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ABSTRACT 

Astronauts on interplanetary space missions - such as to Mars - will be exposed to space radiation, a 

spectrum of highly-charged, fast-moving particles that includes 56Fe and 28Si. Earth-based preclinical 

studies with mature, “astronaut-aged” rodents show space radiation decreases performance in low- 

and some high-level cognitive tasks. Given the prevalence of touchscreens in astronaut training and 

in-mission assessment, and the ability of rodent touchscreen tasks to assess the functional integrity 

of brain circuits and multiple cognitive domains in a non-aversive way, it is surprising the effect of 

space radiation on rodent touchscreen performance is unknown. To fill this knowledge gap, 

6-month-old C57BL/6J male mice were exposed to whole-body space radiation and assessed on a 

touchscreen battery starting 1-month later. Relative to Sham, 56Fe irradiation did not overtly change 

performance on tasks of visual discrimination, reversal learning, rule-based, or object-spatial paired 

associates learning, suggesting preserved functional integrity of supporting brain circuits. 

Surprisingly, 56Fe irradiation led to better performance on a dentate gyrus-reliant task of pattern 

separation ability. Irradiated mice discriminated similar visual cues in ~40% fewer days and ~40% 

more accurately than control mice. Improved pattern separation was not touchscreen-, 

radiation-particle, or neurogenesis-dependent, as both 56Fe and 28Si irradiation led to faster context 

discrimination (e.g. Sham Block 5 vs. 56Fe Block 2) in a non-touchscreen task and 56Fe led to fewer 

new dentate gyrus neurons relative to Sham. These data urge revisitation of the broadly-held view 

that space radiation is detrimental to cognition. 

 

 

KEYWORDS 

astronaut, dentate gyrus, galactic cosmic radiation, hippocampus, HZE particles, location 

discrimination, memory, touchscreen 
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SIGNIFICANCE STATEMENT 

Astronauts on an interplanetary mission - such as to Mars - will be unavoidably exposed to galactic 

cosmic radiation, a spectrum of highly-charged, fast-moving particles. Rodent studies suggest space 

radiation is detrimental to cognition. However, here we show this is not universally true. Mature mice 

that received whole body exposure to Mars-relevant space radiation perform similarly to control mice 

on high-level cognitive tasks, reflecting the functional integrity of key neural circuits. Even more 

surprisingly, irradiated mice perform better than controls in both appetitive and aversive tests of 

pattern separation, a mission-critical task reliant on dentate gyrus integrity. Notably, improved pattern 

separation was not touchscreen-, radiation-particle-, or neurogenesis-dependent. Our work urges 

revisitation of the generally-accepted conclusion that space radiation is detrimental to cognition. 
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Introduction 

Interplanetary missions - such as to Mars - are a high priority for many national space agencies. The 

crew of future missions will face hazards to human health (1–6) . Among these hazards is exposure to 

galactic cosmic radiation (7–12)  which includes a spectrum of high-(H) atomic number (Z) and 

high-energy (E) particles such as 56Fe and 28Si. Fast-moving HZE particles cannot be effectively 

blocked by modern spacecraft shielding (13–20) . Given their unavoidable nature, it is concerning that 

studies exposing laboratory animals to Earth-based space radiation generally conclude HZE particles 

are detrimental to brain and behavior (21–24) . Such preclinical data suggest HZE particle exposure 

may be harmful to astronaut health and cognition and thus impede mission success. 

 

However, there are several reasons to revisit the conclusion that HZE particle exposure is detrimental 

to cognitive function. First, age at the time of irradiation matters. Most preclinical data that led to the 

Probabilistic Risk Assessment of HZE particles being detrimental to cognition and related behavior 

were from tests performed on young adult rodents (~2-3 months [mon] old at exposure) (23, 25) ; in 

many cases, age of the animals tested was not even reported (23) . To more accurately reflect the 

average age of astronauts, NASA now requires ground-based space studies to be performed in 

mature animals (~6 mon old at start of irradiation) (23, 26–37) . Second, type of behavioral test 

matters. Recent work with mature rodents shows HZE particle exposure decreases performance in 

some - but not all - behavioral tests, and even tests that engage similar neural circuits produce 

distinct results (23, 26–31, 38). A potential contribution to these test-dependent discrepancies is the 

testing environments used for each task. In humans (and astronauts), automated computerized 

cognitive assays help control for the influence of testing environments (39–43) , but such an approach 

has not been used to assess cognitive performance in rodents after HZE exposure. Third, breadth of 

testing matters. Preclinical studies on space radiation typically assess one or two cognitive domains 
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(24, 44–47) . In contrast, astronauts repeatedly undergo test batteries - often on a touchscreen 

platform - to assess integrity of many cognitive domains over time (39, 48, 49) . To this end, many 

aspects of neuroscience have employed rodent touchscreen testing, a platform extensively validated 

for its ability to provide multidimensional assessment of functional integrity of brain circuits in a 

highly-sensitive and translationally-relevant way (50–61) . Given the power of touchscreen testing, it is 

surprising that the effect of space radiation on a battery of rodent touchscreen tests is unknown. This 

is particularly notable as the touchscreen platform permits analysis of many higher cognitive functions 

- such as pattern separation - which are part of the astronaut’s mission-critical skill set yet which have 

not been preclinically assessed for their sensitivity to space radiation. 

 

To address these major knowledge gaps, mature C57BL/6J male mice received either Sham 

irradiation (IRR) or whole body 56Fe particle IRR and were assessed on a battery of touchscreen 

cognitive tasks (54, 56, 62–65). Sham and 56Fe IRR mice performed similarly in touchscreen tasks of 

complex learning, cognitive flexibility, visuospatial learning, and stimulus-response habit learning. 

Notably, 56Fe IRR mice performed better than Sham in location discrimination, a touchscreen task of 

pattern separation ability, as they discriminated similar visual cues in fewer days and more accurately 

than Sham mice . This improvment was not restricted to 56Fe IRR or to appetitive testing; mice 

exposed to either 56Fe or 28Si also discriminated contexts faster and more consistently relative to 

Sham mice when assessed on a classical, non-touchscreen task of pattern separation: fear-based 

contextual discrimination fear conditioning (CDFC). These data show whole body exposure to HZE 

particles is not detrimental to high level cognition in mice and actually enhances performance in 

certain mission-critical tasks, such as pattern separation. 
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RESULTS 

Mice exposed to whole body 56Fe radiation demonstrate overall normal perceptual 

discrimination, association learning, and cognitive flexibility in touchscreen testing. 

Whole body 56Fe IRR was delivered via fractionation (Frac; 3 exposures of 6.7 cGy every other day, 

total 20 cGy) to male C57BL/6J mice at 6 mon of age. This total dose is submaximal to that predicted 

for a Mars mission (9, 66) , and the fractionation interval (48 hours [hr]) was based on the importance 

of the inter-fraction period for potential repair processes (67–69) . As previously reported (70–72) , this 

dose and these fractionation parameters do not interfere with weight gain or cause hair loss ( Fig. 

S1A) . 

 

Beginning 1 mon post-IRR, Sham and 56Fe IRR mice began training on a touchscreen platform 

extensively validated in rodents (54, 56, 64, 73–75) (Fig. 1A) . Mice initially went through five stages of 

general touchscreen training (Fig. 2A) , with performance reflecting instrumental or operant learning. 

Sham and 56Fe IRR mice completed most stages of the initial operant touchscreen training in similar 

periods of time ( Fig. 2A). The exception was the final stage, Punish Incorrect (PI, an incorrect trial 

results in a timeout period); on average, 56Fe IRR mice finished PI in ~40% fewer days relative to 

Sham mice ( Fig. 2A, Table S1). 

 

Mice then advanced to pairwise discrimination (PD, visual discrimination) and PD reversal (reversal 

learning, Fig. 2B, 2C), tests which reflect perceptual discrimination and association learning as well 

as cognitive flexibility, respectively, and rely on cortical (prefrontal, orbital frontal, perirhinal) and 

striatal circuits (56, 73, 74) . On average, both 56Fe IRR and Sham mice completed PD and PD 

reversal in a similar number of days ( Fig. 2D, Table S1) . However, analysis of the distribution of 

subjects to reach criteria each day revealed significant difference between Sham and 56Fe IRR mice 
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(Fig. 2E) . Specifically, 50% of Sham mice reached PD completion criteria at 9.5 days, while 50% 56Fe 

IRR mice reached criteria at 12 days. However, Sham and 56Fe IRR mice did not differ with regard to 

average session length, percent correct, or number of errors (Fig. 2F-H) . In PD reversal, the 

distribution of subjects to reach completion criteria was not different between Sham and 56Fe IRR 

mice (Fig. 2I), with 50% of Sham and 56Fe IRR mice reaching PD reversal completion criteria at 15 

and 14 days, respectively (Fig. 2I) . As with PD, Sham and 56Fe IRR mice did not differ in regard to PD 

reversal average session length, percent correct, or number of errors (Fig. 2J-L) . 

 

Mice exposed to whole body 56Fe demonstrate normal visuospatial learning and 

stimulus-response habit learning in touchscreen testing. 

A parallel group of mice was used to assess the influence of 56Fe IRR object-location paired 

associates learning (PAL) and visuomotor conditional learning (VMCL) which reflect visuospatial and 

stimulus-response habit learning, respectively, and rely on intact circuits of the hippocampus (56, 63, 

64) (PAL) and striatum and posterior cingulate cortex (56, 64, 75) (VMCL) (Fig. 1B). Consistent with 

results in the first cohort of mice, Sham and 56Fe IRR mice completed most stages of the initial 

operant touchscreen training in similar periods of time ( Fig. 3A), again with the exception of PI where 

56Fe IRR mice finished in ~20% fewer days than Sham.  

 

In PAL (Fig. 3B ), Sham and 56Fe IRR mice were similar in session length, number of trials, percent 

correct, and number of errors over the 29-day testing period (Fig. 3C-F) . In both VMCL train and test 

( Fig. 3G, 3H ), Sham and 56Fe IRR mice had similar average days to completion (Fig. 3I) . In VMCL 

train, Sham and 56Fe IRR mice performed similarly in regard to distribution of subjects to reach criteria 

each training day (50% subjects reached criteria at 10 days in Sham mice vs. 9 days in 56Fe IRR 

mice), session length, number of trials, percent correct, and number of errors (VMCL train; Fig. 3J-N, 
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Table S1 ). In VMCL test, Sham and 56Fe IRR mice had similar distribution of subjects to reach criteria 

each training day (50% of subjects reached criteria at 22 days in Sham mice vs. 23 days in 56Fe IRR 

mice), session length, number of trials, percent correct, and number of errors (VMCL test; Fig. 3O, 

Q-S, Table S1 ). However, the time to complete the session on the last day of VMCL test was longer 

in 56Fe IRR relative to Sham mice ( Fig. 3P). 

 

Whole body 56Fe IRR exposure improves pattern separation in an appetitive-based location 

discrimination touchscreen task.  

The brain region most studied with regard to space radiation-induced deficits in function and 

activity-dependent processes (i.e. neurogenesis) is the hippocampal dentate gyrus (70–72, 76–78) . 

Therefore, we hypothesized whole body 56Fe IRR impairs pattern separation, a cognitive function 

reliant on dentate gyrus integrity (79–81) . To determine the effect of HZE radiation on pattern 

separation, Sham and 56Fe IRR mice were assessed on a touchscreen location discrimination (LD) 

task (54) (Fig. 1A). In the LD training portion of the assessment (LD train, Fig. 4A), Sham and 56Fe 

IRR mice had similar distribution of the proportion of subjects reaching criteria (Fig. 4B) , average 

days to completion, session length, and percent correct  (Fig. 4C-E) . However, Sham and 56Fe IRR 

mice differed in LD performance (LD test, Fig. 4F) in several aspects. First, the distribution of 

proportion of subjects reaching criteria was distinct in 56Fe IRR mice vs. Sham mice (Fig. 4G) . 56Fe 

IRR mice reached criteria at >3x faster rate vs. Sham mice, and 50% of 56Fe IRR mice reached 

criteria by 4 days vs. Sham mice reaching criteria by 6 days. Second, 56Fe IRR mice completed LD 

test in fewer days than Sham mice (Fig. 4H), although both groups showed similar session length 

and number of completed trials (Fig. 4I-J) . Third, 56Fe IRR mice performed LD test more accurately 

than Sham mice both overall (Fig. 4K) as well when presented with stimuli separated by either large 

or small distances (Fig. 4L) .  
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We next behaviorally probed reasons why 56Fe IRR mice had improved pattern separation relative to 

Sham mice. For example, the improved location discrimination in 6Fe IRR mice may be reflective of 

unintentional screen touches, perhaps due to IRR-induced alteration of attention to stimuli or 

motivation to obtain reward. However, the number of blank touches  (Fig. 4M) , reward collection 

latency ( Fig. 4N), and choice latency ( Fig. 4O, 4P) were not different between 6Fe IRR mice and 

Sham mice. Also, since the location of the rewarded stimuli changed daily but maintained within each 

session, it is possible that pattern separation is progressively improved within a session, particularly 

on the last test day. Sham and 56Fe IRR mice had similar last day block duration and left/right touches 

during intertrial interval, but 56Fe IRR mice had a greater percent correct during the 4th 10-trial block 

relative to Sham mice (Fig. 4Q, 4R, 4T) . In addition, while Sham mice did not differ between the 1st 

and 4th 10-trial blocks on the last day, 56Fe IRR mice had fewer blank touches in the 4th 10-trial block 

relative to the 1st 10-trial block. These data suggest that on the last day of LD, 56Fe IRR mice 

demonstrate within-session enhanced pattern separation (Fig. 4S) .  

 

Whole body 56Fe and 28Si IRR exposure improves pattern separation in a foot-shock based 

contextual discrimination task.  

To assess whether 56Fe IRR-induced improvement in pattern separation was restricted to appetitive 

tasks, a parallel cohort of mice was exposed to Sham or 56Fe IRR and tested on pattern separation 

using a classic pattern separation behavior paradigm: contextual discrimination fear conditioning 

(CDFC) (80, 82–85). To specifically assess whether particle delivery influenced behavioral outcome, 

6-mon-old C57BL/6J mice received either Sham IRR, whole body 56Fe IRR via fractionation (Frac 20 

cGy; 3 exposures of 6.7 cGy), or whole body 56Fe IRR via non-fractionation (Non-Frac 20 cGy; 1 
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exposure of 20 cGy; Fig. 1C). As previously reported (70–72) , Sham IRR, Frac 20 cGy, and Non-Frac 

20 cGy mice had similar weight changes over time ( Fig. S1A). 

 

Beginning ~2-mon post-IRR (8 mon of age), mice underwent CDFC ( Fig. 5, Fig. S2) to learn that one 

context (Context A) was paired with a foot shock while another similar context (Context B) was a 

non-shock context. When tested in CDFC, Sham mice discriminated the two contexts by Days 9-10 

(Block 5), as they froze more in the shock-paired context (Context A) compared to the non-shock 

context (Context B; Fig. 5A, Table S1). However, mice exposed to either Frac 20 cGy or Non-Frac 20 

cGy of 56Fe IRR discriminated the contexts by Days 3-4 (Block 2, Fig. 5B, 5C, Table S1) . Direct 

comparison across treatment groups revealed Frac 20 cGy and Non-Frac 20 cGy mice froze more in 

Context A vs. Context B in Blocks 2 and 4, earlier than Sham ( Fig. 5D-F, Table S1). Possible 

explanations for these results include differential activity, anxiety, or pain sensitivity in Sham vs. 56Fe 

IRR mice. To address these possibilities, parallel groups of mice underwent assessment for 

locomotion ( Fig. S1B), dark/light testing ( Fig. S1C, S1D) and pain threshold ( Fig. S1E-G ). However, 

Sham, Frac, and Non-Frac mice performed similarly on all these tests ( Fig. S1B-G) . Thus, both Frac 

and Non-Frac 20 cGy 56Fe IRR mice learned to pattern separate earlier relative to Sham mice without 

overt changes in locomotion, anxiety-like behavior, or sensitivity to pain.  

 

To determine if the improvement in CDFC pattern separation generalized to other fear-based 

hippocampal- and amygdala-based learning, a parallel cohort of mice received Sham or 56Fe IRR and 

underwent classical contextual fear conditioning (CFC; Fig. 1E, Fig. S3A, S3B ). Sham and 56Fe IRR 

mice (both Frac and Non-Frac 20 cGy groups) performed similarly in the context test ( Fig. S3C) and 

in the cue test both pre-tone and during tone ( Fig. S3D). Importantly, to see if the space 

radiation-induced improvement in CDFC was dependent on the type of heavy particle used, CDFC 
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was also performed with mice exposed to whole body 28Si IRR (Fig.  1D, 6), a particle with a smaller 

track structure than 56Fe (86) . Sham mice spent more time freezing in Context A vs. Context B only 

on Days 9-10 (Block 5) and Days 15-16 (Block 8) ( Fig. 6A, D-F ). Mice exposed to 20 cGy of 28Si 

discriminated between the two contexts as early as Days 11-12 (Block 6; Fig. 6B, D-F ). Notably, mice 

exposed to 100 cGy of 28Si were able to discriminate between the two contexts as early as Days 5-6 

(Block 3; Fig.  6C, D-F ). Taken together, these data show that exposure to two different HZE particles 

- either 56Fe or 28Si - results in earlier separation ability relative to Sham mice on the shock-based 

CDFC pattern separation test.  

 

56Fe IRR decreases neurogenesis 4 mon post-IRR. 

Pattern separation ability is dependent on new dentate gyrus neurons as well as dentate gyrus 

activity, and an inducible increase in adult neurogenesis improves pattern separation (80, 87, 88) . To 

assess whether the IRR-induced improvement in pattern separation reported here was correlated 

with increased neurogenesis, we used stereology to quantify the number of cells in the dentate gyrus 

immunoreactive for doublecortin (DCX, Fig. 7A), a widely-accepted marker for neurogenesis (89–91) . 

Although mice exposed to either Fractionated or Non-Fractionated 56Fe radiation had improved 

context discrimination compared to control mice  (Fig. 5 ), these mice had fewer DCX+ cells compared 

to control mice ( Fig. 7B-C, Table S1).  

 
 
DISCUSSION 
 
Astronaut training and in-mission assessment rely on touchscreen testing due to its flexibility in 

probing a variety of cognitive functions. Rodent touchscreen testing similarly allows researchers to 

probe the multidimensional functional integrity of brain circuits in a highly-sensitive and 

translationally-relevant way (50–56) , but prior to the present work it was unknown how space 
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radiation influences touchscreen performance. Based on the large literature with young animals 

(92–94)  and the negative impact of HZE particle exposure on the central nervous system (22, 95) , we 

hypothesized whole-body exposure to ground-based HZE particles would diminish the performance 

of mice in touchscreen-based behaviors, particularly those behaviors reliant on the dentate gyrus, 

such as pattern separation. The results of our m ulti-domain cognitive assessment showed our 

hypothesis was wrong. Mature mice exposed to either Sham IRR or HZE particles performed similarly 

in touchscreen tasks of visual discrimination, cognitive flexibility, rule-based learning, and 

object-spatial associated learning, in classical hippocampal- and amygdala-based tasks (i.e. CFC), 

and in tasks that detect anxiety-like behavior (i.e. D/L). Surprisingly, IRR mice performed better than 

Sham IRR mice in pattern separation tasks when assessed on either appetitive (LD test) or aversive 

(CDFC) platforms. Thus,  our study suggests whole body exposure of HZE particles in maturity is not 

detrimental to high-level cognition, and actually enhances performance in the mission-critical task of 

pattern separation.  

 

There are three aspects of the present results that are notable from the perspective of behavioral 

neuroscience in general, and multiple memory systems in particular (96, 97) . First, in both humans 

and rodents, hippocampal damage can actually facilitate behavioral performance on certain tasks 

(98–100) . For example, when amnesic patients with partial hippocampal injury are given extended 

exposure to study materials, they can improve their recognition memory to the level of control 

subjects. Such an improvement is not seen after severe hippocampal injury. Thus, it is reasonable to 

consider whether the improved pattern separation ability presented here result from HZE 

particle-induced partial damage to the hippocampus. This is unlikely, as the HZE particle parameters 

used here do not induce detectable damage to post-mitotic neurons in the adult rodent brain 

(101–105)  or, as shown here, deficits in other tasks that engage the hippocampus (PAL, CFC). 
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Second, as memory mechanisms in the medial temporal lobe (i.e. hippocampus) and basal ganglia 

(i.e. dorsal striatum) may sometimes compete (97) , it is possible the improved dentate gyrus-based 

pattern separation reported here is associated with decreased dorsal striatum-based ‘habit’ learning. 

However, we find pattern separation is improved in 56Fe relative to Sham mice without a change in 

VMCL habit learning, suggesting normal dorsal striatal function. Finally, the improved pattern 

separation reported here is reminiscent of the excessive attention seen in some psychiatric disorders 

- such as autism or obsessive compulsive disorder (OCD) - and in animal models for these disorders 

(63, 106–108) . Evaluation of autistic- or OCD-like behavioral patterns after HZE particle exposure 

using other touchscreen paradigms (i.e. extinction, 5-choice serial reaction time test, 5-choice 

continuous performance reaction task) would clarify whether the improved pattern separation ability 

demonstrated here is accompanied by maladaptive behaviors (i.e. impaired attention and increased 

impulsivity) (109–111) . 

 

What might be the neural mechanism underlying the improved pattern separation in HZE-irradiated 

mice reported here? One possibility is an HZE-induced shift in underlying brain circuit activity . In 

rodents and humans,  pattern separation requires the appropriate balance of activity in the entorhinal 

cortex-dentate gyrus network (79, 87, 112–115) . In aged humans, a decline in pattern separation 

(116–118)  is proposed to be due to a hypoactive anterolateral enthorhinal cortex and hyperactive 

dentate gyrus/CA3 (118) . Thus, it is possible the HZE-induced improved pattern separation reported 

here in mouse results from an opposite activity shift: a hyperactive enthorhinal cortex and hypoactive 

dentate gyrus/CA3 . Indeed, in rodents, pattern separation performance is correlated with dentate 

gyrus activity; better performance results in a hypoactive dentate gyrus, and worse performance 

results in a hyperactive dentate gyrus (80, 112) . As pattern separation engages distinct hippocampal 

networks relative to other hippocampal-dependent tests (such as novel object recognition) (119–121) , 
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such an HZE-induced shift in hippocampal networks may explain why we see improved pattern 

separation - while other groups see decreased novel object recognition - after HZE exposure.  

 

Another possibility is that the improved pattern separation we report in HZE-irradiated mice is due to 

HZE-induced conditions in the dentate gyrus that favor “sparse encoding” of entorhinal cortical input. 

Sparse encoding in dentate gyrus granule cell neurons is critical for pattern separation, as it 

minimizes interference between memory representations of similar but not identical experiences 

(122–126) . This sparsity is due in part to inhibition of dentate gyrus granule cell neurons by 

GABAergic interneurons and mossy cells (127–130) . It is unknown how the HZE particle parameters 

used here influence dentate gyrus GABAergic interneurons and mossy cells in mature mice. 

However, exposure to other energetic particles that comprise space radiation alters the inhibitory 

network in the dentate gyrus and other hippocampal subregions of young adult rodents (131, 132) . In 

the future, evaluation of GABAergic signaling and other measures relevant to sparse encoding (e.g. 

number and functionality of hilar interneurons and mossy cells, pattern of memory-induced immediate 

early gene activation) (133)  after Mars-relevant exposure to space radiation would allow testing of the 

hypothesis that HZE-induced improvement in sparse encoding contributes to the HZE-induced 

improvement in pattern separation reported here.  

 

A third possibility - and related to conditions that favor sparse encoding - is that HZE particle 

exposure increases dentate gyrus neurogenesis. In young adult rodents, inducible increase in 

hippocampal neurogenesis improves pattern separation, while inducible decrease in neurogenesis 

impairs pattern separation (58, 80, 88, 134) . However, here we show that improved pattern 

separation is not correlated with the number of new hippocampal neurons. This adds to the growing 

evidence that the number of new neurons does not always predict pattern separation performance, 
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particularly in older rodents (135–137) . In fact, decreased neurogenesis is proposed to diminish 

sensitivity to memory interference and thus improve performance in certain memory tasks (137–139) . 

Computational models support that decreased neurogenesis may enhance sparse encoding (140, 

141) , which as mentioned above may explain why we see improved pattern separation yet other 

groups see decreased performance in their behavioral tests.  

 

The disconnect shown here between pattern separation and hippocampal neurogenesis raises 

interesting future directions. Although historically tied to learning and memory, hippocampal 

neurogenesis also plays a role in forgetting (142, 143)  with high levels of hippocampal neurogenesis 

facilitating the forgetting of prior memories, resulting in greater cognitive flexibility (142–144) . In 

converse, lower levels of hippocampal neurogenesis - as seen with age - facilitate the persistence of 

prior memories, more interference with new memory formation, and thus less cognitive flexibility (143, 

144) . As here we show irradiated mice have decreased neurogenesis relative to control mice, it is 

possible irradiated mice have consequently decreased forgetting (greater memory persistence) and 

also experience more proactive interference from past memories and would have less cognitive 

flexibility. Rodent cognitive flexibility can be directly tested using a reversal learning paradigm similar 

to the PD/Reversal learning task presented here. However, this task does not test rodent memory 

retention, and as we have shown, this relatively simplistic reversal learning is not affected by HZE 

radiation exposure. If the PD memory load were to be increased - for example, by training with more 

pairs of images - the rodent’s ability to then perform reversal with this larger number of stimuli would 

provide a more robust interrogation of cognitive flexibility. Alternatively, future experiments can hone 

in on dentate gyrus-specific cognitive flexibility via assessed LD reversal (54, 62, 88) , which contrasts 

with the PD reversal reliance on non-dentate gyrus brain regions (primarily PFC, perirhinal cortex, 

striatal circuits). Specifically, a challenging LD within-session reversal test would provide clarity as to 
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whether IRR mice have decreased dentate gyrus specific-cognitive flexibility relative to controls (62) . 

Finally, future experiments could probe the influence of HZE particle exposure on the converse of 

pattern separation: pattern completion (i.e. formation of an accurate generalization of partial sensory 

input) (145–147). Pattern separation and pattern completion abilities have a reciprocal relationship in 

mice and aged humans (134, 145–147) . As we show HZE particle exposure improves pattern 

separation (fine detail discrimination) and may increase proactive interference (given the decreased 

neurogenesis), it is possible irradiated mice have improved pattern separation yet worse pattern 

completion ability. If that were true, we could then further explore the possibility  that the functional 

switch from pattern completion to pattern separation is driven in part by a slowing of the development 

of adult-generated neurons (134, 148) . However, pattern completion relies on memory recall (134) , 

which is assessed in our PAL paradigm (56)  and normal in our irradiated mice.  

 

In conclusion, it is understandable that HZE particle exposure is presumed to have a negative 

influence on some lower and high-level cognitive functions, as many studies support this conclusion 

(21, 23, 44, 149–151) . However, our study shows this is not universally true. Mature mice exposed to 

two different HZE particles perform similarly to control mice on many high-level cognitive tasks, 

reflecting the functional  integrity of key neural circuits (i.e. PFC-perirhinal cortex-striatum, dorsal 

striatum, posterior cingulate cortex, hippocampus). Strikingly, irradiated mice actually perform better 

than control mice in both appetitive and aversive pattern separation tasks. Whether this HZE 

exposure-induced dentate gyrus-selective functional enhancement is compensation to earlier 

irradiation-induced neuromorphological changes (152)  remains to be tested. However, our work urges 

revisitation of the generally-accepted conclusion that space radiation is detrimental to cognition. 
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MATERIALS AND METHODS 
 
 
Animals 

Animal procedures and husbandry were in accordance with the National Institutes of Health Guide for 

the Care and Use of Laboratory Animals, and performed in IACUC-approved facilities at UT 

Southwestern Medical Center (UTSW, Dallas TX; AAALAC Accreditation #000673, PHS Animal 

Welfare Assurance D16-00296, Office of Laboratory Animal Welfare [OLAW] A3472-01), Children’s 

Hospital of Philadelphia (CHOP, Philadelphia, PA; AAALAC Accreditation #000427, PHS Animal 

Welfare Assurance D16-00280 [OLAW A3442-01]) and Brookhaven National Laboratories (BNL, 

Upton NY; AAALAC Accreditation #000048, PHS Animal Welfare Assurance D16-00067 [OLAW 

A3106-01]). 2-month(mon)-old male  C57BL/6J mice (Jackson Laboratories, stock #000664) were 

housed at UTSW and shipped to BNL for irradiation at 6 mon of age. During shipping and housing at 

BNL, mice were provided Shepherd Shacks (Bio-Serv). Mice were housed at UTSW or BNL 

(3-4/cage, light on 06:00, lights off 18:00, UTSW: room temperature 68-79°F, room humidity 30-70%, 

BNL: room temperature 70-74°F and room humidity 30-70%). At both facilities, food and water were 

provided ad libitum .  

 

Particle irradiation (IRR) 

Mice received whole body HZE ( 56Fe: 600 MeV/n, LET 174 KeV/u, Figs. 2-5, 7.  Figs. S1-3 ; or 28Si: 

275 MeV/n, LET 72 KeV/u, Fig. 6 ) particle radiation at BNL’s NASA Space Radiation Laboratory 

(NSRL) during NSRL campaigns and 12C, 13A, 13B, 16B, and 18A. The 56Fe and 28Si ion beams 

were produced by th e AGS Booster Accelerator  at BNL and transferred to the experimental beam line 

in the NSRL. Delivered doses were  ±0.5% of the requested value. All mice - regardless of whether 

control (Sham) or experimental - were placed for 15 minutes (min) in modified clear polystyrene 

cubes (AMAC Plastics, Cat #100C, W 5.8 x L 5.8 x H 10.6 cm ; modified with ten 5-mm air holes ). For 
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56Fe experiments, mice received Sham IRR (placed in cubes Monday, Wednesday, Friday, but 

received no IRR) or either Fractionated (Frac) 20 cGy 56Fe (600 MeV/n, LET 174 KeV/μ, Dose rate 20 

cGy/min; placed in cubes and received 6.7 cGy on Monday, Wednesday, and Friday), or 

Non-Fractionated (Non-Frac) 20 cGy 56Fe (placed in cubes Monday, Wednesday, and Friday but 

received 20 cGy only on Friday). For 28Si IRR, mice received Sham IRR (placed in cubes, but 

received no IRR) or a single exposure of either 20 cGy or 100 cGy 28Si (275 MeV/n,  LET 72 KeV/μ, 

Dose rate 20 cGy/min or 100 cGy/min). Post-IRR, mice were returned to UTSW or CHOP and housed 

in quarantine for 1-2 mon prior to initiation of behavior testing. Body weights ( Fig. S1A)  were taken 

multiple times: prior to irradiation, at irradiation, and at least monthly post-IRR until collection of brain 

tissue. 

 

Overview of behavioral testing 

All mice began behavior testing 1-2-mon post-IRR. Parallel groups of mice were tested for appetitive 

touchscreen behavioral tests (operant touchscreen platform: touchscreen training; Pairwise 

Discrimination, PD; PD reversal; Location Discrimination, LD; different paired associates learning, 

PAL; Visuomotor Conditional Learning, VMCL) vs. aversive behavioral tests (contextual fear 

conditioning, CFC; contextual discrimination fear conditioning, CDFC). Subsets of mice were also 

tested for general activity (locomotor, LM), anxiety (dark/light box test, D/L) and pain sensitivity (pain 

threshold, PT), methods for which are provided in  Supplementary Methods. 

 

Appetitive Behavior Testing.  The touchscreen platform used was Model 80614 made by Lafayette 

Instruments (Lafayette, IN). Software used for the touchscreen system was ABET II (Lafayette 

Instruments, Cat. #89505), and individual ABET programs for specific touchscreen training and 

testing sessions are listed below or in Supplementary Methods. Sham and IRR mice were trained 
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on an operant touchscreen platform (TS training), an overview of which is provided below. Additional 

touchscreen methods are provided in Supplementary Methods.  

 

Food exposure/restriction.  Three days prior to touchscreen training, each cage of Sham or IRR 

behaviorally-naive, group-housed mice received daily access to Strawberry Ensure (Strawberry 

Ensure, Abbott Laboratories, Chicago, IL) in a volume sufficient to cover the bottom of a 2” plastic 

petri dish. TS training and testing occurred Monday through Friday during the light cycle. Mice were 

maintained on a food-restricted diet ( Supplementary  Methods ).  

 

Touchscreen training (Abet II software, Cat. #89505) . General touchscreen training ( Fig. 2A, Fig.3A) 

consisted of 5 steps: Habituation (Hab), Initial Touch (IT), Must Touch (MT), Must Initiate (MI), and 

Punish Incorrect (PI) ( Supplementary Methods ). During general touchscreen training, either a 

two-window (2X1; Fig. 2A) or three-window (3X1; Fig. 3A) mask was used. Training of Hab, IT, MT, 

MI was considered complete when mouse finished 25 trials. Latency (days) to complete each training 

step is reported in  Fig. 2A and Fig. 3A. Criteria of PI is 25 trials in 30 min at >76 % accuracy (day 1) 

and >80% accuracy (day 2) over two consecutive days. 

 

Pairwise Discrimination (PD)/Reversal Testing (ABET II software, Cat. #89540) .  After training on the 

touchscreen platform (above, Supplementary Methods ), mice went through PD/PD Reversal tests 

( Fig. 2 ). For PD, two images from the image bank that the mice had never seen before were 

simultaneously presented on the screen (i.e. plane vs. spider). Only one of these stimulus images 

was rewarded (S+), and the image that was rewarded was counterbalanced within each group of 

mice. After the mouse initiated the trial, the rewarded image was presented on either the left or right 

side of the screen. The presentation side was pseudo-randomly selected such that the S+ was not 
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presented on the same side more than 3 times in a row. An incorrect choice led to a correction trial, 

and the mouse had to repeat the trial until it correctly selected the rewarded image displayed in the 

same location. The correction trial was not counted towards the final percent of trials correct. For 

Reversal testing, the S+ and S- were switched so that the previously-rewarded S+ stimulus image 

was now no longer rewarded. The mouse performed PD or Reversal testing until it was able to 

complete 24 trials in 30 min at >76% accuracy (day 1) and >80% (day 2) for 2 days in a row. For PD 

and PD reversal data, day 1 and 6 and the last day or day 1, 8, 12, and last day were reported, 

respectively. Day to completion indicated average of days to reach criteria. Distribution of proportion 

of subjects which reach criteria was plotted over all testing days. Session length (seconds [s]), 

percent (%) correct, the number of errors (number of correction trials) are also reported.  

 

Paired associates learning (PAL, ABET II software, Cat. #89541) . Once mice achieved all five stages 

of general touchscreen training using the three-window mask ( Fig. 1B, 3A), they began training in 

and assessment on object-location different paired-associates learning (PAL). There were three 

possible stimulus ‘objects’ (images of a flower, plane, or spider) and three possible positions on the 

screen (left, middle, or right) ( Fig. 3B). All ‘objects’ had a correct ‘location’ that was unique to them. 

Two stimuli were displayed at the same time during a trial. One was in the correct location (S+) and 

the other was in the incorrect location (S-), and whether a stimulus was correct was determined by 

the location in which it was presented (e.g. flower/left; plane/middle; spider/right). If the mouse 

nose-poked the incorrect stimulus, no reward was delivered and a 5s time-out followed before the 

mouse was given the opportunity to complete a correction trial. Correction trials continued until the 

correct stimulus was chosen. A correction trial (the number of errors) consisted of representation of 

the stimulus array in the same location configuration. Correction trials were not included in the 

percent correct. Each session was complete when the mouse performed 25 trials or 30 min had 
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elapsed. PAL lasted for 29 days, and measures reported include session length, completed trial 

number, percent correct, and number of errors. 

 

Visuomotor Conditional Learning (VMCL, ABET software, Cat #89542) .  For VMCL, mice received one 

additional training step, termed VMCL train, prior to the VMCL test.  

VMCL train.  VMCL train is designed to teach the mouse to touch two images on the screen in 

a specific order and in rapid succession. The first touch must be to an image presented in the center 

of the screen, and the second touch must be to an image presented either on the left or right of the 

screen. Specifically, after trial initiation, the mouse must touch a center white square (200 x 200 

pixels), which then disappears after touch. A second white square immediately appears on either the 

left or right side of the screen in a pseudorandom style, such that a square is located on each side 5 

out of 10 times, but not more than 3 times in a row. If the mouse selects the location with the second 

white square, a reward is provided, and a 20s inter-trial interval starts. However, if the mouse selects 

the location without a square, then the second stimulus is removed, and the house light illuminates for 

5 s to indicate a timeout period which must conclude prior to the 20-s inter-trial interval. Then the 

mouse is presented with a correction trial which must be completed prior to a new set of locations 

being displayed. VMCL train is complete when the mouse completes 2 consecutive days of 25 trials 

in 30 min with >75% correct. Session length (presented in s), trial number, percent correct, and 

number of errors are reported on the first and the last day of VMCL train. Day to completion indicates 

average of days to reach criteria. Distribution of proportion of subjects which reach criteria is plotted 

over entire train days.  

 

VMCL test. Mice are provided with a center black-and-white image (spikes or horizontal bars, 

Fig. 3G, GH). Once touched, the center image disappears and white squares appear on both the 
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right and left of the screen. For this task, the center image of the spikes signals that the rodent should 

touch the right square, while the center image of the horizontal bars signals that the rodents should 

touch the left square.  The two center images are presented pseudorandomly for an equal number of 

times, and the mice have 2 s to touch the white square on the right or left side of the central image. If 

they fail to touch the white square within 2 s, a timeout period begins. The same timeout and 

inter-trial-intervals are used for VMCL testing as were used for VMCL train. As with VMCL train, 

VMCL test correction trials are used to protect against side bias. VMCL testing is complete when the 

mouse completes 2 consecutive days of 25 trials in 30 min with ≥76% correct (day 1) and ≥80% 

correct (day 2) in a row. Session length (presented in s), trial number, percent correct, percent 

missed, and number of errors are reported for Day 1 and 8 and the last day of VMCL test. Day to 

completion indicates average of days to reach criteria. Distribution of proportion of subjects which 

reach criteria is plotted over all VMCL test days.  

  

Location Discrimination (LD; ABET2 software, Cat #89546-6) . For LD, mice receive one additional 

training step, termed LD1-choice, prior to the actual 2-choice LD test (LD2).  

LD train . Mice initiate the trial, which leads to the display of two identical white squares (25 x 

25 pixels, Fig. 4A) presented with two black squares between them, a separation which is termed 

“intermediate” in difficulty (8 th and 11 th windows in 6 X 2 high grid-bottom row). One of the locations of 

the squares is rewarded (L+) and the other is not, and the L+ location (left or right) is counterbalanced 

within-group. On subsequent days, the rewarded square location is switched (becomes L-), then L+, 

then L-, etc. A daily LD train session is complete once the mouse touches either L+ or L- 25 times or 

when 30 min has passed. Once the animal reaches 25 trials in 30 min for 2 consecutive days 

(irrespective of accuracy), the mouse advanced to the LD 2-choice random test. Session length and 

percent correct on the last day of LD train are reported. Days to completion indicates average of days 
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to reach criteria and distribution of proportion of subjects which reach criteria is plotted over entire 

training days. 

 

LD 2 Random choice EH (referred to hereafter as ‘LD test’) . Mice initiate the trial, which leads 

to the display of two identical white squares, either with four black squares between them (“large” 

separation, two at maximum separation (7 th and 12 th windows in 6 x 2 high grid-bottom row) or directly 

next to each other (“small” separation, two at minimum separation (9 th and 10 th windows in the Bussey 

Mouse Operant Mode 6 x 2 high grid-bottom row; Fig. 4F). Like the LD 1 train, only one of the square 

locations (right-most or left-most) is rewarded (L+, same side for both large and small separations, 

and counterbalanced within-groups). The rewarded square location is switched the following day, and 

the location continues to alternate daily throughout testing. Each day, the separation (large vs. small) 

is pseudorandomly displayed (same separation shown no more than 3 consecutive times). LD testing 

is complete when the mouse completes 45 trials in 30 min regardless of accuracy. Session metrics 

reported are length, percent correct, number of completed trials, number of blank touches, reward 

collection latency (time between reward presentation and the first head entry into the reward port) , 

and correct/incorrect image response latency ( latency from correct/incorrect image response) . For 

analysis of performance in 10-trial Blocks (1 st 10-trial Block: 1-10 trials, 2 nd 10-trial Block: 11-20 trials, 

3 rd 10-trial Block: 21-30 trials, 4 th 10-trial Block: 31-40 trials) on the last day, metrics reported are 

duration, percent correct, blank touch, and left and right touch during inter-trial-interval. Days to 

completion indicates average of days to reach criteria and distribution of proportion of subjects which 

reach criteria is plotted over all LD test days. 

 

Aversive Behavior Testing.  CDFC overview is provided below. See Fig. S2 and S3 and 

Supplementary Methods  for additional CDFC information, and for detailed information about CFC. 
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Contextual Discrimination Fear Conditioning (CDFC). A modified CDFC behavioral paradigm was 

utilized in which mice were exposed daily to two contexts (Context A and B) that shared similarities 

(including a floor pattern, a high-salience contextual feature (153) ) but had distinct visual and 

olfactory features ( Fig. S2) (82, 134) , and were paired with distinct handling approaches 

( Supplementary Methods ). Importantly, Context A was always paired with a foot shock, while 

Context B was never paired with a foot shock, as described below. 

 

Over the course of 16 days, mice were exposed daily to both Context A and Context B. The order of 

exposure to Context A and B alternated between days (BAABABBABAABABBA) such that on days 2, 

3, 5, 8, 10, 11, 13, and 16 mice were exposed to Context A first and Context B second ( Fig. S2). For 

CDFC data analysis, the percent freezing in Context A and Context B were measured each day, and 

data from each treatment group were collapsed and averaged across every two days, referred to as 

Blocks. Therefore, data were analyzed as 8 Blocks (16 testing days) such that the grouping of days 

into Blocks was as follows: [BA AB] [AB BA] [BA AB] [AB BA] etc. However, since Day 1 of exposure 

includes data from mice prior to their first tone/shock pairing and therefore their response does not 

reflect a learned association, Block 1 (Days 1-2) was removed from analysis. Percent of time freezing 

was measured using linear analysis. The threshold for freezing was 20 arbitrary units detected using 

the proprietary Med Associates Software. Additional analysis parameters include bout length (0.5 s) 

and frames/s (30). 

 

Tissue Collection 

After completion of behavioral tests, mice underwent intracardial perfusion and fixation as previously 

described (70, 154, 155) . 56Fe IRR mice were perfused 4-6-mon post-IRR (10 to 12 mon of age) and 
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28Si IRR mice were perfused 6-mon post-IRR (14 mon of age). Briefly, mice were anesthetized with 

chloral hydrate (Sigma-Aldrich cat. #C8383, 400 mg/kg, stock solution 400 mg/ml made in 0.9 % 

NaCl solution, i.p.) and exsanguinated intracardially with 0.1M PBS (7 ml/min, 6 min) and followed by 

perfusion intracardially with 4 % paraformaldehyde in 0.1M PBS (7 ml/min, 15 min). As stress can 

influence neurogenesis and thus doublecortin-immunoreactive (DCX+) cell number, steps were taken 

to minimize potential stress differences among mice in the same cage: each cage was gently 

removed from the housing room and brought to the adjacent procedure room immediately prior to 

anesthesia; mouse cage transfer was performed by a researcher with clean personal protective 

equipment; and all mice in a cage were anesthetized within 3 min and began exsanguination within 5 

min of being brought into the procedure room. With these and other steps, we have found 

neurogenesis levels in mice can be reliably and accurately evaluated. Brains were harvested and 

placed in 4% paraformaldehyde at room temperature for 2 days, transferred to cryoprotectant (30% 

sucrose in 0.1 M PBS and 0.1% NaN 3) and stored at 4°C until sectioning. Brains were coronally 

sectioned on a freezing microtome (Leica), with 30 μm sections collected in serial sets through the 

entire anterior-posterior length of the hippocampus (distance range from Bregma: -0.82 to -4.24 

μm) (156) . These eight serial sets of sections (section sampling fraction, ⅛) were stored in 0.1% NaN 3 

in 1x PBS (Fisher Scientific; Pittsburgh, PA) at 4°C until processed.  

 

Immunohistochemistry 

Immunohistochemistry was performed as previously described (70–72) . Briefly, one complete set of 

coronal sections from a 1:n series (1:8 or 1:9) was mounted onto glass slides (Superfrost/Plus, 

Fisher) in rostral to caudal order and allowed to dry. To visualize DCX+ cells using 

3’3-diaminobenzidine (DAB), slide-mounted sections were treated for antigen retrieval (0.01M citric 

acid in MQH 2O, pH 6.0, 95°C, 15 min) and quenching of endogenous peroxidases (0.3% hydrogen 
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peroxide in 1xPBS, 30 min). Non-specific staining was blocked by incubation in 3% normal donkey 

serum (NDS) and 0.1% Triton X-100 in 1xPBS for 60 min. Sections were then incubated in 

goat-anti-DCX primary antibody (1:500, Santa Cruz) overnight at room temperature in 3% NDS, 0.1% 

Tween-20 in 1xPBS. The following day, sections were incubated for 60 min with biotinylated donkey 

anti-goat antibody (1:200, Jackson ImmunoResearch) in 1.5% normal donkey serum in 1xPBS 

followed by rinses. A 60-min incubation in avidin-biotin complex (ABC Elite, 1:50, Vector 

Laboratories) was then performed, followed by visualization of immunoreactive cells using DAB 

(Thermo Scientific Pierce) and Nuclear Fast Red counterstaining (Vector Laboratories). Tissue was 

then dehydrated with a series of increasing ethanol concentrations and defatted section (Citrosolv) 

were cover slipped with DPX Mountant (Sigma-Aldrich).  

 

Stereological Cell Quantification 

Unbiased analysis of DCX+ cell number was performed via stereologic quantification on a BX51 

System Microscope (Olympus America, Center Valley, PA, USA) as previously described (70–72) . 

DCX+ cells in the subgranular zone and granular cell layer of the hippocampal dentate gyrus were 

visualized with a 40X, 0.63 NA oil-immersion objective and quantified with the formula: 

Total population of cells = total cells counted x 1/ssf x 1/asf x 1/hsf 

where ssf is the section sampling fraction (DCX: e.g. ⅛), asf is the area sampling fraction (1 for these 

rare populations of cells; thus, all cells were counted in ⅛ of the sections), hsf is the height sampling 

fraction (1 given the minimal effect edge artifacts have in counting soma <10 μ m with ssf ⅛). As both 

hemispheres were counted for DCX, the resulting formula was:  

Total population of DCX+ cells = total cells counted x 1/(⅛) x 1/1 x 1/1 

 

Statistical Analyses 
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Data are reported as mean ± s.e.m. Testing of data assumptions (for example, normal distribution, 

similar variation between control and experimental groups, etc.) and statistical analyses were 

performed in GraphPad Prism (ver. 8.2.0). Statistical approaches and results are provided in Table 

S1 for main figures and in Table S2 for supplementary figures, and statistical analysis summaries are 

provided in the figure legends. Analyses with two groups were performed using an unpaired, 

two-tailed Student’s t-test, and significance is indicated by asterisks (e.g., *p < 0.05, **p < 0.01, ***p < 

0.001). Analyses with more than two groups and one variable were performed using one-way ANOVA 

and Bonferroni post hoc test; post hoc significance is indicated by asterisks (e.g., *p < 0.05, **p < 

0.01, ***p < 0.001). Analyses with more than two variables were performed using two-way ANOVA 

with Bonferroni post hoc test; repeated measures (RM) were used where appropriate, as indicated in 

figure legends and  Table S1. Two-way ANOVA post hoc significance is indicated by lowercase letters 

(e.g., a, b, c : p < 0.05; a’, b’, c’ : p < 0.01; a’’, b’’, c’’: p < 0.001). For the distribution of subjects 

reaching criteria between control and experimental groups, the Mantel-Cox test was used, and 

significance was defined as *p < 0.05. For behavioral studies, mice were randomly assigned to 

groups. Additionally, investigators were blinded to the treatment group until all data had been 

collected. Sample sizes were pre-determined via power analysis and confirmed on the basis of 

extensive laboratory experience and consultation with CHOP and PennMed statisticians. 

 

Figure Preparation 

For graphical data, figures for each data set were produced in Prism (GraphPad ver. 8.2.0) and 

transferred to Illustrator (Adobe Illustrator cc2018 version 22.1) to enable uniform line thickness and 

figure size. For photomicrographs, immunostained sections were visualized with an epifluorescence 

microscope (Olympus BX51) with 10x and 40x objectives and images were captured with the 

Olympus DP Manager Program before being prepared in Adobe Illustrator 2018 (version 22.1). 
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Transparency and Reproducibility 

Behavioral experiments were performed by researchers blind to treatment (Sham or IRR), which was 

feasible since such the low doses of space radiation used here do not have gross measurable impact 

on mouse weight or hair loss. Automated scoring was used for most behavior tests. Touchscreen 

testing criteria was based on rodent performance, thus avoiding scoring discrepancies among 

researchers. For immunohistochemical experiments, tissue was coded to obscure treatment 

information, and codes were not broken until data analyses were complete. After publication, raw 

data and images will be made available to interested researchers. 
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Figure 1. Timeline of experimental groups and behavior tests. (A-E) C57BL/6J male mice 
(JAX cat#00684) received whole-body exposure to particles of 56Fe (A-C, E), 28Si (D), or 
Sham exposure at 6-months (mon) of age (0-mon post-irradiation (IRR)). Mice subsequently 
were run on a variety of touchscreen behavioral tests (A: TS training, PD, PD rev, LD, B: TS 
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Figure 2. Mice exposed to whole body 56Fe IRR at 6-month of age complete the final stage of general touchscreen training in fewer days compared to Sham mice, but 
perform similarly to Sham mice overall in the Pairwise Discrimination (PD) and reversal (PD rev). (A) Sham and 56Fe IRR mice performed similarly in the first four steps of 
general touchscreen training with two windows: Habituation (Hab), Initiate Touch (IT), Must Touch (MT), and Must Initiate (MI). However, 56Fe IRR mice completed the Punish 
Incorrect (PI) stage of general touchscreen training in fewer days than Sham mice. (B-C) Sample touchscreen images for PD and PD reversal tests. (D) Sham and 56Fe IRR mice 
completed PD and PD rev in similar number of days. (E) Cumulative distribution function showing the difference in the rate of days required to complete PD between Sham and 
56Fe IRR mice. (F-H) Sham and 56Fe IRR mice performed similarly in PD (F: session length, G: percent(%) correct, H: Error number(#)). (I) Cumulative distribution function showing 
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Error #). Mean±SEM. Two-way RM ANOVA in A, D, F-H, J-L, *p<0.05, ****p<0.0001, post hoc: Bonferroni  a p<0.05 in Sham vs. 56Fe; Mantel-Cox test (E,I), *p<0.05. s=seconds.

Figure 2. Whoolery, Yun et al.
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Figure 3. Mice exposed to whole body 56Fe IRR at 6-month of age complete the final stage of general touchscreen testing in fewer days than Sham mice, but perform similarly to Sham in tests of rule-based 
learning and stimulus-response habit learning. (A) Sham and 56Fe IRR mice performed similarly in the 4 first steps of general touchscreen training stages with three windows, including Habituation (Hab), Initiate 
Touch (IT), Must Touch (MT), and Must Initiate (MI). However, 56Fe IRR mice completed the Punish Incorrect (PI) stage of general touchscreen training in fewer days than Sham mice. (B) Sample touchscreen images for 
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Figure 4. On an appetitive pattern separation task, mice exposed to whole body 56Fe IRR at 6-month of age distinguish two similar visual cues earlier and with greater accuracy on the last test day relative to 
Sham mice. (A) Sample touchscreen images for location discrimination training (LD train). (B-E) Sham and 56Fe IRR mice performed similarly in LD train. B: distribution of subjects reaching criteria, C: days to completion, 
D: session completion time, E: % correct. (F) Sample touchscreen images for LD testing (LD test). (G-J) 56Fe IRR mice completed the LD test earlier than Sham (G,H), but no difference in session completion time (I) or 
number of completed trials (J). (K-L) 56Fe IRR mice were more accurate overall (K) and on both “Large” and “Small” separation trials compared to Sham mice (L). (M-P) Sham and 56Fe IRR mice made similar number of 
blank touches to non-stimuli windows (M) and had similar reward collection latency (N), correct image response latency (O), and incorrect image response latency (P). (Q-T) Sham and 56Fe IRR mice had similar block 
duration in each 10-trial block (Q). However, 56Fe IRR mice had higher accuracy in the 4th 10-trial block (31st -40th trial) compared to Sham mice (R). Sham and 56Fe IRR mice made similar number of blank touches in 
each block (S) and left and right touches during inter-trial interval (ITI) (T). Mean±SEM. Mantel-Cox test, *p<0.05 in B, G;  Unpaired, two-tailed t-test in C-E, H-I, K, M-P; Two-way RM ANOVA,*p<0.05, **p<0.01, post hoc: 
Bonferroni in J, L, Q-T, a p<0.05, a’ p<0.01 in Sham vs.56Fe mice in L, R, c’ p<0.01 1st and 4th block in 56Fe mice in S. s=seconds.
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Figure 5. On an aversive pattern separation test, mice exposed to whole body 56Fe IRR at 6-month 
of age discriminate two contexts earlier than mice exposed to Sham IRR. (A) Sham mice discrimi-
nate Context A (shock context) from Context B (non-shock context) by Block 5. (B-C) Frac (B) and 
Non-Frac (C) 56Fe mice discriminate Context A from Context B by block 2. (D-F) When examined at Block 
2 (D), Block 4 (E), and Block 6 (F), Frac and Non-Frac 56Fe discriminate by Block 2. Mean±SEM. (A-F) 
Two-way RM ANOVA, *p<0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001, Bonferroni post-hoc tests in A-F.    
a p<0.05, a’ p<0.01, a’’ p<0.001, a’’’ p<0.0001 in Context A vs B.
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Figure 6. On an aversive pattern separation test, mice exposed to a different HZE particle - 28Si- at 
6 month of age also discriminate two contexts earlier than mice exposed to Sham IRR. (A) Sham 
mice discriminate Context A (shock context) from Context B (non-shock context) by Block 5. (B-C) While 
20cGy 28Si mice (B) discriminate Context A from Context B by Block 5, 100cGy 28Si mice (C) discriminate 
by Block 3. (D-F) When examined at Block 2 (D), Block 4 (E), and Block 6 (F), 100cGy Si mice by Block 4 
and both 20cGy and 100cGy 28Si mice discriminate by Block 6. Mean±SEM. (A-F) Two-way RM ANOVA, 
*p<0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001, Bonferroni post-hoc tests in A, B, C, E, F, #0.06<p<0.05, 
a p<0.05, a’ p<0.01, a’’ p<0.001, a’’’ p<0.0001 in Context A vs. B.
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Figure 7. Stereological quantification reveals fewer immature dentate gyrus neurons (doublecortin (DCX)+ cells) 4 months post-whole 
body 56Fe particle radiation relative to Sham mice. (A) Representative photomicrograph of DCX+ cell in the mouse dentate gyrus subgranular 
zone. Insets: higher magnification of boxed areas in main image. Scale bar=100 um in A, 10 um in inset ii. (B-C) Relative to Sham mice, Frac, and 
Non-Frac 56Fe mice have fewer DCX+ dentate gyrus cells. Mean±SEM. (B) One-way ANOVA Bonferroni posthoc. *p<0.05, (C) Two-way ANOVA, 
Bonferroni posthoc. a’ p<0.01 Sham vs. Frac, b p<0.05, b” p<0.001 Sham vs. Frac. Frac=fractionation, Non-Frac=non-fraction.
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SUPPLEMENTARY MATERIAL AND METHODS  

Locomotor Activity (LM). Within 2-months (mon) post-IRR (56Fe experiments: 59-days post-IRR; 28Si 

experiments: 49-days post-IRR), mice underwent a single locomotor activity recording session from 

5pm-9am under red light. After 1-hour (hr) acclimation to the testing suite, group-housed mice were 

individually placed into clean standard cages and were given ad libitum food and water. Beam breaks 

were recorded over 16 hr using the Photobeam Activity System-Home Cage (San Diego Instruments; 

San Diego, CA). Data were collapsed into 30-minute (min) bins across the 16-hr session, and are 

presented as number of beam breaks. At the completion of recording, mice were placed back to their 

original group-housed cage and returned to their normal housing room.   

 

Dark/Light test (D/L). The apparatus consisted of a polypropylene cage (L 44 x W 21 x H 21 cm) 

unequally divided (⅔ and ⅓) into two chambers. The large chamber was white and 

brightly-illuminated by two 20-W fluorescent lights (1388 lux at cage floor), while the small chamber 

was dark (not illuminated). Initially the mouse was placed in the dark side for 2 min, after which the 

door between the two chambers is opened and the transitions of the mouse between the two 

chambers and time in each chamber was detected for 10 min by seven photocells. The time spent in 
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the brightly-lit side and latency to enter the brightly-lit side were measured by an automated system 

(Med Associates). 

 

Pain Threshold (PT) . Mice were individually placed into boxes equipped with a metal grid floor 

connected to a scrambled shock generator (Med Associates Inc., St. Albans, VT). After ~1 min, mice 

received a series of foot shocks (each 2-second [s] duration) with increasing intensity. The initial 

shock intensity was 0.05 mA, and the amplitude was increased by 0.05 mA for each consecutive foot 

shock with a 15-s intershock interval. The first shock intensity at which each animal displayed each 

behavior (flinch, vocalization, or jump) is reported. Once the animal displayed all three behaviors, it 

was removed from the chamber. 

 

Contextual Discrimination Fear Conditioning (CDFC). CDFC paradigm and chambers are shown and 

described in Figure S2. “ Context A” consisted of a standard fear conditioning chamber (Med 

Associates) outfitted with a grid floor and white overhead house light, was scented with vanilla, and 

was paired with a shock. “Context B” consisted of a standard fear conditioning chamber with a grid 

floor, but with a near-infrared light and a black A-frame insert, was scented with mint, and was not 

paired with a shock. There were other subtle differences between the contexts. For example, prior to 

placement into Context A, mice were individually placed into a transfer cage (a standard cage with 

bedding), and then placed by the tail into Chamber A. After exposure to Context A, the mouse was 

removed and Context A was cleaned with Coverage Plus NPD solution (Steris, Mentor, OH). In 

contrast, prior to placement into Context B, mice were individually placed into a transfer cage lined 

with white paper towels, and each mouse was scooped by hand into both the transfer cage and 

testing chamber. After exposure to Context B, the mouse was removed and Context B was cleaned 

with 1% acetic acid. Each twice daily exposure over 16 days lasted 4 min 2 s, during which freezing 

behavior was scored for the first 3 min. Mice in Context A, but not Context B, received a single, mild 
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foot shock (0.25 mA, 2-s duration) after 3 min in the context. Mice then remained in the chambers for 

one additional minute until the session was complete. The interval between daily exposures to 

Context A or B was 2-2.5 hrs.  

 

Contextual Fear Conditioning (CFC). CFC paradigm and chambers are shown and described in 

Figure S3. CFC consisted of two phases: training (Day 1), and testing (Day 2-3). Mice were 

habituated to the behavior room environment 1 hr each day prior to training and testing sessions. On 

Day 1, mice were trained to associate a novel context (standard fear conditioning chamber, grid 

flooring, no odor, house lights on; Med Associates Inc., St. Albans, VT) with a shock. Two minutes 

after placement in the novel context, an auditory cue was played (80-decibel [dB] white noise, 30-s 

duration, Med Associates Inc.), which co-terminated with the presentation of a 0.5-mA shock (2-s 

duration). This cue-shock pairing was repeated twice during Day 1 (5-min training session), with 1 

min between the cue-shock presentations. On Day 2, mice underwent context testing: 5 min in the 

same environment as Day 1 training, but no auditory cue or foot shock presented. On Day 3 (56Fe 

IRR mice) mice underwent auditory cue testing: 6 min in another novel context (plastic flooring, 

triangular roof, vanilla odor, house lights on). For training and testing sessions, freezing behavior was 

assessed using VideoFreeze software (Med Associates Inc.), compiled for each phase of each 

session (e.g. Pre-Cue, During Cue, etc.), and presented as percent percent time freezing for each 

phase.  

 

Touchscreen behavior tests (Abet II software, Cat. #89505).  

Touchscreen platform and software.  The touchscreen platform used was Model 80614 made by 

Lafayette Instruments (Lafayette, IN). Each operant chamber is encased in a sound-attenuating 

chamber. Each chamber is trapezoid-shaped, with the widest wall serving as the “touchscreen” (W 

238 x H 170 mm) and the opposite and narrowest wall (W 46 mm ) containing a motion-sensitive 
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center dispenser (tray) to deliver liquid reward (Strawberry Ensure, Abbott Laboratories, Chicago, IL). 

Each chamber has two lights (tray light and overhead house light), and is equipped with a speaker 

(ceiling in each chamber) to play a tone. Aside from initial priming reward used during training, a 

“reward” is defined as 7uL Ensure delivered to the illuminated tray at the same time as a tone is 

played. Aside from training sessions, the term “initiate a trial” is defined as the mouse placing its head 

in the tray when the tray light is illuminated and the tone is played. The two remaining walls of the 

chamber are infrared-permeable to track rodents during testing. The floor is a perforated metal grid, 

and the solid roof is hinged for easy placement/removal of the animal. A computer outside of the 

chamber controls the programs and recording of each session. Mice are tested in their light cycle 

Monday through Friday until testing was complete. Software used for the Touchscreen System is 

from ABET II (Lafayette Instruments, Cat. #89505), and individual ABET programs for specific 

touchscreen training and testing sessions are listed below. 

 

Food exposure/restriction. In brief, mouse chow (16% protein 2016 Teklad Global Diet, Envigo, 

Madison, WI) was removed from each cage at 5 pm the day prior to training or testing. Each cage 

was given ad libitum access to chow for 3 hr (minimum) to 4 hr (maximum) immediately following 

daily touchscreen training/testing, and from completion of training/testing on Friday until Sunday 5 

pm. Mice were weighed each Wednesday to ensure weights >80% initial body weight. While weights 

below this threshold merited removal of the mouse from the study, zero mice reached this threshold 

( Fig. S1A). 

 

Touchscreen training (Fig. 2A, 3A) consists of 5 steps, as previously published (54, 56, 109) : 

Habituation, Initial Touch, Must Touch, Must Initiate, and Punish Incorrect. Methods for each step of 

the touchscreen training are described in turn below.  
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Habituation (Hab). Mice are placed in touchscreen chamber for 30-min (max) session with the 

tray light turned on (LED Light, 75.2-lux) . For the initial reward in each habituation session, a tone is 

played (70-dB at 500 Hz, 1000 ms) at the same time as a priming reward (150 uL Ensure) is 

dispensed to the chamber tray. After the mouse inserted its head and removed its head from tray, the 

tray light turns off and a 10-s delay begins. At the end of the delay, the tray light is turned on and tone 

is played again as a standard reward (7uL Ensure) is dispensed. If the mouse’s head remains in the 

tray at the end of the 10-s delay, an additional 1-s delay is added. Mice complete Habituation training 

after they collect 25 rewards (25 x 7 ul) within 30 min. Mice that achieve habituation criteria faster 

than 30 min are removed from the chamber immediately after their 25th reward in order to minimize 

extinction learning.  

Initial Touch (IT) . Drawing from a bank of 40 preselected black and white images (240 x 240 

pixels), a random image is displayed on the screen in a pseudo-random location such that no image 

is displayed in that location more than 3 consecutive times. The mouse has 30 s to touch the image 

(typically with their nose). If the mouse does not touch the image, the image is removed, a reward 

(7uL Ensure) is delivered into a lit tray, and a tone is played. After the reward is collected, the tray 

light turns off and a 20-s intertrial interval begins. If the mouse touches the image on the screen while 

it is displayed, the image is removed and the mouse receives 3 times the normal reward (21 uL 

Ensure, tray lit, tone played). Mice advance from Initial Touch training after they complete 25 trials 

(irrespective of reward level received) within 30 min. Mice that achieve Initial Touch criteria faster 

than 30 min are removed from the chamber immediately after their 25th trial.  

Must Touch (MT). Similar to Initial Touch training, a random image is displayed, but now the 

image remains on the screen until it is touched. If the mouse touches the screen, the mouse receives 

a reward (7uL Ensure, tray lit, tone played). If the mouse touches the blank screen, there is no 

response (no reward dispensed, no light in tray, no tone). Mice advance from Must Touch training 
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after they complete 25 trials within 30 min. Mice that achieve Must Touch criteria faster than 30 min 

are removed from the chamber immediately after their 25th trial.  

Must Initiate (MI). Must Initiate training is similar to Must Touch training, but a mouse is now 

required to initiate the training by placing its head into the already-lit tray. A random image from the 

image bank will then appear on the screen, and the mouse must touch the image to receive a reward 

(7uL Ensure, tray lit, tone played). Following the collection of the reward, the mouse must remove its 

head from the tray and then reinsert its head to initiate the next trial. Mice advance from Must Initiate 

training after they complete 25 trials within 30 min. Mice that achieve Must Initiate criteria faster than 

30 min are removed from the chamber immediately after their 25th trial.  

Punish Incorrect (PI).  Punish Incorrect training builds on Must Initiate training, but here if a 

mouse touches a portion of the screen that is blank (does not have an image), the overhead house 

light turns on and the image disappears from the screen. After a 5-s timeout period, the house light 

turns off, and the mouse has to initiate a correction trial, where the same image appears in the same 

location on the screen. The correction trials are repeated until mouse successfully presses the image 

but are not counted towards the final percent correct criteria. Mice advance from Punish Incorrect 

training and onto testing after they complete 25 trials within 30 min at ≥76% (≥19 correct) for two 

consecutive days. Mice that achieve Punish Incorrect criteria faster than 30 min are removed from the 

chamber immediately after their 25th trial.  
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Figure S1. Weights, locomotion, anxiety, and pain threshold are generally unaffected in mice exposed to whole body 
Frac or Non-Frac 56Fe radiation in maturity. (A) No gross weight difference was detected before and after radiation in Sham 
or 56Fe  groups. (B-G) Locomotor activity (LM) measured in 30 minute bins for 16 hrs (B), time spent in light (C), latency to enter 
light (D) in dark/light box (D/L) and measurements for flinch (E), vocalize (F), and jump (G) in the pain threshold test (PT) reveal 
no gross changes after exposure to Sham or 56Fe radiation. Mean±SEM. Statistical analysis in A, B: Two-way RM measures 
ANOVA, **** p<0.0001, Bonferroni’s post-hoc analysis, a p<0.05 in Sham vs Frac; b p <0.05, b’ p<0.01 in Sham vs Non-Frac. 
One-way ANOVA in C-G, Bonferroni’s post-hoc analysis. ** p<0.01. a=A.M., Frac=fractionation, months=mon, mA=milliampere, 
p=P.M., Non-Frac=non-fraction, s=seconds. 

Fig. S1. Whoolery, Yun et al.
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Figure S2. Contextual Discrimination Fear Conditioning (CDFC) paradigm. (A) Sixteen-day CDFC para-
digm depicting daily, randomized placement into Context A (shock-paired, indicated by yellow lightning bolt) 
and the contextually-similar Context B (no shock). (B-C) Photographs of chamber set up as Context A (B, the 
context paired with mild foot shock) and Context B (C, a somewhat distinct context that is never paired with a 
foot shock). (D) Table of parameters of Context A and Context B used for this CDFC paradigm. “-”=not applica-
ble. 

Fig. S2. Whoolery, Yun et al.
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Figure S3. Contextual fear conditioning (CFC) is unaffected in mice exposed to 
whole body Fractionated (Frac) or Non-Fractionated (Non-Frac) 20 cGy 56Fe 
radiation. (A) Three-day CFC paradigm depicting placement (Day 1) into in novel 
context which is paired with a cue (auditory tone, indicated by grey speaker, is paired 
with shock, indicated by yellow lightning bolt) followed by testing in the same context 
(Day 2) and in an additional novel context for cued testing (Day 3). (B) Table of 
parameters of the contexts used for training and testing in this CFC paradigm. (C-D) 
Percent freezing in response to context (A) or cue (B) in the CFC test reveals a lack of 
effect with 56Fe radiation. Mean±SEM. (C) One-way ANOVA, (D) Two-way repeated 
measures ANOVA. ****p>0.0001, “-”=not applicable.

Fig. S3. Whoolery, Yun et al.
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Table S1. Whoolery, Yun et al.

Table S1. Reporting statistical results of main figures

Subject Figure n Statistics 
(variables)

Main 
Effect F Value P value Post hoc Test

F (4, 88) = 3.169 P=0.0175

F (4, 88) = 14.98 P<0.0001

Frac 20 cGy: 12 F (1, 22) = 0.03139 P=0.861

F (22, 88) = 0.9710 P=0.5076

F (1, 22) = 2.642 P=0.1183

F (1, 22) = 30.16 P<0.0001

F (1, 22) = 0.03605 P=0.8512

Frac 20 cGy: 12 F (22, 22) = 2.623 P=0.0141

Frac 20 cGy: 12

F (2, 41) = 43.97 P<0.0001

F (1, 22) = 0.08425 P=0.7743

Frac 20 cGy: 12 F (2, 41) = 0.9220 P=0.4058

F (2, 42) = 43.04 P<0.0001
F (1, 22) = 0.9363 P=0.3438

Frac 20 cGy: 12 F (2, 42) = 0.04335 P=0.9576

F (2, 42) = 57.37 P<0.0001
F (1, 22) = 0.01435 P=0.9057

Frac 20 cGy: 12 F (2, 42) = 0.1472 P=0.8636

Frac 20 cGy: 12

F (3, 61) = 66.30 P<0.0001
F (1, 22) = 
0.009466 P=0.9234

Frac 20 cGy: 12 F (3, 61) = 0.9977 P=0.4001

F (3, 61) = 86.05 P<0.0001
F (1, 22) = 0.03111 P=0.8616

Frac 20 cGy: 12 F (3, 61) = 0.3662 P=0.7776

F (3, 61) = 140.4 P<0.0001
F (1, 22) = 0.6191 P=0.4398

Frac 20 cGy: 12 F (3, 61) = 0.4176 P=0.741

F (4, 88) = 2.273 P=0.0677

1 1.08 4.08 1 14.5 F (4, 88) = 156.1 P<0.0001
F (1, 22) = 3.218 P=0.0866

Frac 20 cGy: 12 F (22, 88) = 0.7572 P=0.7672

F (27, 594) = 1.470 P=0.0606

F (27, 594) = 9.219 P<0.0001

F (1, 22) = 0.9081 P=0.3510

Frac 20 cGy: 12 F (22, 594) = 13.18 P<0.0001

F (27, 594) = 2.006 P=0.0021

F (27, 594) = 18.39 P<0.0001

F (1, 22) = 0.03083 P=0.8622

Frac 20 cGy: 12 F (22, 594) = 16.76 P<0.0001

F (27, 594) = 1.383 P=0.0956

F (27, 594) = 5.234 P<0.0001

F (1, 22) = 3.853 P=0.0624

Frac 20 cGy: 12 F (22, 594) = 6.371 P<0.0001
F (27, 594) = 
0.8463 P=0.6909

F (27, 594) = 4.188 P<0.0001

F (1, 22) = 4.242 P=0.0515

Frac 20 cGy: 12 F (22, 594) = 6.810 P<0.0001

F (1, 20) = 1.697 P=0.2075

F (1, 20) = 36.72 P<0.0001

F (1, 20) = 0.5476 P=0.4679

Frac 20 cGy: 11 F (20, 20) = 1.563 P=0.1632

Frac 20 cGy: 11
F (1, 20) = 0.1484 P=0.7041

F (1, 20) = 2.491 P=0.1302

F (1, 20) = 0.1647 P=0.6892

Frac 20 cGy: 11 F (20, 20) = 0.7316 P=0.7545

F (1, 20) = 0.07550 P=0.7863

F (1, 20) = 7.055 P=0.0152
F (1, 20) = 
0.008803 P=0.9262

Frac 20 cGy: 11 F (20, 20) = 0.9530 P=0.5423

F (1, 20) = 0.2182 P=0.6454

F (1, 20) = 1.064 P=0.3147

F (1, 20) = 1.803 P=0.1944

Frac 20 cGy: 11 F (20, 20) = 6.712 P<0.0001

F (1, 20) = 0.2182 P=0.6454
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Frac 20 cGy: 11 F (20, 40) = 1.000 P=0.4827

F (2, 40) = 0.5196 P=0.5987

F (2, 40) = 27.40 P<0.0001

F (1, 20) = 0.8370 P=0.3711

Frac 20 cGy: 11 F (20, 40) = 0.5205 P=0.9405

F (2, 40) = 0.4245 P=0.6570

F (2, 40) = 5.525 P=0.0076

F (1, 20) = 1.219 P=0.2826

Frac 20 cGy: 11 F (20, 40) = 0.4638 P=0.9660

F (2, 40) = 0.4920 P=0.6150

F (2, 40) = 77.87 P<0.0001

F (1, 20) = 0.07031 P=0.7936

Frac 20 cGy: 11 F (20, 40) = 1.988 P=0.0319

Frac 20 cGy: 12

Frac 20 cGy: 12

Frac 20 cGy: 12

Frac 20 cGy: 12

Frac 20 cGy: 12

Frac 20 cGy: 12

Frac 20 cGy: 12
F (1, 22) = 0.3110 P=0.5827

F (1, 22) = 0.07774 P=0.7830

F (1, 22) = 0.000 P>0.9999

Frac 20 cGy: 12 F (22, 22) = 0.8445 P=0.6523

Frac 20 cGy: 12
F (1, 22) = 0.02948 P=0.8652

F (1, 22) = 6.460 P=0.0186
F (1, 22) = 9.477 P=0.0055

Frac 20 cGy: 12 F (22, 22) = 2.121 P=0.0423

Frac 20 cGy: 12

Frac 20 cGy: 12

Frac 20 cGy: 12

Frac 20 cGy: 12
F (3, 66) = 0.5372 P=0.6584
F (3, 66) = 35.94 P<0.0001
F (1, 22) = 0.07455 P=0.7874

Frac 20 cGy: 12 F (22, 66) = 1.150 P=0.3222
F (3, 66) = 1.173 P=0.3267
F (3, 66) = 1.923 P=0.1344
F (1, 22) = 8.146 P=0.0092

Frac 20 cGy: 12 F (22, 66) = 5.478 P<0.0001
F (3, 66) = 1.056 P=0.3737
F (3, 66) = 4.829 P=0.0042
F (1, 22) = 0.1750 P=0.6797

Frac 20 cGy: 12 F (22, 66) = 3.529 P<0.0001
F (3, 66) = 1.010 P=0.3938
F (3, 66) = 2.400 P=0.0756
F (1, 22) = 0.000 P>0.9999

Frac 20 cGy: 12 F (22, 66) = 2.678 P=0.0011

F (6, 54) = 3.106 P=0.0110
F (1, 9) = 38.45 P=0.0002

F (6, 54) = 2.478 P=0.0344

F (6, 54) = 0.8698 P=0.5232
F (1, 9) = 137.8 P<0.0001

F (6, 54) = 1.584 P=0.1698

F (6, 48) = 2.239 P=0.0551
F (1, 8) = 31.30 P=0.0005

F (6, 48) = 3.031 P=0.0135

Sham: 10 F (2, 26) = 1.917 P=0.1673
Frac 20 cGy: 10 F (2, 26) = 0.1356 P=0.8738

F (1, 26) = 21.62 P<0.0001
F (26, 26) = 8.519 P<0.0001

Sham: 10 F (2, 26) = 0.3829 P=0.6857
Frac 20 cGy: 10 F (2, 26) = 0.4833 P=0.6222

F (1, 26) = 23.70 P<0.0001
F (26, 26) = 6.533 P<0.0001

Sham: 10 F (2, 26) = 0.8509 P=0.4386
Frac 20 cGy: 10 F (2, 26) = 0.9621 P=0.3953

F (1, 26) = 107.7 P<0.0001
F (26, 26) = 10.49 P<0.0001
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F (6, 42) = 4.152 P=0.0023
F (1, 7) = 12.51 P=0.0095
F (6, 42) = 1.937 P=0.0970

F (6, 42) = 2.270 P=0.0548
F (1, 7) = 9.797 P=0.0166
F (6, 42) = 4.779 P=0.0009

F (6, 42) = 2.777 P=0.0229
F (1, 7) = 16.68 P=0.0047

F (6, 42) = 0.9790 P=0.4514

Sham: 8 F (2, 21) = 0.9076 P=0.4187
20 cGy: 8 F (2, 21) = 1.657 P=0.2147

F (1, 21) = 
0.009692 P=0.9225

F (21, 21) = 1.266 P=0.2968
Sham: 8 F (2, 21) = 0.6073 P=0.5541

20 cGy: 8 F (2, 21) = 1.158 P=0.3334
F (1, 21) = 19.48 P=0.0002

F (21, 21) = 2.767 P=0.0120
Sham: 8 F (2, 21) = 4.212 P=0.0290

20 cGy: 8 F (2, 21) = 0.3839 P=0.6859
F (1, 21) = 34.37 P<0.0001

F (21, 21) = 2.897 P=0.0092
Sham: 10

Frac 20 cGy:  10
Non-Frac 20 

cGy: 9
Sham: 10 F (28, 364) = 1.260 P=0.1738

Frac 20 cGy:  10 F (14, 364) = 75.06 P<0.0001

F (2, 26) = 5.843 P=0.0080

F (26, 364) = 6.620 P<0.0001
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33.7048.5

One-way 
ANOVA

Bonferroni 
Sham vs Frac: *P<0.05

Sham vs Non-Frac: *P<0.05
P=0.0079NA F (2, 26) = 5.863

45.36

39.29

Context B

49.11
Sham

Treatment

Context B

Context A
Treatment

Context A

Context B 44.64

Frac 20 cGy

34.2940.89

3942 ± 366.6 2825 ± 229.0    

20 cGy

-0.82

1.42E-14

60.36

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 9, 2019. ; https://doi.org/10.1101/796938doi: bioRxiv preprint 

https://doi.org/10.1101/796938


Table S2. Whoolery, Yun et al.

Table S2. Reporting statistical results of supplementary figures

Subject Figure n Statistics 
(variables)

Main 
Effect F Value P value Post hoc Test

Sham: 23 4.5   
Interaction

F (14, 609) = 0.7606 P=0.7125

Frac 20cGy: 42 42.1 Time F (7, 609) = 547.5 P<0.0001

40.6 Treatment F (2, 87) = 1.495 P=0.2299

40.8 Subjects F (87, 609) = 31.21 P<0.0001

Sham: 25 Time 6p 7p 8p 9p 10p 11p 12a 1a 2a 3a 4a 5a 6a 7a 8a 9a   
Interaction

F (126, 5796) = 
1.455 P=0.0008

Frac 20cGy: 42 Sham 312.7 294 300 301 253 186 136 103 95.9 26.6 72.2 236 174 181 138 58.8 Time F (63, 5796) = 109.2 P<0.0001

Frac 20 cGy 360.2 359 375 324 284 199 141 126 72.7 61.1 84.8 227 162 124 59.9 58.8 Treatment F (2, 92) = 0.7391 P=0.4804

Non-Frac 20 
cGy 344.4 301 354 316 222 161 123 99.8 84.7 39.9 58.4 233 207 146 57.2 75.8 Subjects F (92, 5796) = 13.93 P<0.0001

Sham: 5
Frac 20cGy: 24

Non-Frac 20cGy: 
8

Sham: 5
Frac 20cGy: 24

Non-Frac 20cGy: 
8

Sham: 4
Frac 20cGy: 8

Non-Frac 20cGy: 
8

Sham: 4
Frac 20cGy: 8

Sham: 4
Frac 20cGy: 8

Non-Frac 20cGy: 
8

Sham: 8
Frac 20cGy: 8

Non-Frac 20cGy: 
8

Sham: 8   F (2, 21) = 0.8047 P=0.4605

Frac 20cGy: 8   Session F (1, 21) = 110.2 P<0.0001
  

Treatment F (2, 21) = 1.514 P=0.2430

  Subjects F (21, 21) = 0.9482 P=0.5479

S1G
Jump 

Response 
(PT)

One-way 
ANOVA F (2, 18) = 6.468

Non-Frac 20cGy

Sham

140.3

Sham

6.238

Bonferroni
Frac vs Non-

Frac: **P<0.01
P=0.0076

One-way 
ANOVA

One-way 
ANOVA

Bonferroni
8p Sham vs 
Non-Frac: 
*P<0.05

7a Sham vs 
Non-Frac vs 

Frac: **P<0.01
8a Sham vs 
Non-Frac vs 

Frac: *P<0.05

NA

Mean

2.5 3.5-0.5 0.5-1.5 1.5

0.3063 0.3

Non-Frac 20cGy

0.1563

Non-Frac 20cGy

F (2, 18) = 0.3061 P=0.7401

NA

NA

P=0.9475F (2, 18) = 0.05409

NA

BonferroniTwo-way RM 
ANOVA

40.3

39.14

33.49 35.22 34.08

33.74 32.25 34.1431.94

32.04 33.64

36.2

34.23 39.28

Two-way RM 
ANOVA

F (2, 32) = 2.900

Non-Frac 20cGy

173.4

36.0433.07

35.69 36.95

P=0.2477F (2, 34) = 1.454

P=0.0696

Frac 20cGy

127.8

9.36

Frac 20cGy

Non-Frac 20cGy

17.27
One-way 
ANOVA

One-way 
ANOVA

0.1563

Frac 20cGy

Frac 20cGySham

45.34

Frac 56Fe

Frac 20cGy

0.3

Sham

0.15

Sham

Weights

Locomotor

S1F

S1E

Vocalize 
Response 

(PT)
Non-Frac 20cGy: 

8

Time in 
Light (D/L) S1C

-2.5

29.44

28.77

Month Post IRR

Sham
S1A

Latency to 
Enter Light 

(D/L)
 S1D

Flinch 
Response 

(PT)

S1B

Non-Frac 20cGy: 
28

Non-Frac 20 cGy

Frac 20 cGyNon-Frac 20cGy: 
25

28.82

21.07
Non-Frac 56Fe

Two-way RM 
ANOVA

69.6558.21
S3DCue (CFC)

71.79

Sham

P=0.7414F (2, 21) = 0.3035

0.43

Sham

48.09
 Context 
(CFC) S3C

0.4625 0.4

51.69

Non-Frac 20cGyFrac 20cGy
One-way 
ANOVA

Bonferroni
Non-Frac 20cGy: 

8 During-Tone

21.79Pre-Tone 25.36

NA
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