recover scVI if and only if the parameters
δg are all equal to 0. AutoZI is yet another example of trade-off between interpretability and
performance. Indeed, AutoZI is less flexible than scVI since it cannot attribute values to πng
in the interval (0, ) but more interpretable since it provides a clear decision for gene-specific
zero-inflation.

2 Variational inference

The marginal probability of the data p(x) is intractable. Therefore, we proceed to posterior ap-
proximation with variational inference in order to learn the model’s parameters. To approximate
the posterior distribution, we first marginalize out the discrete random variables (mg)g∈G, as in
collapsed variational inference. Each of the conditional distribution p(xng | zn, ln, δ) is a mixture
of ZINB and NB distributions (with an identical NB component) with weight δg. This makes the
log-density p(xng | zn, ln, δ) tractable and differentiable with respect to the model’s parameters.

We approximate the posterior distribution of each {δg, zn, ln}n∈N,g∈G with a mean-field vari-
ational distribution:

q̄ = ΠG
g=1q(δg)Π

N
n=1q(zn | xn)q(ln | xn)

As in auto-encoding variational Bayes [11], each q(zn | xn) follows a Gaussian distribution with
a diagonal covariance matrix. Similarly, q(ln | xn) follows a log-normal distribution. Parameters
of these variational distribution are encoded via neural networks. For the global latent variables
δg, we use

q(δg) = Beta(αg, βg),

where each αg and βg are global parameters, numerically restricted to take values in (0, 1). We
optimize the evidence lower bound (ELBO), derived as

Eq̄
N∑
n=1

log
p(xn, zn, ln | δ)
q(zn, ln | xn)

−KL[q(δ)||p(δ))].

This objective function is amenable to stochastic optimization (as in [11]), which allows us to
sample a fixed number of cells at each iteration [6] as well as from the variational distribution
using the reparameterization trick [11] and its generalization to Beta distributions [12].

3 Detecting zero-inflation using Bayesian decision theory

Once the model fitted to data using the variational distribution we have at our disposal the
variational posterior q(δg) for each gene g. Our goal is to decide from this whether gene g
is zero-inflated or not using discrete Bayesian decision theory [13]. Let Mg

ZINB be the model
for which g is zero-inflated. Similarly, let Mg

NB be the model for which g is not zero-inflated.
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Defining such hypotheses in scVI is not straightforward, especially at the gene-specific level. We
can however rely on the latent variable δg of AutoZI to define formally zero-inflation by

Mg
ZINB : δg < 0.5 and Mg

NB : δg >= 0.5.

Let KNB and KZINB be the costs of taking an inappropriate decision for an individual gene.
We decide Mg

ZINB if and only if q(δg < 0.5) > KZINB/KNB+KZINB. We note that this decision
rule is approximate in the sense that we have only access to a variational approximation to the
posterior. We focus in this paper on the case KNB = KZINB = 1 for symmetry purposes. Under
this particular setting and because α = β, our decision rule becomes equivalent to the Bayes
factor of Mg

NB against Mg
ZINB (a classical tool of Bayesian decision theory used in scVI [6] for

differential expression).

4 Performance benchmarks on simulated datasets

We chose = 0.01 in all our experiments, as this value brought stable and balanced results on
simulated datasets. As a consequence of AutoZI’s lower flexibility, we usually observed lower
marginal log-likelihoods for AutoZI than for scVI. In this manuscript, we therefore focus on the
performance of AutoZI at detecting zero-inflated genes. The ground truth for zero-inflation is
unknown and not available for real datasets. Indeed, this is an open research topic. Consequently,
we turned to simulations using Poisson log-normal distributions with added zero-inflation as well
as Symsim [8], a realistic simulator for scRNA-seq data relying on Beta-Poisson distributions.

For both simulation frameworks, we benchmarked AutoZI against two decision rules based
on maximum likelihood estimations: Uni-MLE-Pi and Uni-MLE-LRT. The former fits a univariate
ZINB distribution to all genes and uses the fitted zero-inflation weight based on an arbitrary
threshold to make a decision. The latter fits both a univariate ZINB and NB distribution and
uses the differences in marginal likelihood ∆ = LLZINB−LLNB to perform decision. Examples of
thresholds include AIC (resp. BIC) for selecting ZINB if and only if ∆ ≥ −2 (resp. ∆ ≥ − logN ,
where N is the size of the dataset). For AutoZI, we used the default hyperparameters from the
scVI model and used the natural decision threshold at 0.5, denoted as “AutoZI default”.

Poisson log-normal datasets Each synthetic dataset contains 12,000 cells, 50 genes, and
two cell types. Each cell has its gene expression drawn from a Poisson log-normal distribution
whose mean and covariance matrix depend only on the cell type. A fraction λ of the genes are
selected uniformly to be applied a Bernoulli mask with probability 0.1. We aggregate the results
for λ ∈ {0, 0.25, 0.5, 0.75, 1} and report the ROC curves in Figure 1.

Figure 1: ROC curves on the aggregated Poisson log-normal dataset, with points corresponding
to the default AutoZI decision rule, AIC and BIC.

The AutoZI model has a near-one AUC and Uni-MLE-LRT has a similar albeit slightly lower
performance. In particular, AutoZI’s default decision rule leads to true positive (ZINB) and
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negative (NB) rates both superior to 94% whereas the AIC and the BIC do not yield false positives
but their true positive rate is lower (85.5%), showing a bias in favor of the NB distribution. The
Uni-MLE-Pi baseline procedure performs worse than these two models.

Beta-Poisson datasets For a more biologically relevant simulation framework, we used known
kinetic models of stochastic gene expression such as the Beta-Poisson model. SymSim [8] provides
a natural way of sampling data from such models and adding technical noise. SymSim first ran-
domly samples the promoter on rate (kon), off rate (koff) and synthesis rate (s) for each gene, and
then generates simulated “true” counts using a Beta-Poisson distribution. As a simplification,
we label the genes with kinetic parameters kon, koff < 1 as bimodal, kon > 1 as unimodal with a
non-zero mode (UNZ) and the rest as unimodal zero (UZ). The real regimes might depend addi-
tionally on s and kon/koff but are negligible as a first analysis. True counts are then converted to
observed counts by simulating processes such as capture, amplification and fragmentation (with
UMIs in these datasets). We create a dataset of 100 genes with a bimodal distribution and
another dataset of 100 genes with a UNZ distribution. Both datasets are subsampled multiple
times (n bimodal genes and 100−n UNZ genes, for n ∈ {0, 25, 50, 75, 100}) to create a sequence
of datasets of 100 genes and 3,000 cells from a single cell type. We expect UNZ genes to be non
zero-inflated, as these can be easily modeled by a NB distribution. Conversely, we expect genes
that are bimodal in their true counts to be zero-inflated in their observed counts, due to limited
sensitivity. For simplicity, we did not focus on UZ genes since their ground-truth category is not
clear. We aggregate the results and report the ROC curves in Figure 2.

Figure 2: ROC curves on the aggregated SymSim dataset, with points corresponding to the
default AutoZI decision rule, AIC and BIC.

AutoZI has the best area under the curve and its default decision rule classifies more than
96% of bimodal genes as ZINB and more than 99% of the UNZ genes as NB. Such results show
that zero-inflation in our model might be suited to distinguish regimes of bimodality for kinetics
of gene expression. Conversely, the Uni-MLE-LRT baseline hardly distinguishes the bimodal and
UNZ regimes. In particular, both AIC and BIC are biased towards ZINB predictions, and thus
poorly suited for zero-inflation analysis of real data.

Robustness for lowly-expressed genes An important consideration is the robustness of
AutoZI’s performance for lowly expressed genes. Using Poisson-log-normal datasets with average
expressions spanning from 10−4 to 102, we found that AutoZI’s decisions became biased towards
ZINB for genes with low average expression or, equivalently, average predicted negative binomial
mean: notably, 92.7 (resp. 2.4%) of NB genes with average expressions above (resp. below)
1 were correctly retrieved. Such results suggest that the statistical problem of detecting zero-
inflation becomes harder for low values of the negative binomial mean. Hence, for the following
biological datasets, we train AutoZI on all genes but study its predictions only for those with
average expression above 1.
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Svensson et al. (1) [14] Svensson et al. (2) [14] Klein et al. [15] Zheng et al. [16]

ERCC 0.0 8.3 0.0 0.0
RNA 4.0 14.0 0.0 /

Table 1: Percentages of ERCC spike-ins and control RNAs predicted as ZINB by AutoZI on
negative control datasets.

B cells CD14+ monocytes CD4 T cells CD8 T cells

10x v1, pbmc3k 42.4 43.4 47.9 47.4
10x v2, pbmc8k 29.6 27.6 32.3 24.2

10x v3, pbmc10k 12.3 11.8 12.0 20.4

Table 2: Percentages of genes predicted as ZINB by AutoZI on 10x PBMC datasets.

5 Application to detecting zero-inflation in real datasets

A significant application is to investigate how zero-inflation affects real datasets and whether the
decisions taken by AutoZI have a biological meaning.

Negative control (ERCC spike-in and RNA) We apply AutoZI to four droplet-based
negative control datasets, spanning a wide range of experimental protocols (10x Chromium
v1 [14], inDrops [15] and GemCode [16]) and based on ERCC spike-ins and control RNAs. Such
datasets do not capture any biological process and the ERCCs were shown not to be zero inflated
in [7]. To investigate whether AutoZI decision-making mechanism can reproduce similar results,
we selected ERCC spike-ins and added the 100 most expressed control RNAs in each dataset
for joint analysis. 32.4% of ERCC spike-ins and 100% of control RNAs had sufficient average
expression. Hence we analyze between 24 and 44 spike-ins per dataset. We report decisions from
AutoZI in Table 1. AutoZI has a perfectly symmetric prior and is therefore not biased towards
any specific decision. However, 98.3% of ERCC spike-ins and 94% of the control RNA under
study are retrieved as NB. These results corroborates the hypothesis from [7] that droplet-based
ERCC spike-ins measurements are not zero-inflated and even may extend it to the control RNAs
part of these datasets.

A collection of 10X biological datasets We now check whether the fraction of ZINB genes
in PBMC datasets sequenced using 10X Chromium is higher than in previous control RNA data
and whether it decreases with the version of the protocol, as technical improvements may suggest.
We focus on pbmc3k (10X v1.1.0), pbmc8k (10X v2.1.0) and pbmc10k (10X v3.0.0, with protein
expressions). Their cell types were estimated using clustering techniques and marker genes or
proteins. We focus on B cells, CD14+ monocytes, CD4 T cells and CD8 T cells. For training,
we select genes both among the 1,000 most variable and expressed across all cell types in all
datasets. For analysis, in each cell type, we select genes with sufficient average expression in
all datasets, yielding between 203 and 228 genes per cell type. We report the percentages of
ZINB genes predicted for each cell type by a gene-cell-type extension of AutoZI in Table 2.
We note a higher general fraction of zero-inflated biological gene-cell-types (29.3%) than control
RNAs (6%), indicating potential biological phenomena. However, for all cell types, we find that
the fraction of predicted ZINB genes decreases with the version of 10X Chromium, potentially
showing additional technical factors in zero-inflation. This may lead to a less straightforward
conclusion than in [7] where droplet-based zero-inflation is stated as only biological.

Transcriptional burst kinetics of embryonic stem-cells We previously explored the abil-
ity of AutoZI to capture bimodal genes from simulated Beta-Poisson models. Such model was
fitted to an allele-specific scRNA-seq dataset of mESCs for characterizing transcriptional burst-
ing [3] through estimates of the kinetic parameters kon, koff and s for each gene. We investigated
whether the decisions made by AutoZI could recapitulate the different regimes for the Beta-
Poisson distribution (Bimodal, UZ, UNZ) in this dataset. Given the limited number of cells
(188), we applied AutoZI to a larger mouse hybrid ESC dataset [17] (704 cells, one common
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allele), which was not used for the inference of the kinetic parameters, but should be biologically
similar. After intersecting the gene lists in the two datasets, we further randomly filtered the
genes and kept 52 bimodal, 52 UNZ and 29 UZ genes. Only one of the UNZ genes did not have
sufficient expression for analysis. We report the decisions from AutoZI with respect to the kinetic
parameters kon and koff in Figure 3. AutoZI predicts that 38 out of the 52 bimodal genes are
zero-inflated and that 37 out of 51 UNZ genes are not zero-inflated. Taken together, our results
suggest that AutoZI’s predictions of zero-inflation can be used not only to account for technical
factors (which are evident by the decrease in ZI with progress in technology in Table 2) but may
also reflect biological factors such as transcriptional bursting.

Figure 3: Genes from the ESC dataset from [17] plotted in the space of (kon, koff) kinetic param-
eters, with their NB/ZINB labels from AutoZI.

Code availability

The implementation to reproduce the experiments of this paper is available at https://github.
com/oscarclivio/AutoZI_reproducibility. The reference implementation of AutoZI is avail-
able at https://github.com/YosefLab/scVI.
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