
Senescence and entrenchment in evolution of amino acid sites

Supplementary Text 1

Formal proof that random changes in SPFL decrease the fitness of the current allele

Consider a locus under selection with N different alleles. These alleles differ in fitness that they confer, so that
allele i confers fitness wi . The vector of these fitness values, SPFL, can change instantaneously. At the time of such
a change, each allele is, in general, ascribed a new fitness value w′i , giving rise to a new SPFL. We assume that the
effective population size is constant, so that the substitution rate between alleles i and j depends on the difference in
their fitness si j = wi − wj .

Notation

τM = average time between substitutions
τL = average time between SPFL changes
N = number of possible alleles
ai = probability that the considered position is occupied by the allele i
wi = fitness of allele i at the considered position before the SPFL change
w′i = fitness of allele i at the considered position after the SPFL change
si j = wi − wj = selection coefficient in favor of the allele i compared to the allele j at the considered position
fi j = f (si j) = probability of i to j substitution in a given position as a function of the selection coefficient.

Here we consider allele substitutions as a Markov process, and don’t account for changes in allele frequencies within
the population. The probability of an allele to be fixed monotonically increases with its fitness [1], so we assume that
f (si j) is (strictly) monotonically increasing.

The sum of allele frequencies equals 1:
N∑
i

ai = 1 . (1)

The fitness vector is normalized so that the sum of fitness values for all alleles also equals 1:

N∑
i

wi = 1 . (2)

A change in SPFL may increase the fitness of the allele currently occupying an amino acid position, decrease it, or
leave it unchanged. We shall prove that a random SPFL change will on average decrease the fitness of the current allele:

β = 〈∆w〉i,w′ = 〈w′i − wi〉i,w′ = 〈
∑
i

(w′i − wi)ai〉w′ < 0 , (3)

where the averaging is done over all alleles i and over all possible new SPFLs (or, analogously, over all new allele fitness
values w′).

1. Rare SPFL changes (τM � τL)

If the average time between SPFL changes is significantly larger that the average time between substitutions
(i. e. τM � τL), the distribution of allele frequencies after a substitution reaches the equilibrium state, i.e. the allele
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frequencies vector is the eigenvector for the substitution probability matrix:

ai =
∑
k

fikak . (4)

Since the allele distribution reaches equilibrium after each SPFL change, the difference between frequencies of any
two alleles depends only on the fitness vector:

ai − aj =
∑
k

fikak −
∑
k

fjkak =
∑
k

( fik − fjk)ak =
∑
k

( f (wi − wk) − f (wj − wk))a, . (5)

If wi is larger than wj , then ∀k : wi − wk > wj − wk . Since f is monotonically increasing, this implies that
f (wi − wk) > f (wj − wk). Therefore, since ak can’t be negative, the difference between ai and aj is also non-negative:

wi > wj ⇒ ai > aj . (6)

Let’s transform the equation 3 :

β = 〈∆w〉i,w′ = 〈
∑
i

(w′i − wi)ai〉w′ =
∑
i

(〈w′i 〉w′ − wi)ai . (7)

1.1. The new SPFL is independent of the previous SPFL

First assume that the SPFL changes are random and not “biased“ towards any alleles, meaning that all alleles have the
same average fitness α across all the possible SPFLs. Then, based on the alleles fitness values normalization (equation
2),

α = 1/N . (8)

Replacing the average new fitness 〈w′i 〉w′ in eqn. 7 with the value from eqn. 8,

β =
∑
i

(〈w′i 〉w′ − wi)ai =
∑
i

(1/N − wi)ai . (9)

The fitness values of the alleles should remain normalized after the SPFL change:

N∑
i

w′i = 1 . (10)

The fitness of the allele i can be either less than 1/N (let’s denote this set of alleles as N−), greater than 1/N (N+),
or equal to 1/N (N0). Then

β =
∑
i∈N+
(1/N − wi)ai +

∑
i∈N−
(1/N − wi)ai +

∑
i∈N0

(1/N − wi)ai =
∑
i∈N+
(1/N − wi)ai +

∑
i∈N−
(1/N − wi)ai . (11)

Let’s denote the allele with the smallest fitness greater than 1/N as i1 and the allele with the largest fitness less than
1/N as i2:

wi1 > 1/N ,

∀i ∈ N+ : wi ≥ wi1 ;
wi2 < 1/N ,

∀i ∈ N− : wi ≤ wi2 .

(12)

Then, from equation 6,

∀i ∈ N+ : ai ≥ ai1 ;
∀i ∈ N− : ai ≤ ai2 ;

ai1 > ai2

(13)
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∑
i∈N+
(1/N − wi)ai <

∑
i∈N+
(1/N − wi)ai1∑

i∈N−
(1/N − wi)ai <

∑
i∈N−
(1/N − wi)ai2 .

(14)

Then we can estimate β from equation 11:

β =
∑
i∈N+
(1/N − wi)ai +

∑
i∈N−
(1/N − wi)ai <

∑
i∈N+
(1/N − wi)ai1 +

∑
i∈N−
(1/N − wi)ai2 =

ai1
∑
i∈N+
(1/N − wi) + ai2

∑
i∈N−
(1/N − wi) .

(15)

Since the fitness values of individual alleles are normalized,∑
i∈N+
(1/N − wi) +

∑
i∈N−
(1/N − wi) =

N∑
i

(1/N − wi) =
N∑
i

wi − N(1/N) = 1 − 1 = 0 . (16)

Let’s denote ∑
i∈N+
(1/N − wi) = −

∑
i∈N−
(1/N − wi) = γ < 0

β =
∑
i

(1/N − wi)ai < ai1γ − ai2γ = (ai1 − ai2)γ < 0 .
(17)

Therefore, the average allele fitness change after a random SPFL change 〈∆w〉i,w′ = β < 0.

1.2. The new SPFL is partially correlated with the old one

We shall prove that even if the fitness values after a SPFL change (w′) are not completely random, but are correlated
with the previous SPFL (w), the average change in fitness of the current alleles after a random SPFL change is still
negative.

Let’s assume that the new SPFL has a random component wr contributing the fraction δ (0 < δ < 1) of the SPFL,
and the remainder (1 − δ) comes from the old SPFL:

w′ = δwr + (1 − δ)w . (18)

Equation 7 can then be transformed:

β = 〈
∑
i

(w′i − wi)ai〉w′ =
∑
i

(〈w′i 〉w′ − wi)ai =
∑
i

〈δwr
i + (1 − δ)wi〉w′ai −

∑
i

wiai =

δ
∑
i

〈wr
i 〉w′ai + (1 − δ)

∑
i

〈wi〉w′ai −
∑
i

wiai .
(19)

Since the old SPFL doesn’t depend on the new SPFL, and 〈wi〉w′ = wi ,

β = δ(
∑
i

〈wr
i 〉w′ai −

∑
i

wiai) = δ
∑
i

(1/N − wi)ai . (20)

Since δ > 0 and, as we already proved,
∑

i(1/N − wi)ai is negative (eqn. 17), β is also negative.
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2. SPFL changes at rate comparable with the evolution rate (τM ≈ τL)

If the SPFL changes are not so rare, the distribution of allele probabilities ai after a substitution doesn’t reach the
equilibrium state, meaning that ai does not necessary increase monotonically with the increase of wi and that equation 6
is not applicable. However, if there is a correlation between wi and ai which is decreased by random changes in SPFL,
such changes will still result in a decline in the average fitness of the current allele.

Let us represent the relationship between wi and ai as the ratio between the components of wi and ai vectors, i. e.
covariance cov(a,w). Based on eqn. 1 and eqn. 2,

cov(a,w) = 〈wiai〉i − 〈wi〉i 〈ai〉i =

(1/N)
∑
i

wiai − ((1/N)
∑
i

wi)((1/N)
∑
i

ai) = (1/N)
∑
i

wiai − (1/N2) . (21)

The equation 3 can be transformed:

β = 〈∆w〉i,w′ = 〈w′i − wi〉i,w′ = 〈
∑
i

(w′i − wi)ai〉w′ =

〈
∑
i

w′iai〉w′ − 〈
∑
i

wiai〉w′ = 〈cov(w′, a)〉w′ − 〈cov(w, a)〉w′ =

〈cov(w′, a)〉w′ − cov(w, a) .

(22)

If the covariance of the new fitness values w′i and the probabilities of the alleles to be present ai is on average lower
than it was before the SPFL change, β is negative and the current allele fitness on average decreases when the SPFL
changes.

We should first prove the existence of a positive correlation between the fitness of an allele and its probability.

If time is viewed as a discrete variable, then the substitution matrix f represents the probability of the allele j to be
replaced by the allele i at the next time step:

f =
1
N



N −∑i,1 fi1 f12 f13 . . . f1N
f21 N −∑i,2 fi2 f23 . . . f2N
f31 f32 N −∑i,3 fi3 . . . f3N
...

...
...

. . .
...

fN1 fN2 fN3 . . . N −∑i,n fiN


. (23)

Here, f (si j) = fi j is the monotonically increasing function of selection coefficient. We shall prove that under
selection, the correlation between fitness vector wi and the distribution of allele probabilities ai emerges. For this
purpose, we will demonstrate that the frequency distribution at the next time step a′i will be on average more strongly
correlated with wi than the initial ai:

∆ = 〈cov(w, a′)〉a − 〈cov(w, a)〉a ≥ 0 . (24)

Based on equations 1 and 2,

cov(w, a) =
∑
k

wkak − (
∑
k

wk)(
∑
k

ak) =
∑
k

wkak − 1 . (25)

We can substitute this expression into the equation 24:

∆ = 〈cov(w, a′)〉a − 〈cov(w, a)〉a = 〈
∑
k

wka′k〉a − 〈
∑
k

wkak〉a . (26)
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The frequency of the allele k at the next time step a′
k
is the result of multiplying the matrix f by a:

a′k =
∑
j

fk jaj . (27)

Then

∆ = 〈
∑
k

wka′k〉a − 〈
∑
k

wkak〉a =

〈
∑
k

wk

∑
j

fk jaj〉a − 〈
∑
k

wkak〉a = 〈
∑
k

wk

∑
j

fk jaj −
∑
k

wkak〉a =

〈
∑
k

wk(
∑
j

fk jaj − ak)〉a = 〈
∑
k

wk(
∑
j

fk jaj −
∑
j

Ik jaj)〉a =

〈
∑
k

wk(
∑
j

fk j −
∑
j

Ik j)aj)〉a = 〈
∑
k

wk

∑
j

( fk j − Ik j)aj〉a =∑
k

wk

∑
j

( fk j − Ik j)〈aj〉a =
∑
k

wk

∑
j

( fk j − Ik j))(1/N) ,

(28)

where I is the identity matrix. Therefore, since N > 0, the inequality 24 is transformed to∑
k

wk

∑
j

( fk j − Ik j) ≥ 0 . (29)

The matrix in the brackets is as follows:

fi j − Ii j =
1
N



−∑i,1 fi1 f12 f13 . . . f1N
f21 −∑i,2 fi2 f13 . . . f2N
f31 f23 −∑i,3 fi3 . . . f3N
...

...
...

. . .
...

fN1 fN2 fN3 . . . −∑i,n fiN


(30)

The inner sum in the equation 29 is the sum of the k th row of this matrix:∑
k

wk

∑
j

( fk j − Ik j) =
∑
k

wk(−
∑
i,k

fik +
∑
j,k

fk j) =∑
k

wk

∑
i,k

( fki − fik) =
∑
ki

wkgki ,
(31)

where we denoted the fki − fik matrix as gki . The gki matrix is anti-symmetrical, i. e. gki = −gik :

gki = fki − fik = −( fik − fki) = −gik . (32)

Therefore, the diagonal values of the gki matrix are zero.

The equation 31 is the sum of the gki matrix values with some weights wk . In the trivial case, if the weights are
equal, the sum of the anti-symmetrical matrix values will be zero. However, if it’s not the case (i. e. the fitness values of
the alleles are not equal and the SPFL is not “flat”), the sum will be not equal to zero and, moreover, positive. To prove
it, we split the equation 31 by the gki matrix diagonal:

∑
ki

wkgki =
∑

ki,k<i

wkgki +
∑

ki,k>i

wkgki =
∑

ki,k<i

wkgki +
∑

ik,i>k

wigik =∑
ki,k<i

(wkgki + wigik) =
∑

ki,k<i

(wkgki − wigki) =
∑

ki,k<i

gki(wk − wi) .
(33)
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Assume that the fitness vector is sorted highest to lowest:

w1 ≥ w2 ≥ w3 ≥ · · · ≥ wN . (34)

Then, for each k, the selection coefficients ski and the probabilities of the k → i substitution f (sk j) = fk j are also sorted
in a decreasing order:

sk1 ≥ sk2 ≥ sk3 ≥ · · · ≥ skN ,

fk1 ≥ fk2 ≥ fk3 ≥ · · · ≥ fkN .
(35)

The sum in the equation 33 is taken over the upper triangular portion of the gki matrix and, based on the decreasing
order of the alleles fitnesses (equation 35), contains only the positive sums:

k < i ⇒ wk ≥ wi ⇒ (wk − wi) ≥ 0 (36)

k < i ⇒ wk ≥ wi ⇒ ski ≥ sik ⇒ fki ≥ fik ⇒ gki = fki − fik ≥ 0 . (37)

If there is at least one pair of alleles i and k such that wi , wk , the sum is positive:∑
ki,k<i

gki(wk − wi) > 0 (38)

From equation 28, ∆ is also positive. In other words, even a single substitution increases the correlation between
the fitness of the allele and the probability that it resides at the site; random SPFL changes on average eliminate this
correlation, decreasing, on average, the fitness of the current allele (β < 0).

3. Generalization of the frequent SPFL changes case (τM ≈ τL) accounting for differences in
mutation rates µi j

In the above, we assumed that mutations between different alleles are equiprobable, so that the relative rates of
substitutions are only dependent on the corresponding selection coefficients (eqn. 23). If there are differences in the
probabilities of i → j mutations (µi j), the substitution matrix f (eqn. 23) will be transformed:

f =
1
N



N −∑i,1 fi1µi1 f12µ12 f13µ13 . . . f1N µ1N

f21µ21 N −∑i,2 fi2µi2 f13µ13 . . . f2N µ2N

f31µ31 f32µ32 N −∑i,3 fi3µi3 . . . f3N µ3N
...

...
...

. . .
...

fN1µN2 fN2µN2 fN3µN3 . . . N −∑i,n fiN µiN


. (39)

Accordingly, the gki matrix from eqn. 31 will be equal to fkiµki − fik µik . The gki matrix will still be anti-symmetrical,
i. e. gki = −gik . However, the gki will no longer necessarily be positive: it may be negative if the mutation bias and
selection act in opposite directions. Indeed, the probability that a site is occupied, at equilibrium, by a deleterious allele
can be high if the rate of mutation to this allele is much higher than the rate of mutation from this allele [2, 3].

Nevertheless, we’ll prove that the eqn. 38 will still hold when we average across all possible new SPFLs, i. e.

〈
∑

ki,k<i

gki(wk − wi)〉w > 0 , (40)

as long as the selection coefficient (corresponding to the new SPFL) and the mutation rate for a pair of alleles are
independent of each other:

〈 fik µik〉w = 〈 fik〉w 〈µik〉w = 〈 fik〉wµik . (41)

Equation 40 can be transformed:
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n〈∆〉w = 〈
∑

ki,k<i

gki(wk − wi)〉w = 〈
∑

ki,k<i

( fkiµki − fik µik)(wk − wi)〉w =∑
ki,k<i

〈( fkiµki − fik µik)(wk − wi)〉w =
∑

ki,k<i

〈 fkiµki(wk − wi)〉w −
∑

ki,k<i

〈 fik µik(wk − wi)〉w =∑
ki,k<i

〈 fkiµki(wk − wi)〉w +
∑

ki,k>i

〈 fkiµki(wk − wi)〉w =∑
ki

〈 fkiµki(wk − wi)〉w =
∑
ki

µki 〈 fki(wk − wi)〉w .

(42)

Since fki is a monotonic function of (wk − wi), they are positively correlated:

〈 fki(wk − wi)〉w − 〈 fki〉w 〈(wk − wi)〉w = 〈 fki(wk − wi)〉w − 0 = δ > 0 . (43)

Then, based on eqn. 42,

n〈∆〉w =
∑
ki

µkiδ = δ
∑
ki

µki . (44)

Since the mutation rates are also positive,

n〈∆〉w = δ
∑
ki

µki > 0 . (45)

Therefore, we have proven that given any mutation rate matrix, even a single substitution on average (across all possible
SPFLs) increases the correlation between the frequency of the allele and its fitness, assuming that selection preferences
are independent of mutation biases.
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Supplementary Text 2

The rate of evolution under fluctuating selection

According to the diffusion fluctuation theory [4–6], if the fluctuations in the SPFL are very rapid, the resulting
landscape will be “quasi-neutral”. In this case, the substitution rate will be reduced, and not increased, by further
increase in the fluctuation rate, ultimately reaching the neutral value. This is not modeled in the Markov chain based
approach we used for simulations [7]. We assume that most fluctuation-induced substitutions occur when the SPFL
change frequency is lower than the rate of evolution or comparable to it, so our model is still suitable to study evolution
under fluctuating selection.
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