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Abstract 

Cancer proteogenomics integrates genomics, transcriptomics and mass spectrometry (MS)-based 

proteomics to gain insights into cancer biology and treatment efficacy. A proteogenomics approach 

was therefore developed for frozen core biopsies using tissue-sparing specimen processing with a 

“microscaled” proteomics workflow. For technical proof-of-principle, biopsies from ERBB2 

positive breast cancers before and 48-72 hours after the first dose of neoadjuvant trastuzumab-

based chemotherapy were analyzed. ERBB2 protein and phosphosite levels, as well as mTOR 

target phosphosites, were significantly more suppressed upon treatment in cases associated with 

pathological complete response, suggesting MS-based pharmacodynamics is achievable.  

Furthermore, integrated analyses indicated potential causes of treatment resistance including the 

absence of ERBB2 amplification (false-ERBB2 positive) and insufficient ERBB2 activity for 

therapeutic sensitivity despite ERBB2 amplification (pseudo-ERBB2 positive).  Candidate 

resistance features in true-ERBB2+ cases, including androgen receptor signaling, mucin 

expression and an inactive immune microenvironment were observed. Thus, proteogenomic 

analysis of needle core biopsies is feasible and clinical utility should be investigated.   

 

Introduction 

Cancer proteogenomics integrates data from cancer genomics and transcriptomics with cancer 

proteomics to provide deeper insights into cancer biology and therapeutic vulnerabilities.  Both by 

improving the functional annotation of genomic aberrations and by providing insights into 

pathway activation, this multi-dimensional approach to the characterization of human tumors has 

shown promise for the delineation of cancer biology and treatment options1-5. In addition, 

proteogenomics applied to patient-derived xenograft (PDX) samples has exposed potential 

predictive markers and mechanisms of tumor response and resistance 3,6,7. 

Proteogenomics has been limited by the amount of tissue required, restricting translational research 

opportunities and applicability to cancer diagnostics.  For example, the Clinical Proteomic Tumor 

Analysis Consortium (CPTAC) has required a minimum of 100mg (wet weight) of tissue from a 

surgical resection specimen, which typically yields several hundred micrograms of protein that 

provides quantitative information on >10,000 proteins and >30,000 phosphosites per sample 8. In 
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these initial projects, concerns were raised related to sample heterogeneity and pre-analytical 

variability because RNA, DNA and protein were often isolated from separate parts of the tumor 

and after variable sample ischemia periods of an hour or more. For clinical diagnostics, a 

“microscaled” approach is required, whereby a single snap-frozen tumor-rich core needle biopsy 

(10 to 20 mg wet weight) must provide sufficient DNA, RNA and protein for deep-scale 

proteogenomic profiling that includes genome sequencing, RNA sequencing, and deep-scale mass 

spectrometry-based quantification of proteins and post-translational modifications. This would 

facilitate proteogenomic profiling of clinical biopsy specimens, including paired pre- and on-

treatment analyses to determine on-target pathway inhibition and the identification of resistance 

mechanisms. Analysis of multiple cores could help mitigate the challenges of intra-tumoral 

heterogeneity. 

To achieve these goals, we have developed two complementary approaches.  First, methods were 

devised to generate high-quality DNA, RNA and protein for deep-scale DNA and RNA sequencing 

and proteome and phosphoproteome analysis from a single 14G core needle biopsy, with a uniform 

distribution of sample entering each analyte preparation protocol (Biopsy Trifecta Extraction, 

“BioTExt”). Second, we developed a microscaled liquid chromatography-mass spectrometry (LC-

MS/MS)-based proteome and phosphoproteome analysis pipeline by executing technical 

refinements to reduce by more than ten-fold the amount of input required per channel in a Tandem 

Mass Tag (TMT)-10 or TMT11-plex experiment.  This microscaled proteomics (“MiProt”) 

protocol requires only 25 ug peptide per sample. Using patient derived xenografts (PDX), we 

demonstrate that MiProt retains sufficient depth of proteome and phosphoproteome coverage when 

compared to standard protein input as illustrated previously 8. 

As technical proof-of-principal, we applied these methods to a small-scale clinical study designed 

to test the feasibility of proteogenomic profiling before and 48-72 hours after initiating 

trastuzumab-based treatment for ERBB2+ breast cancer. We chose ERBB2+ breast cancer for our 

initial study as an example of clearly-defined oncogenic kinase-driven tumor where proteogenomic 

analyses and pharmacodynamic studies should provide significant insights into variability in 

treatment outcomes 9,10. Neoadjuvant treatment with trastuzumab and pertuzumab combined with 

chemotherapy is the standard of care, producing pathological complete responses (pCR) in the 

breast and nodes in up to 75% of patients (Loibl and Gianni 2017).  Further improvements in pCR 
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and long-term remission rates depend on the identification of treatment resistance mechanisms and 

the ability to direct patient to effective alternatives when antibody-based targeting of ERBB2 fails.  

 

Results 

The laboratory protocol described herein combines two microscaling methods that provide 

preparative and analytical approaches with the following features (Figure 1): (1) the extraction 

strategy (BioTExt) maximizes the yield of analytes from small clinical samples by isolating 

proteins for MS analysis before DNA extraction from the residual pellet; (2) the interposition of 

multiple 5um sections for histological analysis to provide tumor content information throughout 

the core biopsy; (3) a sectioning approach that ensures proteomic and genomic analyses are 

conducted on near identical biological replicates; (4) successful scaling of MS-based proteomics 

technology (MiProt) for analyses of limited amounts of biopsy derived protein. 

Development and evaluation of the Biopsy Trifecta Extraction protocol (BioTExt).  

To perform proteogenomics analyses from flash-frozen diagnostic core needle biopsies, we 

devised and optimized the BioTExt protocol. A single optimal cutting temperature (OCT)-

embedded core biopsy was serially sectioned with alternating 50um sections transferred into 3 

different 1.5ml tubes (Figure 1A). A total of six sections were transferred into each tube. To assess 

sample quality, 5um sections were taken before the first and after every sixth 50um section for 

H&E staining, with adequate quality control requiring 50% average tumor content throughout the 

sample. The first tube was used to extract denatured protein and DNA, the second tube was used 

for RNA isolation, and the third tube was used to extract native protein and DNA. The denatured 

protein was subsequently used for proteomic and phosphoproteomic analyses described herein, 

and DNA and RNA were used for genomic analysis.  The native protein analyses will be described 

elsewhere.  

Development and evaluation of microscaled proteomics.  

To assess the quantity of recoverable analytes using the procedure outlined above, we applied 

BioTExt to several OCT-embedded core-needle biopsies collected from a total of 4 previously 

established breast cancer patient-derived xenograft (PDX) models: WHIM2, WHIM14, WHIM18 

and WHIM20 11. The yield for the sum of all six sections from a single biopsy in these PDX tumors 
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ranged from 2.5-14 ug DNA, 0.9-2.3 ug RNA and 280-430 ug of protein.  Extraction yields for the 

nucleic acid extractions are provided in Supplementary Figure 1A.  The yields of the three analytes 

required a method capable of providing a deep-scale proteome and phosphoproteome despite lower 

analyte input.  Because a wide range of needle sizes (14-22 gauge) are used to obtain diagnostic 

biopsies and different tumor types yield widely varying amounts of protein, a minimum of 25ug 

of input peptide/sample was set as the target. This amount should reasonably and consistently be 

obtained from six 50um curls from a needle core biopsy even in low-yield tumors or when using 

small biopsy gauges.  BioTExt also allows additional sections from each core to be reserved for 

verification studies, such as targeted MS analyses once candidate proteins and phosphosites of 

interest have been identified or for replication of full-depth discovery analyses if required due to 

technical failures.  

To obtain deep proteome and phosphoproteome coverage from 25ug of input peptide/sample, a 

tandem mass-tagging (TMT) peptide labeling approach was employed 12 (Figure 1B). Since the 

mass tags are isobaric, signals from the same peptides in each sample stack at the MS1 level, 

improving overall sensitivity for identification and quantification, a key advantage for the analysis 

of small amounts of protein. Multiplexing also increases sample analysis throughput by 10-fold 

relative to label-free approaches. Successful microscaling required several modifications to the 

bulk-optimized CPTAC workflow 8 to allow labeling, fractionation and analysis of low amounts 

of proteins. This overall method is referred to as “Microscaled Proteomics” (MiProt). 

To determine if the proteomic coverage for core-needle biopsies are comparable to those obtained 

using a workflow optimized for bulk tumors (the Clinical Proteomics Tumor Analysis Consortium 

(CPTAC) workflow) 8, a head-to-head comparison experiment utilizing previously published 

breast cancer PDX models was executed 11, including two luminal (WHIM18 and WHIM20) and 

two basal-like models (WHIM2 and WHIM14) (Figure 2A). To simulate a diagnostic analysis, 

two needle-biopsy cores were collected from each PDX model.  The cored xenograft tumors were 

then surgically removed for analysis of the residual bulk material. The cores were OCT-embedded, 

flash frozen and subjected to BioTExt followed by MiProt. The remaining bulk tumors were flash 

frozen and cryopulverized, followed by analysis using the original CPTAC workflow 8,13. Totals 

of 300ug of peptides per sample were analyzed with the original and 25ug of peptides per sample 

with the MiProt workflow using a randomized experimental layout (Supplementary Table 1). 
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Protein and phosphosite expression were reported as the log ratio of each sample’s TMT intensity 

to the intensity of an internal common reference included in each plex. Both workflows identified 

more than 10,000 proteins, of which >7,500 were identified as human. Extensive overlap was 

observed between the populations of proteins identified by the two workflows (Figure 2B, 

Supplementary Table 2A). MiProt identified >25,000 phosphosites from each core, and these sites 

showed substantial overlap with those identified by high input, bulk workflows (Figure 2C, 

Supplementary Table 2B, Supplementary Figure 2A). The identification of over 25,000 

phosphosites in the MiProt method is of particular note as this is less than a two-fold reduction in 

quantified sites relative to the CPTAC bulk workflow 8 despite using 12-fold less tumor material 

than the bulk workflow.  While prior studies have reported relatively high numbers of proteins 

from small amounts of tissue material (~4500 from small amounts of tissue material)14, the very 

large number of phosphosites we obtained using just 25 ug of peptide/sample has not been 

described previously. There was a high correlation of TMT ratios between replicates of bulk 

tumors and between replicates of cores across all 4 PDX models for both the proteomics and 

phosphoproteomics data (Figure 2D, Supplementary Figure 2B). In addition to a high degree of 

overlap in protein and phosphosite identities, expression was also highly correlated (R> 0.65) 

between cores and bulk for individual PDX models, as can be visualized by the close juxtaposition 

of core and bulk samples from the same PDX model upon unsupervised hierarchical clustering 

(Supplementary Figure 2C).  

Expression profiles of key basal and luminal markers, showed some degree of heterogeneity, 

although, showed a comparable trend overall, between bulk and core analysis (Figure 2E) at the 

levels of both the proteome and phosphoproteome for all PDX models except for WHIM20, where 

phosphorylated EGFR, phosphorylated PGR and ESR1 protein showed reduced expression in 

cores relative to bulk, suggesting that there may be some heterogeneity in this particular PDX 

model as shown previously 11.  By contrast, ERBB2, a breast cancer marker that should not be 

highly expressed in these clinically ERBB2- (no ERBB2 amplification) cases showed more 

uniform expression across the different PDX models. Overall, cores provided proteomics data that 

yielded results consistent with those obtained from global expression profiles from bulk tissue. 

To address whether differentially regulated pathways and phosphosite-driven signaling in luminal 

versus basal subtypes were captured by the microscaled workflow, pathway-level and kinase-
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centric analyses were applied to the bulk and core sample data. Single-sample gene-set enrichment 

analysis (ssGSEA) was applied to proteomics data, and post-translational modifications set 

enrichment analysis (PTM-SEA) to the phosphoproteomic data 15,16. The luminal-basal differences 

captured by bulk tissue analysis were highly correlated with differences detected using cores for 

both protein and phosphosite expression (Figure 2F, Supplementary Table 2C, D). Of note, the 

data recapitulates previously observed luminal-basal differences, which provided a quality metric 

for the proteomics dataset both for cores and bulk tissue 2,6. The same conclusion was reached in 

bulk versus core comparisons performed on the normalized TMT protein ratios for individual PDX 

models (Supplementary Figure 2D). Despite identifying ~40% fewer phosphorylation sites, most 

of the differential Luminal-Basal kinase signatures identified in the bulk tissue were captured by 

MiProt (Figure 2F, right).  

Application of microscaled proteogenomic analyses to clinical core biopsies from patients 

treated for ERBB2+ locally advanced breast cancer.  

The effectiveness of the BioTExt and MiProt analyses in PDX models encouraged the application 

of these methods to clinical tumor samples acquired in the context of a small-scale ERBB2+ breast 

cancer study (Discovery protocol 1 (DP1); NCT01850628). This study was designed primarily to 

investigate the feasibility of proteogenomic profiling before and immediately after initiating 

trastuzumab-based treatment for ERBB2+ breast cancer. Patients with a palpable breast mass 

diagnosed as ERBB2 positive breast cancer by a local laboratory were treated at the physicians’ 

discretion, typically with trastuzumab in combination with pertuzumab and chemotherapy.  The 

regimens included docetaxel or paclitaxel, the former often combined with carboplatin. The 

protocol (https://clinicaltrials.gov/ct2/show/study/NCT01850628) was designed to study acute 

treatment perturbations by accruing OCT-embedded core needle biopsies before and 48 to 72 hours 

after treatment (referred to pre-treatment and on-treatment, respectively, throughout the text).  

As shown in the REMARK (Reporting Recommendations for Tumor Marker Studies) 17 diagram 

(Supplementary Figure 3), core biopsy samples were available from 19 patients. Proteogenomic 

analysis could be conducted on samples from 14 patients as five cases had low tumor content 

biopsies.  For the included samples, the analyte yield varied across different cores, but the lower-

range yields of DNA, RNA and protein (0.4ug, 0.2ug, and 45ug respectively) were sufficient to 

demonstrate the suitability of the optimized extraction protocol for clinical biopsy specimens 
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(Supplementary Figure 1B). Protein, and RNA when available, was also analyzed for on-treatment 

cores from 10 patients, with analysis of duplicate pre- and on-treatment cores achieved in four of 

the patients, and of triplicate cores in one patient (Figure 3A). In total, 35 cores were analyzed.  

Tumor and germline whole-exome sequencing was performed using DNA from a single baseline 

core for all 14 patients.  DNA isolated from cores using BioTExt yielded target coverage 

comparable to that from genomic DNA isolated from blood (generated using standard organic 

extraction techniques), indicating there was no compromise in DNA quality when a protein-

sparing technique was used (Supplementary Figure 4A). Transcriptome analysis was successful 

for 30 cores with available RNA, corresponding to 11 of the 14 patients, and TMT 11-plex-based 

proteomics analysis was performed for all 35 cores.  

On average, we obtained copy number information on >27,000 genes, measured mRNA transcripts 

for >19,000 genes, and quantified >10,000 proteins and >17,000 phosphosites from each 

individual patient sample, with a large overlap of gene identification across different datasets 

(Figure 3B, Supplementary Table 3, 4). This was equivalent to the depth obtained in previous 

large-scale breast cancer proteogenomics efforts based on bulk tissues, with the exception of the 

phosphoproteome coverage, which achieved about half of the number of sites previously reported 

for tumor bulk-level characterization 2,18. For 13 out of the 14 cases, ERBB2 amplification was 

confirmed by exome sequencing along with amplifications and mutations in a range of genes 

previously implicated by the TCGA and ICGC breast cancer studies (Supplementary Figure 4B) 

19,20, including mutations in TP53 in 6 out of the 15 patients, PIK3CA missense mutations in 

BCN1371 and BCN1325, and a somatic nonsense mutation in BRCA1 in BCN1335. We also 

observed a similar overall pattern of chromosomal amplifications and deletions between patients 

in this clinical trial and the subset of ERBB2+ tumors from TCGA, including a high frequency of 

previously described amplifications of chromosomes 1, 8, and 20 (Supplementary Figure 4B) 20. 

The median gene-wise Spearman correlation between mRNA and protein across patient cores was 

0.38, consistent with previous bulk-focused proteogenomics studies (Supplementary Figure 4C) 

1,2,4,18. In addition, co-expression networks derived from MiProt protein expression better predicted 

KEGG pathway function than those derived from mRNA expression for a similar proportion of 

pathways as previously reported for the published CPTAC breast cancer cohort 21 (Supplementary 

Figure 5A). Deep-scale proteogenomic analysis of duplicate and pre- and on-treatment cores from 

the same patient allowed an assessment of BioTExt sample processing reproducibility. 
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Unsupervised hierarchical clustering based on 500 most-variable genes resulted in all duplicate 

cores clustering together at the level of mRNA, protein and phosphosite expression with the 

exception of samples from case BCN1365, where pre- and on-treatment profiles did not cluster 

together at the level of phosphosite expression (Supplementary Figure 5B). In summary, the data 

generated using microscaled methods was of comparable quality to previous bulk tissue-focused 

proteogenomics reports and yielded observations that were consistent with the expected biology 

for tumors diagnosed as ERBB2+.  

Proteogenomic analysis of the ERBB2 locus suggests false positive clinical diagnoses. 

All the patients in this study were locally diagnosed as ERBB2+ based on standard fluorescence 

in situ hybridization (FISH) and immunohistochemistry (IHC)-based approaches.  A pathological 

Complete Response (pCR) occurred in 9/14 cases (64%), but 5 patients had residual cancer at 

surgery (non-pCR).  To probe the possibility that some of the non-pCR cases were due to 

misassignment of ERBB2 status, proteogenomic analysis of the region of chromosome 17q 

spanning the ERBB2 locus and adjacent genes was performed (Figure 3D).  Most obviously, 

exome sequencing of BCN1326 did not show amplification of ERBB2 or other nearby genes 

(Figure 3D, upper panel) and exhibited markedly lower levels of ERBB2 RNA (Figure 3D, middle 

panel) and protein expression (Figure 3D, lower panel) than pCR cases, suggesting a false positive 

(False ERBB2+). Additionally, expression levels from genes immediately flanking ERBB2 

(STARD3, PGAP3 and GRB7, highlighted in red in Figure 3D) were lower than pCR cases.  

BCN1331 and BCN1335 may represent a more subtle form of false positivity.  While these 

samples showed a gain of ERBB2 copy number, ERBB2 protein levels remained low, similar to 

BCN1326.  BCN1335 also showed greater absolute amplification of TOP2A than of ERBB2 (see 

black arrow Figure 3D upper panel), and the TOP2A protein was markedly over-expressed 

compared to all other cases (Figure 3D lower panel, of note the RNA analysis failed in this sample). 

This suggests that TOP2A was the more likely driver in this case.  Levels of STARD3, PGAP3 

and GRB7 both for RNA (BCN1331) and protein (BCN1331 and BCN1335) were also low, 

indicating that the amplicon may not drive sufficient ERBB2 expression for treatment sensitivity, 

which, we refer to as “Pseudo ERBB2 positive”.  When comparing these three false positive 

samples as a group with the nine “true” ERBB2 positive pCR cases, both the arithmetic mean for 

STARD3, ERBB2 and GRB7 protein log TMT ratios and the protein log ratios of each gene 
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separately were significantly lower in the proposed false ERBB2 positive cases (mean: p=0.0114, 

STARD3: p=0.0255, ERBB2: p=0.0073, GRB7: p=0.0399). Protein levels of ERBB2 dimerization 

partners ERBB3 and ERBB4, as well as phospho-ERBB3, were also significant under-expressed 

in all three proposed false positive-samples when compared to the pCR cases (ERBB3 protein: 

p=0.0097, ERBB3 phosphoprotein: p=0.0318, ERBB4 protein: p=0.0131) (Figure 3E).  In 

contrast, protein and phosphoprotein levels of EGFR, the remaining dimerization partner of 

ERBB2, does not appear to be correlated with ERBB2 levels and was high in the non-pCR samples, 

suggesting that EGFR homodimers may play a driver role in signaling when ERBB2 is low 22,23. 

Thus, BCN1335 and BCN1331 represent “pseudo” ERBB2 positive cases, i.e. false ERBB2 

positive cases for which proteogenomic evidence reveals insufficient ERBB2 expression to attain 

pCR despite gains in ERBB2 gene copy number.  A central immunohistochemistry analysis 

indicated that ERBB2 was 1+ in BCN1326 and 2+ in BCN1335 and BCN1331, all the pCR cases 

were assigned 3+ staining (Supplementary Figure 6A).  In contrast to the three ErbB2 low-

expression cases, BCN1371 and BCN1369 were both non-pCR cases despite exome-confirmed 

ERBB2 amplification, ERBB2 RNA and protein expression similar to pCR cases with IHC 3+ 

ERBB2 staining and over-expression of STARD3, PGAP3, GRB7, ERBB3 and ERBB4 (Figure 

3D).  These two cases therefore represent examples of true positive cases with intrinsic therapeutic 

resistance. Supporting the quantitative potential of microscaled proteomics, the samples with an 

IHC score of 3+ in a central assay showed significantly higher levels of ERBB2 expression than 

tumors scored 1+ or 2+ (p=0.00013).   Parallel reaction monitoring (PRM) was also deployed as 

an orthogonal label-free protein quantification method on the same samples with an excellent 

correlation (R=0.92, p value=0) between the TMT and PRM-based MS approaches 

(Supplementary Figure 6B-D). 

Proteomics and phosphoproteomic analyses of acute on-treatment samples demonstrates 

pharmacodynamic monitoring for response prediction is achievable. 

The clinical study was primarily designed to test the feasibility of proteogenomics analysis to 

identify early markers for responsiveness to ERBB2-directed monoclonal antibody therapy 

Proteomics, Phosphoproteomics and RNAseq (for comparison) was therefore conducted on pre- 

and on-treatment core biopsies for nine patients with pCR and three patients without pCR. 

Differential treatment-induced changes were not observed at the RNA level and trended but did 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 9, 2019. ; https://doi.org/10.1101/796318doi: bioRxiv preprint 

https://doi.org/10.1101/796318
http://creativecommons.org/licenses/by-nc-nd/4.0/


Satpathy et al., Microscaled Proteogenomic Methods for Precision Oncology 

11 

not reach significance at the ERBB2 protein level (Figure 4A; while the ERBB2 protein levels 

showed significant reduction in pCR cases (p=0.031), the p-value for the comparison of this 

reduction between pCR and non-pCR cases was 0.067).  However, greater downregulation of 

ERBB2 phosphoprotein (mean of all ERBB2 phosphosites) levels after 48-72 hours in pCR cases 

than in non-pCR cases was observed (two sample sum rank test, p=0.017; Figure 4A). To explore 

these data further, limma 24, a more advanced statistical method specifically designed for 

differential expression analysis of small sample size studies, was employed. (Supplementary Table 

5). Differential ERBB2 RNA expression was again not seen for any comparison (Supplementary 

Figure 7). However, there was significant pCR-specific downregulation for both ERBB2 protein 

(limma: p=0.002 for pCR, p=0.63 for non-pCR, and p=0.029 for pCR vs. non-pCR) and 

phosphoprotein levels (p=0.000014 for pCR, p=0.88 for non-pCR, and p=0.0086 for pCR vs. non-

pCR) (Supplementary Table 5).  More importantly, differential analysis of individual 

phosphorylation sites revealed pCR-specific significant downregulation of several phosphosites 

on proteins from the pathway, including sites on ERBB2 and SHC1, an adaptor that binds to 

ERBB2 25 (Figure 4B). Most of the significant changes that were at least 2-fold and that affected 

the ERBB2 pathway were observed in the site-level phosphoproteomics data (Figure 4B; 

Supplementary Figure 7).  

Given the well-understood kinase signaling cascades downstream of ERBB2 22, a recently 

published tool for pathway analysis of phosphosites, PTM-SEA, was applied to the 

phosphoproteomics data 15. This program uses a manually curated post-translational modification 

site database, PTMsigDB (https://github.com/broadinstitute/ssGSEA2.0), to estimate the activity 

for phosphoproteomics signatures resulting from chemical or genetic manipulation of a pathway 

or for kinases by analyzing signatures for target substrates with validated biochemical evidence. 

Figure 4C shows significant phosphosite signatures for the comparisons tested (on- vs pre-

treatment changes in pCR only and in non-pCR only) (Supplementary Table 6). Supplementary 

Figure 8 shows a heatmap of phosphoproteome driven signatures that were significantly 

differentially regulated (FDR <0.05) upon treatment in either of the two groups. While the inferred 

activities of CDK1 and CDK2 kinases (KINASE−PSP_CDK1, KINASE−PSP_CDK2) were 

upregulated in the non-pCR patients, downregulation of mTOR activity (KINASE-PSP_mTOR) 

was most prominent exclusively in pCR cases upon treatment. This comparison of pre- and on-
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treatment samples thus suggests that in vivo downregulation of mTOR signaling, downstream of 

ERBB2, during treatment leads to a more favorable response.  

Pathway enrichment analysis reveals variability in the tumor immune microenvironment 

and other putative response features in individual non-pCR cases. 

To explore candidate biological processes that may contribute to inadequate response to therapy 

in non-pCR cases, RNA, protein and phosphoprotein outlier analyses on data from each pre-

treatment core from the non-pCR cases with respect to the set of pre-treatment pCR cores was 

performed. Specifically, Z-scores were calculated for each gene/protein in a given individual non-

pCR core relative to the distribution established from all of the pre-treatment pCR cores. The Z-

scores of ERBB2 protein expression in non-pCR cases were consistent with the observations noted 

above; ERBB2 RNA, protein and phosphoprotein levels in patients BCN1326, BCN1331 and 

BCN1335 were outliers with negative Z-scores while ERBB2 expression in patients BCN1369 

and BCN1371 lied within the normal distribution of the pCR cases (Figure 5A, Supplementary 

Figure 9). Z-scores derived from the outlier analysis for each of the data points (RNA, proteome 

and phosphoproteome; see Supplementary Table 7A) were used for single sample Gene Set 

Enrichment Analysis (ssGSEA).  Figure 5B highlights a subset of immune-centric and oncogenic 

signaling pathways that showed differential enrichment in the non-pCR cases. The expanded list 

is available as Supplementary Table 7B. Consistent, significantly enriched pathway-level 

differences across replicate cores and multiple data types from a single patient was observed 

(Figure 5B), confirming that microscaled proteogenomics data obtained from cores in a clinical 

setting yield reproducible results. Interestingly, distinct biological pathways showed differential 

enrichment in each of the individual non-pCR cases relative to the pCR class (Figure 5B, 

Supplementary Table 7B).   

Of the complex patterns revealed by differential pathway analysis immune-related and interferon 

signaling pathways showed consistent upregulation across the data sets in samples from two of the 

three cases with lower expression of ERBB2, BCN1326 and BCN1331. In contrast, these pathways 

showed variable downregulation for the remaining non-pCR cases. To further explore these 

findings, the expression of T cell receptor (CD3 isoforms and CD247) and immune checkpoint 

(PD-L1, PD1, and CTLA4) genes were analyzed and immune profiles from the RNA-seq data 

using established tools were generated (Cibersort, ESTIMATE, and xCell). Examination of 
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immune profile scores and of expression of T cell receptors and targetable immune checkpoint 

regulators supported the presence of an active immune response in BCN1326 relative to other 

samples (Figure 5C, Supplementary Figure 10). Similarly, immune profile scores also indicated 

that BCN1331 had an activated immune microenvironment, and PD1 RNA expression was higher 

in this patient than in any other case (Figure 5C).  The five non-pCR cases were stained for the 

pan T-cell marker CD3 to validate these proteogenomic findings (Figure 5D). Consistent with the 

active immune microenvironment (Figure 5C), both BCN1326 and BCN1331 demonstrated tumor 

T-cell infiltration. In contrast, a predominant peri-tumoral or “immune-excluded” inflammatory 

reaction was observed in BCN1335 and a complete paucity of T-cells (immune-desert) was 

observed in the two resistant proteogenomically confirmed ERBB2+ cases, BCN1371 and 

BCN1369, consistent with the lack of immune signaling documented in Figure 5B.  

Other variable differential features in resistant cases included PI3K/AKT/mTOR and MAPK 

signaling, all of which represent potential therapeutic opportunities.  ERBB2 pathway activation 

in BCN1331 is unexpected given the very low level of ERBB2 protein but could be explained by 

expression of EGFR/pEGFR (Figure 3E).  MYC targets were consistently upregulated at the 

protein and phosphoprotein levels in BCN1326 and BCN1335 and the androgen response pathway 

was upregulated at all levels in BCN1371. Consistent with the elevated AR signaling observed in 

BCN1371 (Figure 5B), this tumor exhibited histologic features of an apocrine cancer with 

intensely eosinophilic cytoplasm and AR expression (Supplementary Figure 11 middle and lower 

panel). Interestingly, BCN1331 also expressed AR by IHC (Figure 5D) without activation of an 

androgen response signature or apocrine features (Supplementary Figure 11), consistent, with the 

disconnect between AR expression and AR signaling in breast cancer noted by others 26. Also, for 

patient BCN1371, we did not see significant upregulation of PI3K signaling (Figure 5B) despite 

PIK3CA mutation (E545K), consistent, with the disconnects between PIK3CA mutation and 

effects when signaling was assessed by reverse phase protein array (RPPA) 19,27. Table 1 

summarizes the proteogenomic features observed for each non-pCR case. 

ERBB2+ Patient derived xenograft (PDX) models provide a setting to explore candidate 

trastuzumab resistance mechanisms and therapeutic alternatives. 

To further explore therapeutic resistance pathways in the proteogenomic data, association analyses 

between patient-centric RNA, protein and phosphoprotein outliers and the published literature 
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were performed (Supplementary Figure 12). For each gene or protein, the terms “breast cancer” 

and “resist OR recur” were used to query the text from freely accessible article abstracts and 

keywords in the PubMed database to search for previously studied associations between the outlier 

genes and breast cancer resistance. Genes with highest filtered PubMed citation counts include 

well-studied proteins such as ESR1, BRCA1/2, TP53, EGFR, and AKT1 in addition to ERBB2 

(Supplementary Table 8). As expected, ERBB2 was among the most prominent negative protein 

and phosphoprotein outliers in BCN1326, BCN1331, and BCN1335 that were associated with the 

keyword “resistance” (Supplementary Figure 12). Furthermore, TOP2A also stands out as being 

strongly associated with “resistance” from other outliers with high protein and phosphoprotein 

levels in BCN1335, the psuedo-ERBB2+ patient for whom the amplified locus appears to be 

driving TOP2A rather than ERBB2 expression (Supplementary Figure 12; Figure 3D). However, 

the most prominent proteomics outlier for patient BCN1369, MUC6, was not associated with 

citations containing the keyword “resistance” (Supplementary Figure 12). Nonetheless, multiple 

mucin family members were outliers with high protein expression specifically in this patient, two 

of which had citations associated with “resistance” (Supplementary Figure 12). The consistently 

high levels of mucin protein expression in patient BCN1369 are clearly discernible in the heatmap 

shown in Figure 5E. This observation is notable because mucin expression has been proposed to 

mask ERBB2 epitopes and prevent trastuzumab binding, as shown previously in cell lines 10,28,29. 

Since therapeutic hypotheses cannot be explored directly in non-pCR patients, the foregoing 

hypotheses about potential mechanisms of resistance are entirely speculative. To build an approach 

whereby potential resistance mechanisms could be explored experimentally, a published 

proteogenomic analysis was analyzed to determine of any of features of the resistant tumors in the 

DP1 study were phenocopied in ERBB2+ patient-derived xenografts (PDX) 6. This analysis 

focused on two ERBB2+ PDX models, WHIM8 and WHIM35 both of which were shown to be 

responsive to lapatinib, a small molecular inhibitor against ERBB2, indicating they were true 

ERBB2+ cases 6. Interestingly, WHIM35 has high expression of mucin proteins compared to 

WHIM8 (Supplementary Figure 13A) indicating this case was a phenocopy of BCN1369 

(Supplementary Figure 13B). Consistent with cell line-based studies reported in the literature 30-33 

that proposed that mucin expression might inhibit trastuzumab-mediated response, trastuzumab 

induced tumor regression in WHIM8 but not in WHIM35 (Figure 5F). Drawing from the 

observation that BCN1369 also exhibited elevated PI3K-Akt-mTOR signaling (Figure 5B), 
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together with a recent report that showed mTOR mediated MUC1 induction in multiple breast 

cancer cell lines 30, these PDX models were additionally treated with the small molecule mTOR 

inhibitor everolimus. Everolimus in combination with ERBB2-targeted therapy induced 

significant regression (Figure 5F) in the otherwise trastuzumab-resistant WHIM35 model, 

providing support for mucin overexpression as a “candidate” resistance mechanism that could 

potentially be overcome by treatment with a small molecule inhibitor of ERBB2 or downstream 

targeting of mTOR activity. 

Discussion:  

In this study, we achieved deep-scale multi-omics profiling of core needle biopsy material obtained 

in a clinical setting using the combined, integrative, tissue-sparing “BioText” approach described 

in the manuscript and applied this optimized microscaling methodology to a small cohort of breast 

cancer patients treated with chemotherapy and anti-ERBB2 therapy. Recently, Humphrey et al also 

described deep-scale phosphoproteomics analyses of cultured cell line lysates by label-free, single 

shot LC-MS/MS34.  This study obtained ~14,000 phosphosites when starting with 200ug of protein 

and ca. 4000 phosphosites using 25 ug of input protein. Prior efforts at proteomic and 

phosphoproteomic analysis of core needle biopsies of tumor tissue using “one-shot” data-

independent analysis 14,35,36 or off-line SCX fractionation combined with a super-SILAC approach 

quantified ~2,000–5,000 proteins and ~3800 phosphorylation sites per core. Importantly, none of 

these prior studies carried out genomic analyses on the same set of samples. In contrast, our 

workflow provided deep-scale genomic, proteomic and phosphoproteomic analysis, identifying 

more than 11,000 proteins and 25,000 phosphorylation sites in PDX tissue and >17,000 in clinical 

tumor needle cores for integrative multi-omics analyses. The alternating tissue sectioning approach 

provided exceptional control over sample quality, reduced sampling bias and ensured sample 

consistency across the multi-omics analysis. Some of the improvement in depth that we 

demonstrate is undoubtedly due to the use of newer generation LC-MS/MS instrumentation. 

Nonetheless, an optimized multiplexing protocol enabled us to achieve this depth from as little as 

25 ugs of peptides per core, rendering the pipeline viable for material obtained attained from a 

typical 14 to 22-gauge clinical biopsy needle.  

We illustrate the potential utility of these microscaled methods by applying them to a breast cancer 

clinical study, a key component of which was the collection of on-treatment samples 24-48 hours 
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after anti-ERBB2 therapy was initiated. This allowed an assessment of the immediate effects of 

inhibiting the ERBB2 pathway and potentially provides an early time point to determine whether 

a patient is likely to experience a pCR. Despite the small cohort size, we detected statistically 

significant downregulation of ERBB2 protein and phosphosite levels and of a phosphosite 

signature for downstream mTOR targets in pCR patients. Of the 7 (out of 21 total ERBB2 sites 

identified in Supplementary Table 4) phosphosites from ERBB2 with complete data across the 

cohort, all showed downregulation to varying extents in the pCR cases (Supplementary Table 5). 

Of the 21 sites identified, only two have been characterized in detail in cell lines (see 

www.phosphosite.org). These are pY-1248, a known auto-activation site 37, and pT-701, which 

may serve as a negative feedback site 38, although their in-vivo roles are largely unexplored. The 

role of downregulation of ERBB2 phosphorylation in response to treatment is complicated by the 

observed downregulation of ERBB2 protein levels, but from a biomarker perspective these are 

secondary questions that do not negate the primary conclusion that we were able to make a valid 

pharmacokinetic observation. We would point out that hitherto essentially all our understanding 

of the complex signaling properties of ERBB2 arise from experimental systems not, as we illustrate 

here, from patients under anti-ERBB2 treatment. Most importantly, our ability to resolve 

complexity in this setting to assess inhibition of ERBB2 signaling is also revealed by 

downregulation of a signature of target sites for mTOR, a kinase activated downstream of ERBB2, 

specifically in pCR patients (Figure 4C). Since treatment with other inhibitors may not directly 

affect the protein or phosphorylation levels of their targets, the observation of an effect on 

downstream signaling in the phosphosite data provides critical support for the efficacy of our 

microscaling approach to assess response in future studies. 

An initial proteogenomic focus on ERBB2 is readily justified given the biological variability 

within tumors designated ERBB2 “positive”. The testing guidelines are designed to offer as many 

patients anti-ERBB2 treatment as possible, even though it is recognized that this “catch all” 

approach likely includes a number of true-negative cases that do not benefit from these treatments 

39.  Our analysis is not intended to be definitive or clinically actionable as the sample size is small 

and our pipeline is research-based.  However, our preliminary analyses suggest three classes of 

resistance mechanisms to ERBB2-directed therapeutics can be defined. False-positives are 

exemplified by case BCN1326. In retrospect, this case was initially diagnosed by FISH but ERBB2 

protein was not over-expressed when re-analyzed using standard IHC (IHC 1+).  Three 
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independent pretreatment and three post treatment biopsies were analyzed, which helps rule out 

tumor heterogeneity as a likely cause of the misdiagnosis. The second class of potential 

misclassification is “pseudo-ERBB2 positive”. As represented by cases BCN1331 and BCN1335, 

there was evidence for amplification of ERBB2, but proteogenomic evidence suggests that ERBB2 

is not a strong driver including: a) lower levels of ERBB2 protein and phosphoprotein compared 

to pCR cases; b) low expression from other genes within the minimal ERBB2 amplicon (STARD3, 

PDAP3 and GRB7); and c) a paucity of expression of dimerization partners ERBB3 and ERBB4. 

Our successful validation of ERBB2 levels using single shot parallel reaction monitoring hints at 

a more efficient approach than the TMT multiplex assay that ultimately could form the basis of a 

clinical assay (supplementary Figure 6).  The third resistance class demonstrated lack of pCR 

despite proteogenomic evidence for true ERBB2 positivity. Here proteogenomic analysis provided 

candidate mechanisms of resistance to consider, such as the upregulation of mucin proteins, active 

androgen signaling or the lack of an antitumor immune response.  

We emphasize our purpose herein is not to make definitive clinical conclusions, but to illustrate 

the wide range of resistance biologies that microscaled proteogenomics methodologies can reveal, 

thus promoting further investigation. We certainly acknowledge that the therapeutic alternatives 

suggested in this pilot study require considerable further study.  For example, for BCN1335 the 

proteogenomic profile (both DNA and protein) suggests that TOP2A is a more likely driver, with 

higher amplification and protein expression than ERBB2. Here, ERBB2 was on the “shoulder” of 

the amplicon giving rise to the potential misdiagnosis. The treatment of ERBB2+ breast cancer 

has moved away from anthracyclines 40, but, perhaps in cases such as this, doxorubicin could be 

reconsidered 41. The comprehensive nature of the proteogenomic data allows efficient exploration 

of multiple causes for treatment failure at the level of pathway activity, illustrated by androgen 

receptor signaling in BCN1371 (Figure 5B) and mucin expression in BCN1369 (Figures 5E). For 

both examples, there is prior evidence for a role in resistance to trastuzumab but persistent 

controversy regarding the clinical actionability of these proposed mechanisms 29,42,43.   

The PDX experiments we describe are designed to illustrate how proteogenomic analyses can be 

used to identify individual PDX that “phenocopy” hypothetical resistance mechanisms observed 

clinical specimens thus promoting  preclinical investigation3,6. Here we were able to identify a 

mucin-high (WHIM35) and a mucin-low (WHIM8) ERBB2+ pair of PDX tumors suitable for 
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exploring alternative treatments for mucin positive, trastuzumab-resistant cases. Pathway analyses 

of the mucin-positive clinical case BCN1369 indicated strong mTOR activity at the RNA, protein 

and phosphoprotein levels, suggesting that a therapeutic intervention with everolimus, an FDA-

approved rapamycin-based mTOR inhibitor for ER+ advanced breast cancer 44 could provide an 

effective treatment in the setting of mucin-driven resistance. Subsequent therapeutic modeling 

confirmed everolimus increased trastuzumab efficacy in WHIM35 but not in the mucin-negative 

WHIM8 PDX, where trastuzumab alone was effective and everolimus ineffective. We would point 

out that from a proteogenomic standpoint mucin expression alone is likely not adequate to identify 

the correct population for a prospective clinical trial, as the establishment of true ERBB2+ status 

and a high mTOR signature could also be important.   

Another important feature of the microscaled proteogenomic analysis presented herein is the 

ability to assess the immune microenvironment. This has become a critical aspect of breast cancer 

diagnostics with the approval of the PDL1 inhibitor atezolizumab in PDL1+ advanced TNBC45. 

PDL1 IHC is used as a predictive biomarker for atezolizumab, but the optimal approach to the 

analysis of the immune microenvironment remains under investigation46.  BCN1326 and 

BCN1331, examples where the diagnosis of ERBB2 positive status was challenged by 

proteogenomic analysis, displayed proteomic evidence for PDL1, phospho-PD-L1, and phospho-

PD1 expression, consistent with the infiltrating TIL patterns that were observed. Thus, in the 

future, PD1/PDL1 assessment by proteogenomics could be considered for prediction of PDL1/PD1 

antibody efficacy. 

While the microscaled proteogenomic methods were deployed here in the context of a clinical trial 

in breast cancer, they are patently extensible to any other solid tumor.  The analyses described are 

not designed for clinical use, although potentially the time required to go from needle core biopsy 

to actionable results (2 to 4 weeks) is similar to next generation DNA and RNA sequencing. 

Analysis time could be reduced with automation of sample processing, the use of faster 

instrumentation and orthogonal gas phase fraction such as FAIMS 47-49. Furthermore, the protocol 

as presented can be readily adapted for use as a diagnostic tool by redirecting some of the denatured 

protein obtained using the BioTExt procedure to PRM assays developed for targets delineated in 

larger clinical discovery datasets, and, as illustrated for ERBB2 (Supplementary Figure 6). 
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In conclusion, our study provides the methodology for proteogenomic analysis of core biopsy 

material from cancer patients.  The small cohort size prevents any definitive conclusions regarding 

the clinical utility however we have demonstrated that the identification of relevant proteogenomic 

features in core biopsies is a feasible exercise. We can now seek definitive clinical conclusions 

through analyses involving larger numbers of patients. 

Figure Legends 

 

Figure 1: Biopsy-trifecta extraction based proteogenomics workflow 

A. In the Biopsy Trifecta EXTraction (BioTEXT) protocol, patient derived OCT-embedded needle 

core biopsies are sectioned, followed up by extraction of DNA, RNA and proteins for deep-scale 

proteogenomics characterization and by immunohistochemistry-based imaging. B. The 

Microscaled Proteomics (MiProt) workflow allows deep-scale proteomics and phosphoproteomics 

characterization with 25ug of peptides per core-needle biopsy. MiProt uses a common reference 

that could be used for comparison across all samples within a single-TMT10/11 plex and across 

several TMT10/11 plexes spanning several core biopsies. 

  

Figure 2: Evaluation of BioText and MiProt workflow on preclinical PDX models.   

A. Non-adjacent, core needle biopsies were collected from 2 basal and 2 luminal PDX models 

followed by surgical removal of tumors. Proteomic and phosphoproteomic characterization of 

cores were performed using the MiProt workflow, and the bulk tissue was characterized using 

CPTAC workflow described in Mertins, et.al. 8 B Venn-diagram showing the number of overlap 

between human and mouse or human proteins quantified in cores and bulk tissue. C. Venn-diagram 

shows the overlap between human and mouse or human phosphosites. D. Pearson correlation of 

TMT ratios for proteins (left) and phosphosites (right) between each sample from both cores and 

bulk across all 4 PDX models. E. The heatmap shows the TMT ratios for key differentially 

regulated Luminal versus Basal breast cancer associated proteins and phosphoproteins (average 

expression of identified phosphosites) identified across both bulk and cores experiments. F. Gene-

centric and phosphosite-centric pathway or kinase activity enrichment analysis was performed 

using GSEA (MSigDB “Cancer Hallmarks”, left) and PTM-SEA (PTMSigDB, right), 

respectively, for Luminal-Basal differences captured in bulk (y-axis) and core (x-axis) tissue. 

limma derived signed Log10 p-values were used to pre-rank differential features for both GSEA 
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and PTM-SEA analysis. The pathway/phospho-signatures that are significant in both cores and 

bulk are indicated in brown. 

  

Figure 3: Application of microscaled proteogenomics to the “Discovery protocol 1” clinical 

trial (DP1), a small scale trial focused on trastuzumab-based neoadjuvant chemotherapy. 

A. Overview of proteogenomics samples obtained from pre- and on-treatment core biopsies from 

the DP1 clinical trial. Each block indicates the data obtained from a separate core. B. Microscaled 

proteogenomics achieves a high level of proteogenomics depth for the DP1 core needle biopsies. 

Table summarizing total proteogenomics coverage and numbers of mutated genes for all samples 

and average coverage across all analyzed cores is shown on the left. C. The Venn-diagram shows 

the overlap between all genes identified across RNA-seq, proteomics and phosphoproteomics. D. 

Heatmap summarizing proteogenomics features of ERBB2 amplicon and adjacent genes at the 

level of CNA, RNA and Protein expression. The set of genes in red make up the core of the ERBB2 

amplicon and showed consistently high copy number amplification, RNA, and protein levels in all 

of the pCR cases (True ERBB2+ pCR set on the right) and in BCN1371 and 1369 (True ERBB2+ 

non-pCR set) but significantly lower protein levels in BCN1326 (False ERBB2+) and BCN1331 

and BCN1335 (Psuedo ERBB2+ set). The arrows point to the amplified TOP2A gene and protein 

in BCN1335. D. The heatmap at the bottom shows corresponding Z-scores of RNA, protein, and 

phosphoprotein expression of ERBB1-4 across all 14 patients. ERBB3 protein and phosphoprotein 

and ERBB4 protein levels were also significantly lower in BCN1326, BCN1331, and BCN1335 

than in the set of pCR cases.  

 

Figure 4: Dual anti-ERBB2 therapy results in downregulation of ERBB2 and mTOR 

signaling in cases with pCR. 

A. Effect of anti-ERBB2 treatment on ERBB2 RNA, protein, and phosphoprotein levels for each 

patient with on-treatment data. P-values for paired Wilcoxon signed rank tests for on-treatment vs. 

pre-treatment ERBB2 expression for each group . The pCR vs. non-pCR p-values are derived from 

Wilcoxon rank sum tests comparing log2 fold changes of on-treatment to pre-treatment levels from 

pCR patients to those from non-pCR patients. For patients with multiple cores, the mean 

expression value was used. B. Scatter plot showing differential regulation of phosphosites before 

and after treatment in pCR and in non-pCR cases. Shown are the on-treatment vs. pre-treatment 
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log2 fold changes in non-pCR (y-axis) vs. the log2 changes in pCR samples (x-axis) for 

phosphosites with p-value <0.05 by limma analysis of differential expression in either group. Blue 

and green circles indicate phosphosites in pCR and non-pCR, respectively that show significant 

differential regulation in either group alone. Purple circles indicate significantly regulated 

phosphosites in both sets of patients. The orange diamond outlines highlight phosphosites on 

proteins in the KEGG ErbB signaling pathway (hsa04012). The transparency of each point reflects 

it’s significance after BH-adjustment (adjusted p<0.05 is solid, and more transparent points have 

higher adjusted p-values). C. PTM-SEA was applied to the signed Log10 p-values from limma 

differential expression analysis of on- vs. pre-treatment phosphosite levels from pCR cases (upper 

panel) and non-pCR (lower panel). The volcano plot shows the Normalized Enrichment Scores 

(NES) for kinase signatures. Red circles indicate signatures with significant FDR (<0.05). 

Figure 5: Proteogenomics analysis of baseline untreated samples suggest diverse “candidate” 

mechanisms of resistance in non-pCR cases. 

A. Outlier analysis was performed to identify differentially regulated mRNA, proteins or 

phosphoproteins in each pre-treatment sample from non-pCR cases relative to the set of pre-

treatment samples from all pre-treated pCR cases. Shown is the ERBB2 protein distribution across 

all patients; brown and green bars indicate the frequencies for each protein level bin in non-pCR 

and pCR, respectively. The line shows the normal distribution of pCR samples from which the Z-

score for each non-pCR sample was derived. Corresponding Z-scores levels are indicated in red. 

B. Heatmap showing normalized enrichment scores (NES) from single sample Gene Set 

Enrichment Analysis (ssGSEA) of outlier Z-scores from non-pCR cases. Shown are a subset of 

differentially regulated pathways with false-discovery rate less than 25% (FDR <0.25). C. 

Heatmap showing expression levels of key immune-checkpoint and T-cell marker (CD3) genes 

and of RNA based immune and stroma scores from ESTIMATE, Cibersort, and xCell. D. 

Photomicrographs showing anti-CD3 immunohistochemical staining profiles of non-pCR cases 

(original magnification: 20x).  E. Heatmap showing Mucin protein expression across all pre-

treated patients. F. WHIM8 and WHIM35 PDX models were treated with vehicle, trastuzumab, 

everolimus or the combination of trastuzumab and everolimus. The graph shows the mean-tumor 

volume at several timepoints after tumor implantation and subsequent treatment, and error bars 

show standard error of mean.  
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Table 1. A table summarizing proteogenomic features and potential mechanisms of resistance for 

tumors from non-pCR cases 

 

Supplementary Figure legends 

Supplementary Figure 1.  DNA, RNA and protein yields from core needle biopsy processed 

using BioTExt. A. Box plot showing DNA, RNA and Protein yields from a total of 8 core needle 

biopsies from 4 PDX Models: WHIM4, 14, 18 and 20. B. Box and scatter plots showing DNA, 

RNA and protein yields from all core needle biopsies that were processed. Samples with no yield 

were excluded. Error bars represent standard error of mean (SEM)  

Supplementary Figure 2. Comparison of proteomics and phosphoproteomics dataset from tumor 

bulk and core samples. A. The table shows the number of proteins and phosphosites quantified in 

the bulk tissue (upper panel) and non-adjacent (lower panel) cores from 4 WHIM PDX models B. 

The table lists the Pearson correlation between replicate bulk and non-adjacent cores for each of 

the PDX models C. Unsupervised hierarchical clustering (1-Pearson) of normalized TMT protein 

and phosphosite ratios. D. ssGSEA was performed on normalized TMT protein ratios obtained 

from cores and bulk. Scatter plot shows ssGSEA normalized enrichment scores (NES) between 

cores and bulk tissue for individual PDX models. 

 

Supplementary Figure 3. Reporting Recommendations for Tumor Marker Prognostic Studies 

(REMARK) diagram. The flowchart shows the number of patients enrolled in the trial and reasons 

for their exclusion from the proteogenomic analysis when applicable.   

 

Supplementary Figure 4. Proteogenomics features of the clinical cores. A. The right panel shows 

scatter plot between percentage of target base at 50X sequencing depth and mean bait coverage 

for whole-exome sequencing and the left panel shows comparable box plot distribution of 

percentage of target based at 50X sequencing depth for DNA isolated from blood versus tumor 

using BioTExt. B. Heatmap summarizing genomic alterations of breast cancer associated genes in 

tumors from 14 patients. C. The copy number landscape of ERBB2+ samples from TCGA (top) 

resembles the landscape from this study (bottom). Plots show log2 ratios of chromosome segment 

copy number in tumor DNA relative to normal DNA for each patient (rows) from each cohort. D. 
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Distribution of gene-wise Spearman correlations between RNA and Protein as observed using the 

BioTExt pipeline. Red and green indicate all positively and negatively correlated genes 

respectively.   

 

Supplementary Figure 5.  Functional prediction from co-expression networks derived from and 

unsupervised hierarchical clustering of samples from clinical core proteogenomics data. A. Co-

expression networks derived from microscaled proteomics data predict function more consistently 

than co-expression networks derived from the RNA data. Red and blue circles indicate functional 

categories (KEGG pathways) predicted by co-expression networks derived from protein and 

mRNA expression data, respectively. B. Core needle biopsies from the same patients cluster 

together based on the top 500 most variable features in each dataset. 

 

Supplementary Figure 6. Validation of ERBB2 levels. A. ERBB2 (HER2) 

immunohistochemistry (IHC) on sections from all 14 patients. A. Photomicrographs showing 

ERBB2 IHC staining profiles of all pCR cases at 200X. B. Box plot showing ERBB2 IHC scores 

and ERBB2 protein levels C. Box plot showing ERBB2 IHC scores and ERBB2 protein levels as 

measured by parallel reaction monitoring (PRM). D. Scatter plot showing correlation between 

ERBB2 protein abundance measured using TMT and PRM based protein quantification.  

 

Supplementary Figure 7. Scatter plots of response to treatment (on-treatment vs pre-treatment) 

in non-pCR (y-axis) vs. pCR patients for RNA, proteins, and phosphoproteins (mean of 

phosphosites). Shown are log2 ratios from limma linear modeling of differential expression for 

genes with p<0.05 in each set of patients. Genes from the ERBB signaling KEGG pathway 

(hsa04012) are highlighted in orange. The level of transparency of each point reflects it’s 

significance after BH-adjustment (adjusted p<0.05 points are completely opaque, and more 

transparent points have higher adjusted p-values).  

 

Supplementary Figure 8. PTM-SEA analysis on pre and on-treatment phosphoproteomics 

dataset.  PTM-SEA was applied to the signed Log10 p-values from limma differential expression 

analysis of on- vs. pre-treatment phosphosite levels from pCR cases (orange) and non-pCR (green) 
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The heatmap shows the Normalized Enrichment Scores (NES) for these kinase signatures, and 

asterisks indicate significant FDR (<0.05). 

 

Supplementary Figure 9. Outlier analysis was performed to identify differentially regulated 

mRNA, proteins or phosphoproteins in each pre-treatment sample from non-pCR cases relative to 

the set of pre-treatment samples from all pre-treated pCR cases. Shown is the ERBB2 (HER2) 

RNA and phosphoprotein distribution across all patients; brown and green bars indicate the 

frequencies for each protein level bin in non-pCR and pCR, respectively. The line shows the 

normal distribution of pCR samples from which the Z-score for each non-pCR sample was derived. 

Z-score thresholds are indicated by red lines. 

 

Supplementary Figure 10. Expression of key immune checkpoint regulators in and 

immunoprofiling of pre-treated samples. Upper panel shows Z-scores of RNA, protein, and 

phosphoprotein expression (where available) of key immune checkpoint inhibitors in each baseline 

sample from pCR (samples on right) and non-pCR (samples on left) patients. Bottom panel shows 

Z-scores of immune cell profiles inferred from RNA-seq data using Cibersort.  

 

Supplementary Figure 11. Hematoxylin and eosin (HE) staining of patient samples. HE staining 

of tissue sections from all 14 patients. The middle panel showed magnified HE stains (400X) of 

sections patients AR+ patients 1331 and 1371. Patient 1371 shows distinct apocrine features as 

indicated by plump pink cytoplasm. The lower panel shows immunohistochemical staining 

profiles of non-pCR cases for AR at x200 

 

Supplementary Figure 12. Association of outliers with publications with keywords “breast 

cancer” and “resistance” or “recur”. Z-score for each gene from outlier analysis is plotted on the 

y-axis, while the x-axis indicates the number of publications associated with that gene and with 

breast cancer resistance terms. A separate plot is included for outliers for each non-pCR sample 

from each omics dataset. 

 

Supplementary Figure 13.  ERBB2 and MUCIN expression in WHIM35, WHIM8 and patient 

BCN1326 A. Heatmap showing ERBB2 pathway and Mucin protein expression in two HER2-
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enriched PDX (WHIM) models with ERBB2 protein expression. B. MUC1 immunohistochemistry 

(IHC) of WHIM8, WHIM35 and BCN1369.  
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Supplementary Figure 3
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Supplementary Figure 7
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Supplementary Figure 9
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Supplementary Figure 10
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Supplementary Figure 11
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Supplementary Figure 13
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