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Summary  

Quantitative proteome study of 32 human tissues and integrated analysis with 

transcriptome data revealed that understanding protein levels could provide in-depth 

knowledge to post transcriptional or translational regulations, human metabolism, 

secretome, and diseases. 

 

Abstract 

Determining protein levels in each tissue and how they compare with RNA levels 

is important for understanding human biology and disease as well as regulatory 

processes that control protein levels. We quantified the relative protein levels from 12,627 

genes across 32 normal human tissue types prepared by the GTEx project. Known and 

new tissue specific or enriched proteins (5,499) were identified and compared to 

transcriptome data. Many ubiquitous transcripts are found to encode highly tissue specific 

proteins. Discordance in the sites of RNA expression and protein detection also revealed 

potential sites of synthesis and action of protein signaling molecules. Overall, these 

results provide an extraordinary resource, and demonstrate that understanding protein 

levels can provide insights into metabolism, regulation, secretome, and human diseases. 

 

Introduction 

Understanding which components are expressed in which tissues is fundamental 

for studying human biology and disease. To date most efforts have focused on RNA 

because it is relatively easy to quantify. However, RNA expression does not directly 

impact phenotype as many additional levels of regulation including post-transcriptional, 

translational, and protein modifications all contribute to individual traits.  Proteins, which 

reside downstream of transcription and participate in vital activities of cells, are ideal 

molecular phenotypes for understanding the contribution of post-transcriptional regulatory 

mechanisms to organismic level complex phenotypes. Previous studies have indicated 

that protein levels correlate poorly with transcript levels (1–3). Therefore, a detailed 
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description of protein expression across tissues may provide complementary information 

to transcriptomic studies and inform how protein levels relate to human biology and 

disease. 

Both mass spectrometry and immunolocalization studies have been performed to 

generate tissue maps of protein expression (4, 5). Mass spectrometry analysis of various 

cell lines and human tissues has identified approximately 85% of the proteins encoded 

by the 20,000 human protein coding genes, and provides an excellent first generation 

tissue map (6–8).  The Human Protein Atlas project (HPA) generated a tissue-based map 

of the human proteome based on immunolocalization data across 32 tissues and 44 cell 

lines (4). However, the quantitative information in HPA primarily relied on transcriptome 

data. Overall, a quantitative comparison of protein expression across tissues, a direct 

assessment of correlation between protein and RNA in the same tissue samples, and the 

relationship of protein expression to biological processes (e.g. metabolism, secretion), 

are lacking. 

The Genotype-Tissue Expression (GTEx) project provides unique opportunities to 

fill these gaps. GTEx collected samples from 54 tissues of 948 post-mortem donors, all 

of which have been transcriptomically characterized by RNA-seq (9–13). We quantified 

the relative levels of proteins from 12,627 genes across 32 normal human tissues in 201 

tissue samples collected by the GTEx project. 5,499 known and novel tissue enriched 

and specific proteins were identified. Notably, many RNA transcripts do not always show 

concordant tissue enriched or specific patterns with their encoded proteins. As an 

example, many vesicular transport proteins involved in neurotransmitter function and cell-

cell signaling are highly enriched in the brain but do not exhibit RNA enrichment. 

Conversely, tissue enriched/specific RNA transcripts can be found in tissues with no 

corresponding protein enrichment. We used the protein /RNA concordant enrichment 

information to suggest proteins that undergo constitutive and regulated secretion and the 

possible targeting locations of many secreted proteins. Examination of many tissue 

specific proteins reveals that they are associated with specific diseases and provide a 

molecular explanation for the underlying defects. Overall, these results provide a valuable 

resource, and demonstrate that understanding protein levels can provide insights into 

metabolism, regulation, sites of function, and human disease. 

 

Results 

Protein Profiling Across Tissues 

We quantitatively profiled the proteome of 201 samples from 32 different tissue 

types of 14 normal individuals as shown in Figure. 1A. The samples covered all major 

organs (Table S1). The proteome data were acquired using a Tandem Mass Tag (TMT) 

10plex/MS3 mass spectrometry strategy using a Fusion Orbitrap (Fig. 1B). TMT10plex 

enables ten isotopically labeled samples to be analyzed in a single experiment, which 

increases throughput and reduces technical variation (14). A common reference, created 
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by mixing peptide digests from all 201 samples was included in each run. One technical 

challenge is the broad dynamic range of proteomes across different tissues. For example, 

in heart and muscle, a small number of top proteins can account for more than half of the 

mass of the entire proteome (5, 15). The high signals from these abundant proteins can 

suppress the signals from the lower abundance proteins leading to inaccurate quantitation 

unless extensive fractionation of each sample is carried out.  To minimize this problem, 

we randomized the tissue samples such that each TMT10-plex consists of a mixture of 

tissues, and each multiplexed sample was extensively fractionated (Fig. 1B).  

In total, we identified proteins encoded by 13,813 genes at peptide FDR of 1% for 

each sample and 12,627 were quantitated after applying strict filters (Table S1). For each 

tissue type, an average of more than 7,500 proteins were quantified (Fig. 1C) and there 

are 6,357 proteins present in all 32 tissue types (Fig. 1D). This result indicates that there 

is a core set of ubiquitously expressed proteins, consistent with previous studies, which 

have shown that an individual tissue is not strongly characterized by the simple presence 

or absence of proteins but rather by quantitative differences (15). To obtain a confident 

list of the total number of proteins detected across all tissues, we pooled all the mass 

spectra and performed a single database search.  In total, 10,312 proteins were identified 

at protein FDR 1%. A summary of detected proteins is presented in Table S1 along with 

their confidence level of detection.  

To determine classes of proteins that might be missing, we overlapped the 

corresponding RNA abundance of all the proteins identified in our study with the entire 

transcriptome (Fig. 1E). The results shown that there is much less protein identification 

when the corresponding RNA TPM is low.  However, when RNA log2TPM is above 5, 

protein detection is not significantly affected by RNA abundance (Table S2&8). Based on 

the genome annotation, there are 5500 proteins predicted to be membrane-bound and 

3000 secreted (4).  We detected 3143 membrane proteins and 1984 secreted proteins 

(Fig. 1F); the membrane proteins were under detected across the entire RNA expression 

abundance level, presumably due to sample preparation methods. Among all the 

undetected proteins, a significant portion are expressed as RNA in the testis. Undetected 

proteins may be due to expression in a limited number of cell types, post-transcriptional 

regulation, degradation of proteins, or protein secretion, which is discussed further below.  

 

Tissue Enriched/Specific Proteins 

To quantify the relative expression of each protein across tissues we developed 

and applied an in-house normalization algorithm.  Compared to existing methods such as 

probability quotient normalization (16), this method identifies proteins separated from the 

population distribution and also enables more accurate protein quantification (17). After 

data normalization, samples were clustered based on their protein expression levels 

using hierarchical clustering based on pairwise Euclidean distance from Ward’s method 

(Fig S2). Samples were clearly separated by tissue types (Fig. 2A&S2) indicating that the 
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differences among different tissue types exceed that of individuals. Physiologically related 

samples also clustered together. For example, arteries from different parts of the body 

were tightly clustered, as were heart and skeletal muscles. Although anatomically the 

stomach, small intestine, transverse colon and sigmoid colon are all part of the digestive 

system, the sigmoid colon samples did not cluster with the other members. This is likely 

because the sigmoid colon samples are largely composed of muscularis layer, and thus 

they cluster with other muscularis tissue samples, such as esophagus muscularis and 

esophagus-gastric junction, even though the esophagus is anatomically further away. 

Likewise, samples from esophagus mucosa layers were clustered with skin instead of 

other esophagus, likely due to functional similarity between epithelial cells. Interestingly 

lung was found to be tightly clustered with spleen despite their distinct functions. Further 

analysis revealed a common group of 78 proteins involved in immunity were enriched in 

both lung and spleen. Recent studies have shown that lung hosts many immune cells and 

is a large reservoir of neutrophils, likely accounting for the similarity (18).   

The enrichment information of each protein across tissues was defined by Tissue 

Specificity (TS) score. The TS-score is defined as the robust estimation of the distance, 

measured in units of standard error, between median abundance in a tissue and the 

population mean. Figure. 2B showed the distribution of TS-scores for protein PHYH 

across all tissues. We consider a TS-score greater than 2.5 as an outlier, and define a 

protein to be tissue enriched if its TS-score reaches 2.5 in at least one tissue. If the TS-

score of a protein is greater than 4 in a tissue and is at least 1.5 standard deviations away 

from the protein’s TS-scores in any other tissue, this protein is considered tissue specific.  

In total, there were 3,851 (31.5%) enriched proteins and 1,558 (12.7%) tissue specific 

proteins (Table S3&6). Brain has the highest number of enriched and specific proteins 

followed by liver, heart and muscle (Fig. 2C, Table S3). 

Figure. 2D showed the enriched/specific proteins across tissues. As shown in the 

figure, some proteins are only enriched in one tissue and some are enriched in multiple 

tissues. GO analysis reveals that proteins only enriched in one tissue have functions that 

are highly tissue-specific, and proteins enriched in more than one tissue usually present 

shared functions (Table S4). For example, proteins involved in nervous system 

development and synaptic transmission are highly enriched in brain and a fraction of them 

is also enriched in the pituitary. However, in the pituitary, a group of peptide hormones 

are specifically enriched representing highly specialized functions of pituitary. Sarcomeric 

proteins which are essential for muscle development and contraction are highly enriched 

in both heart and skeletal muscle. The tissue specificities were further defined through 

the differential enrichment of multiple isoforms of the major sarcomeric proteins such as 

myosin, tropomyosin and troponin (Table S10). In addition, proteins involved in 

mitochondrial translation are more enriched in heart whereas proteins in proteolysis are 

more enriched in skeletal muscle. Interestingly, the left heart ventricle and heart atria also 

show different protein enrichments. Proteins involved in energy production are more 
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enriched in left heart ventricle but peptide hormones (NPPA, NPPB) and specific myosin 

isoforms are only enriched in atria (Table S10).  Proteins involved in oxidation and 

reduction are enriched in multiple metabolically active tissues such as heart, muscle, 

brain, liver and stomach, which will be further discussed in the metabolism section. 

Although ribosomal proteins are present in almost all organs, they are highly enriched in 

pancreas followed by liver and stomach; these organs are highly active in protein 

synthesis, especially the pancreas. Lung, spleen and small intestine share a group of 

proteins involved in immune response, but spleen has many more immune related 

proteins.  

Proteins which are present in all tissues and not enriched in any of them are 

defined as housekeeping (HK) proteins. Of the 6,357 proteins identified in all 32 tissues, 

1,578 proteins were classified as HK proteins (Fig. 1D); the rest showed enrichment in 

different tissues. Functional analysis showed the HK proteins are mainly involved in RNA 

processing, gene expression and protein localization, which are primary functions in all 

cells (Table S4). 

 

Protein and RNA Correlation  

The correlation between RNA and protein can be defined and interpreted in 

different ways (19). Since the RNA and proteome data were generated from the same 

tissue specimens, we computed the correlation between protein and RNA across 32 

tissues for each gene. At the RNA level, the TS-score was calculated using the same 

approach as for protein.  The median Spearman correlation is 0.49 (interquartile range of 

0.28-0.69) (Fig. 3A), consistent with previous findings (1–3). Close to half of the proteins 

(6,604/12,627) have statistically significant positive correlations with RNA, and, 

interestingly, a very small number (92) of genes showed significant negative correlations 

(Table S3). Among the significantly positively correlated protein/RNA, only 31% are 

exhibited enrichment in the same tissues.  Protein and RNA which were enriched in very 

different tissues showed nonsignificant correlations.     

Next, we analyzed the concordance of protein and RNA enrichment in individual 

tissues. Concordance was defined as both protein and RNA are enriched in the same 

tissue as determined by outlier analysis; for discordance, only one or the other was tissue-

enriched (Table S3). The concordance/discordance of every gene in each tissue can be 

visualized at our website (http://snyderome.stanford.edu/TSomics.html). Figure. 3B 

shows the number of genes concordantly and discordantly enriched in each tissue. Many 

proteins and RNAs are concordantly enriched; however, some are enriched only at the 

level of protein and not RNA. These are defined as HK genes at the RNA level. Brain has 

the highest number of genes only enriched at the protein level. These proteins are 

enriched in vesicle transport and protein localization which play important roles in 

neurotransmitter transport, cell-cell communication and signal transduction (Fig. 3C). 

Some showed extremely high enrichment with TS-score >4 such as Rab proteins which 
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are key regulators for intracellular vesicle trafficking (Fig. 3D). In addition, many proteins 

in oxidation reduction pathway were also only enriched at the protein level. These proteins 

are essential to maintain the active function of the brain and genetic mutations affecting 

these proteins can cause many neurological disorders as will be discussed in disease 

section.  

There are also many genes that are highly tissue enriched at the level of RNA but 

not protein. For example, testis has the highest number of genes that have RNA tissue 

enrichment but not protein (Table S3). Multiple proteomics studies including ours have 

shown that many genes expressed as RNA in testis do not have evidence of protein (5, 

20). Failure to detect proteins may be caused by low transcription, poor translation, rapid 

protein degradation, limited expression or presence in only a few cell types and/or limited 

sensitivity of the mass spectrometer. Our data shows that at RNA TPM≤1, 1815/2756 of 

the RNAs are expressed in testis and 466 are only expressed in testis suggesting that 

lack of proteomics evidence might be caused by low RNA expression. 2,863 genes which 

lack detectable proteins in testis have RNA expression greater than TPM 32 where most 

proteins are detectable. These are likely subjected to posttranscriptional regulation 

accounting for their low protein abundance. Pathway analysis of the undetected proteins 

shows that most are involved in spermatogenesis.  

Besides testis, liver also has a large number of genes that are only enriched at the 

RNA level. For example, for the C8G gene in Figure 3E, its protein abundance in liver is 

extremely low but the RNA level is the highest. Further analysis reveals that many of 

these proteins are actually secreted which will be discussed below. Pathway analysis of 

the rest of the discordantly RNA enriched genes showed that most are involved in 

mitochondria translation and cellular respiration which are not liver but heart specific 

functions. In fact, our data showed they are concordantly enriched in heart.  Muscle also 

has a group of genes that are only enriched at the RNA level. These genes are involved 

in gene expression and mitochondrial translation. Mitochondrial ribosomal proteins 

(MRPSs) are enriched at the RNA level in multiple metabolic active organs such as the 

heart, liver and muscle but at the protein level they are only enriched in the heart. 

Surprisingly, other ribosomal proteins overall are discordantly enriched at the protein 

level, especially in pancreas, liver and stomach. Ovary is the only tissue in the opposite 

that only has the ribosomal RNAs enriched.    

 There are some genes whose RNAs are enriched in a group of tissues but their 

encoded proteins are selectively enriched in only a subset of them.  For example, genes 

such as NPPA, NPPB, MYL7 and MYH6 are enriched at the RNA level in both heart 

ventricles and atria. However, at the protein level, they are enriched only in heart atria. 

Many genes involved in muscle contraction are enriched in both heart and skeletal muscle 

at the RNA level but are differentially enriched in each tissue at the protein level. The 

selective enrichment at the protein level indicates tissue specific functions which cannot 

be distinguished based on RNA information. Housekeeping genes also showed 
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concordance/discordance at protein and RNA level. Many genes are ubiquitously 

expressed as HK gene at both protein and RNA level. However, some HK RNA are highly 

enriched in a few tissues at protein level as shown in Figure. 3C. Some HK proteins 

showed enrichment in a few tissues at the RNA level as well (Table S3). Overall, these 

results indicate differential mechanisms controlling protein and RNA levels for each gene 

in different tissues. How this arrangement is related to tissue function and disease is 

discussed below. 

 

Concordance and Discordance in Secreted Proteins 

The protein/RNA concordance analysis indicates that some of the discordance is 

caused by secretion of proteins to other tissues. We systematically investigated the 

protein/RNA concordance in each tissue for the secreted proteins. The secreted proteins 

are based on HPA predictions from a combination of multiple algorithms (4). As described 

above, one would expect discordance for most secreted proteins that are constitutively 

secreted and target other tissues. However, our data also showed that many (501/1902) 

predicted secretory proteins have good protein/RNA concordance (Fig. 3F, table S3). It 

is likely that these proteins undergo regulated secretion in which proteins are stored in 

secretory vesicles and released upon stimulation (21). Well known examples of regulated 

secretion include digestive enzymes and hormones. As shown in Figure. 3F, based on 

the concordance and discordance results, both constitutive and regulated secretion occur 

in each tissue.  

Among all the tissues, liver has the highest number of predicted secreted proteins 

followed by brain, artery, pancreas and pituitary.  In liver, the largest proportion of 

secreted proteins are only enriched at the RNA, but not protein, level. Most of the proteins 

that are anti-correlated across tissues are proteins secreted from the liver. Pathway 

analysis shows these proteins are enriched in complement activation (C2-9, CFHRs 

et.al.), coagulation (CFs, SERPINs), acute phase response (CRP, HP, ITIH4, and SAA4 

et.al), and lipid transport (apolipoproteins) and protein localization (TF, HRG, AGT et.al). 

Many of these proteins are known plasma proteins. Our data also showed the enrichment 

of these proteins in arteries with discordant RNA expression, which provides further 

evidence that these proteins are constitutively secreted to the bloodstream. However, 

there are some (77) liver secreted proteins that are concordantly enriched; these are 

mostly enzymes present in plasma that are involved in drug/amino acid metabolism and 

oxidation-reduction such as CYP2 subfamily members (Table S3). Surprisingly, although 

secreted proteins involved in intracellular transport are not excreted, they showed high 

enrichment only at the protein and not RNA level. Similar enrichment discordance was 

observed in pancreas and brain as well. Perhaps this particular group of proteins are very 

stable and require only modest levels of RNA. 

Similar to liver, the pancreas is a major secretory organ. Uniquely, it has both 

exocrine and endocrine cells that secrete many digestive enzymes and multiple 
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hormones.  Digestive enzymes in the pancreas are stored and secreted into the gut upon 

stimulation by food. A group of major digestive enzymes showed concordant enrichment 

including pancreatic amylases, lipases, proteases and others. Multiple hormones such as 

insulin, glucagon, chromogranins, secretogranins, progastriscin and somatostatin are 

also secreted by the pancreas. Insulin and glucagon are two major hormones regulated 

by increase/decrease of blood glucose level and are concordantly enriched at the protein 

and RNA level. The other hormones are discordantly lower at the protein level in the 

pancreas but, interestingly, are concordantly enriched in other tissues that also secrete 

these hormones. For example, chromogranins and secretogranins in the pituitary and 

progastriscin in the stomach are concordantly enriched. Unlike other hormones, these 

hormones are also regulated by local hormones in paracrine manner. For example, 

somatostatin regulates secretion of progastrin in stomach and insulin/glucagon in 

pancreas. This local regulation from other hormones could contribute to different 

concordance between RNA and protein. A few enzymes such as SERPINAs and SPINT1 

and other proteins such as mucin, albumin, C4, F11 and GC are also enriched only at the 

RNA level in pancreas. Although these proteins are well known to be secreted mainly by 

the liver, our data suggests pancreas may also synthesize and secrete them into the 

bloodstream. Since the pancreas and liver share a common embryological origin and 

some histological similarities, it is possible they have some cellular functions in common 

(22, 23).   
The pituitary is the master gland that secretes many hormones which regulate the 

secretion of other hormones. Our data shows hormones such as TSH, ACTH, GH, PRL, 

CHGA/B, SCGs, LH and FSH are all enriched in the pituitary at both the protein and RNA 

level. These hormones are made in the anterior part of the pituitary but are stored and 

undergo regulated secretion by hormones produced in the hypothalamus. Two other 

major hormones in the pituitary are ADH and OXT. They are both highly enriched at the 

protein level but not at the RNA level; these proteins are synthesized in the hypothalamus, 

secreted to, and stored in the posterior part of pituitary (Fig. 3G). Brain also has a group 

of secreted proteins that are concordantly enriched. They are not secreted into the 

bloodstream. Instead, most are brain specific surface proteins such as receptors for signal 

transduction and proteins involved in cell-cell interaction. Other tissues such as spleen 

and lung have a group of secreted proteins that are discordantly enriched. These proteins 

are mainly involved in immune response and secreted to bloodstream. In transverse colon 

and small intestine, proteins are secreted to lumen or extracellular matrix. The complete 

list of these secreted proteins with concordance analysis can be found in Table S3.   

Overall, the comparison of secreted proteins provides clues as to a) which proteins 

undergo regulated secretion (e.g. high levels of extracellular proteins as both RNA and 

protein as well as b) potential sites of synthesis and action of secreted proteins (enriched 

only as RNA and protein, respectively).  
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Metabolism 

Human metabolism related diseases are emerging as global health problems. 

They are often complex, have multiple genes involved and different underlying 

mechanisms can result in similar phenotypes (24). Metabolic pathways are 

interconnected and metabolic phenotypes involve multiple organs. The exact 

mechanisms underlying the onset and progression of metabolism related disorders are 

still unclear (25). In the HPA study, tissue specific metabolic maps were reconstructed by 

integrating RNA-seq data from 32 different tissues and protein compartment information 

from an antibody map. Since all the metabolic reactions are carried out by enzymes, our 

proteomics data can provide a more direct understanding of the proteins and tissues 

involved in metabolism.   

Proteins from 1434 genes annotated in the KEGG metabolism database were all 

quantified in this study. Their enrichment across 32 tissues showed that liver has the 

highest number of enriched metabolic proteins followed by brain, muscle and heart. To 

further investigate the metabolic features of each tissue, we did the enrichment test of 

metabolic pathways in each tissue based on the enriched proteins (Table S4). As shown 

in Figure. 4A, each tissue has its own unique metabolic profile. For example, in liver most 

(56/68) metabolic pathways are enriched except a few specific ones such as the oxidative 

phosphorylation pathway. This result indicates liver does not depend on the energy 

source from oxidative phosphorylation which is the major energy source for tissues that 

function aerobically. In contrast, oxidative phosphorylation, glycolysis and TCA cycle  

pathways are simultaneously enriched in heart, skeletal muscle and brain. Coupling of 

these pathways can achieve the complete oxidation of glucose and generate the 

maximum amount of ATP required for high energy demand. Previous studies have shown 

that, when active, skeletal muscle requires the most energy, whereas when resting, heart 

and kidney have the highest metabolism rate followed by brain and liver (26).  

Surprisingly, these pathways are also enriched in stomach which usually is not 

considered as a high metabolism organ. However, oxidative phosphorylation in stomach 

tissue is necessary for the massive acid generation by parietal cells. The stomach 

contains a strong acid environment that breaks down food and serves as a biological 

defense that eliminates pathogens, activates endothelial NADPH oxidase and increases 

endothelial RO (27). In accordance, mitochondrial proteins and enzymes involved in 

energy production are highly enriched in these tissues including NADH:ubiquinone 

oxidoreductase, ATP synthase, cytochrome c and coenzymes (Table S3).  Importantly, 

whereas ATP synthases are enriched in muscle for energy production, the V-ATPases 

are specifically enriched in brain for synaptic transmission (28). Mutations of V-ATPase 

are associated with neurological diseases (29).  

Some metabolic pathways are commonly enriched in a few tissues but they likely 

are compartmentalized in different parts of the cell. For example, our data shows that 

aminoacyl-tRNA biosynthesis pathway is enriched in heart, brain, stomach and pancreas. 
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In heart, the high level of aminoacyl-tRNAs is mainly used for the synthesis of 

mitochondria proteins for high active cellular respiration, whereas in the pancreas, they 

are used for the active biosynthesis of proteins in the ER; thus, likely these synthetases 

operate in different cellular compartments. Our data showed that the steroid hormone 

biosynthesis pathway is not only enriched in the adrenal gland and liver but also in small 

intestine and transverse colon. Historically adrenal and gonad glands (ovary, testes) have 

been considered as major steroid hormone production organs, and liver as the main 

organ that metabolizes the hormones.  Until recent years, evidence has shown that 

steroid hormones can also been produced and metabolized in other tissues such as 

intestine (30); our data are consistent with this concept.  

 

Branched Chain Amino Acid Metabolism 

Valine, leucine and isoleucine are branched chain amino acids that play key roles 

in metabolism. They serve as substrates for protein synthesis or energy production and 

perform several metabolic and signaling functions as well. The tissue specific distribution 

of the BCAA metabolic enzymes, especially for the first two steps, determines the unique 

inter-organ BCAA metabolite shuttling (31, 32). In our study, most of the key enzymes 

involved in BCAA metabolism have been observed. Figure. 4B showed their tissue 

specific enrichment. Figure. 4C is a schematic view of BCAA metabolites shuttling among 

tissues and is annotated with the tissue enriched enzymes.   

Branched-chain aminotransferase (BCAT) is the first step key metabolic enzyme 

with two isozymes, BCAT1 in cytosol and BCAT2 in mitochondria.  Our data showed that 

BCAT1 is highly enriched in the pancreas followed by brain (Fig. 4D), and BCAT2 is 

primarily enriched in the heart and stomach (Fig. 4E). Multiple studies have shown that 

the first step of BCAA metabolism mainly takes place in skeletal muscle due to the high 

activity of BCAT2 (31, 33). However, our data showed that BCAT2 is not enriched in 

skeletal muscle and its RNA level is relatively low as well (Fig. 4E). However, taking into 

consideration of the total weight of skeletal muscle (35-40% of body weight), moderately 

elevated BCAT2 level will result in substantial amount of BCAA metabolism in the initial 

step. Presumably, if skeleton muscle BCAT2 level is too high, BCAAs might be mostly 

metabolized in skeletal muscle and cause insufficient supply to other tissues. Unlike 

skeletal muscle, heart has much less muscle mass and is highly enriched for BCAT2. 

Enrichment of BCAT2 to some degree can ensure the proper amount of BCAAs needed 

in heart. In brain, BCAT1 is highly enriched instead of BCAT2. Although these two 

enzymes are functionally similar, the different enrichment might suggest different roles in 

brain. Past studies have shown that BCAT1 is enriched in neurons and BCAT2 is limited 

to astrocytes (34).  Since glutamate is one of the major neurotransmitters, enrichment of 

BCAT1 can ensure the demand for glutamate from BCAA metabolism. The limited 

amount of astrocytes in bulk brain tissue might account for low protein level of BCAT2. In 

our data, pancreas is the only tissue with both forms of BCAT enriched, especially BCAT1. 
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Although few studies have investigated the roles of these two enzymes in the pancreas, 

protein synthesis is highly active in pancreas, which could use BCAAs as substrates and 

energy source. Although most studies have shown that BCAT1 is primarily expressed in 

brain, our data demonstrates that the BCAT1 protein is most abundant in pancreas, in 

addition to its presence in the brain. Recent studies showed that BCAA level spikes years 

before pancreas cancer, possibly suggesting that BCAA metabolism disorder might 

contribute to cancer development (35, 36).  

In the second step of BCAA metabolism, BCKAs are decarboxylated by branched-

chain α-ketoacid dehydrogenase (BCKDH). Our data show high enrichment of BCKDH in 

heart and liver followed by stomach (Fig. 4D). The tissue enrichment information is similar 

to previous studies which were based on enzyme activity analysis (37).  Among all the 

tissues, only heart and stomach have both BCAT2 and BCKDH enriched. It has been 

proposed that BCAT2 and BCKDH directly interact to achieve great efficiency of energy 

production during BCAA metabolism. The concordant enrichment of these two enzymes 

in heart and stomach suggests BCAA metabolism serves as an important energy source. 

Animal model and cardiomyocytes experiments have shown that impaired BCAA 

metabolism leads to the loss of cardiac contractility, premature death and induced 

apoptosis suggesting an important role for these enzymes in these tissues (38, 39).  

The second step key enzyme BCKDH is not only regulated by its expression level 

in different tissues but also highly regulated by two modifying proteins, BCKDH kinase 

(BCKDK, inactivator) and Protein Phosphatase (PPM1K, activator). The imbalance of 

these two enzymes is involved in multiple metabolic diseases (40). Our data show that 

there is specific tissue distribution of BCKDK and PPM1K which are not always the same 

as BCKDH distribution.  BCKDK tissue distribution is very similar to BCKDH distribution 

but the activator PPM1K showed extremely high enrichment in heart, but not in other 

tissues. A high ratio of PPM1K to BCKDK greatly favors BCKA oxidative decarboxylation. 

The enrichment of these enzymes likely fuels high energy production for the heart.  

The downstream enzymes for further metabolization of BCAA are also highly 

enriched. Each intermediate metabolite during BCAA catabolism can either enter TCA 

cycle, used for gluconeogenesis, lipogenesis or re-aminated to form BCAA. The usage of 

the metabolites in each tissue depends on the homeostasis of our body and tissue specific 

distribution of enzymes in each step. Mutations or unbalanced amounts of enzymes may 

cause metabolic disorders. 

 

Proteome, Genetic Diseases and Drug Targets 

Genetic mutations in protein coding regions can alter protein function and cause a 

spectrum of disease phenotypes. Since we have identified many tissue enriched proteins, 

we explored whether they were associated with tissue associated diseases.  Figure. 5A 

and Table S11 shows the enrichment of disease causing proteins to a particular tissue or 

set of tissues. We found many cases where genetic diseases of tissue enriched proteins 
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provided insights into the underlying disease mechanisms. For example, Bardet-Biedl 

syndrome (BBS) is a genetic disorder caused by mutations in at least 14 different genes 

which are critical to the structure and function of cilia (41–43). It is known that defects in 

cilia will disrupt cell movement and many chemical signaling pathways critical to many 

tissues. However, it is unknown exactly how each tissue is affected. BBS affiliated vision 

loss, polydactyly and obesity are characteristics of BBS as well as many other 

abnormalities such as intellectual disability, delayed motor skills and conditions that 

involve the heart, liver and digestive systems (44). Some of them can be explained by 

specific gene mutations but for such diverse symptoms, many are still largely unknown. 

In our study, proteins from 11/14 affected genes have been observed across tissues. 

Protein enrichment analysis shows that the majority of the BBS proteins are enriched or 

highest in the pituitary and some are enriched in brain, muscle or liver. Abnormality of 

proteins highly enriched in pituitary can cause dysfunction of pituitary which likely affect 

many developmental processes. One of the main symptoms such as obesity at birth could 

be caused by the abnormal hormone secretion. The enrichment of proteins in brain, heart, 

muscle and liver might contribute to related symptoms as mentioned above.   

Leigh syndrome is another genetic disease that is associated with mutations in as 

many as 75 genes. Most of the affected proteins are involved in oxidative phosphorylation 

in mitochondria (45, 46).  In our study, 67/75 proteins were observed and 52 of them 

showed tissue enrichment. As shown in Figure. 5B, these proteins are highly enriched in 

a few metabolically active tissues. Heart has the highest number of enriched proteins 

followed by muscle, brain and stomach. Figure. 5A showed significant enrichment of the 

disease in these tissues.  Some of these proteins were enriched in all tissues listed above 

and some are only enriched in one or a few. Different number of affected genes might 

cause different tissue related clinical symptoms.  For example, the characteristic 

progressive loss of mental and movement abilities of this syndrome are most likely related 

to proteins that are enriched in brain and muscle. Some affected individuals develop 

hypertrophic cardiomyopathy which could be caused by mutations in proteins enriched in 

heart. Although stomach has the least number of enriched proteins, the first signs of Leigh 

syndrome seen in infancy are usually vomiting, diarrhea, and difficulty swallowing which 

could be explained by abnormality of stomach. Involvement of different proteins or 

different number of proteins might explain why a small number of individuals do not 

develop symptoms until adulthood or have symptoms that worsen more slowly. For the 

enriched proteins, we also compared their enrichment at the RNA level. As shown in 

Figure. 7B, protein and RNA enrichment are quite different. Although in heart and muscle 

some genes were concordantly enriched, almost all genes enriched at the protein level in 

brain and stomach did not show any enrichment at the RNA level. Thus, the specific 

enrichment information at protein level can help us predict the affected tissues and better 

understand the clinical symptoms. In this case, especially the neurological and digestive 
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symptoms cannot be directly predicted from RNA data but could be suggested by protein 

enrichment information.   

Many drug targets are proteins. There are 1421 identified in our data among which 

466 are FDA approved drug targets and 955 are potential drug targets. 752 of the targeted 

proteins are enriched in certain tissues and about half are enriched in more than two 

tissues (Table S11). In many cases, the targeted tissue lies outside of the intended target 

organ suggesting possible sites of side effects. For example, valproic acid is a well known 

anticonvulsant exerting its effects through the inhibition of GABA transaminase (GABAT) 

in the brain as one of the main mechanisms of action. Our data showed that GABA 

transaminase is not only highly enriched in brain but also in the liver with the highest 

abundance level. The unknown liver toxicity could be caused by the inhibition of GABA 

transaminase in liver (47).  

 

 Missing Proteins 

Despite ongoing efforts to validate and annotate the proteome in normal human 

tissues, currently, ∼18% of proteins do not have high-stringency evidence confirming their 

existence. The lack of experimental data on the protein level could be caused by factors 

such as temporal expression, expression in tissues that are difficult to sample, low 

expression, or the genes do not encode functional proteins. Missing proteins are 

classified based on evidence of protein existence (PE) in a 1-5 tier system in an effort led 

by HUPO and the Human Proteome Project (20, 48). Since we have collected massive 

amounts of data from a variety of tissues, we hoped to increase the identification of 

missing proteins and the specific tissues where they are expressed. The identified 

proteins were matched to the missing protein list provided by MissingProteinPedia. In 

total, 310 proteins matched to the list (Table S12). Among them 87 proteins have at least 

2 unique peptides (do not match to any other proteins in the current database), each with 

a peptide length ≥9 as required at Protein Evidence (PE) level 5.  For those that do not 

meet these criteria, 30 have more than 2 unique peptide identifications, and 7 of them 

have peptide lengths longer than 20, which might add confidence to the protein 

identification. Surprisingly, among the 87 PE5 proteins, UNC13C and RASA4 have 11 

and 17 unique peptides (≥9aa) identification, respectively. RASA4 was observed in a 

majority of the samples and UNC13C was identified in roughly half. UNC13C is enriched 

in brain and testis, and RASA4 is highly enriched in skeletal muscle. In total, 33 proteins 

showed enrichment in different tissues. They are enriched in brain, muscle and af few 

other tissues, and most are intracellular proteins. Among the 87 proteins, 33 have reliable 

antibody scores annotated by HPA.  

 

Protein Isoforms 
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Based on GTEx V7 RNAseq data, there are 160,907 isoforms of 22,207 genes, an 

average of seven isoforms per gene (11). The distribution of isoforms in each tissue has 

also been provided in the GTEx portal. Although thousands of isoforms are well 

documented at the transcriptome level, their expression at the protein level is still largely 

unknown. To identify protein isoforms, the junction peptide has to be detected by the 

mass spectrometer. However, due to the much lower sequence coverage compared to 

the RNAseq, proteome level validation of the isoform presents a substantial challenge. 

Previous large-scale mass spectrometry-based proteomics analyses identified only a 

small fraction of annotated alternative isoforms. The clearest finding from these 

experiments is that most human genes have a single main protein isoform (5, 49, 50). 

In our study, proteomics data were searched against the Gencode database 19 

which included 90,203 annotated protein isoforms from 15,632 annotated genes. In total, 

we identified 7,628 protein isoforms from 7,169 genes which have at least one unique 

isoform peptide (Table S5). As shown in Figure. 6A close to 7000 genes have only one 

protein isoform detected in our study, and very few have more than 2 isoforms, consistent 

with other proteomics studies (5, 49, 50). Since for most genes we only have one protein 

isoform detected, they showed similar concordance/discordance to RNA in each tissue 

as previous described. For proteins with more than one isoforms, some are enriched in 

the same tissue; for example, two isoforms of CELA2B are both enriched in pancreas at 

similar level. However, at the RNA level, one isoform is much more enriched than the 

other in pancreas. Some genes, such as TPM2, have two isoforms that are enriched in 

different tissues. One is enriched in heart and skeletal muscle and the other one is 

enriched in tissues with smooth muscles. For all the detected protein isoforms, the 

majority (86%) are from the most abundant RNA isoforms as shown in Figure. 6B. For 

the undetected protein isoforms, further analysis showed it is not mainly caused by low 

RNA abundance. Figure. 6C showed the proportion of protein identifications for the top 

two abundant RNA isoforms across different abundance levels. As shown, the detection 

of the rank 1 isoforms is independent of the RNA abundance level. The rank 2 isoform 

showed the same result except for the very low abundance ones. Comparing the 

proportion of protein identification between rank 1 and 2 RNA across different RNA 

abundance intervals showed that the detection of rank 2 protein isoform is consistently 

much lower than the rank 1 protein isoform (Table S9). This result suggests that the 

limited detection of protein isoforms is independent of their RNA abundance.  The exact 

mechanism of selection at the protein level is still not clear and it may be caused by the 

limitations of current technology.  

Since the majority of the genes only have one protein isoform, the diversity of 

tissue phenotype is probably not determined by different isoforms but differential gene 

expression (50). We investigated if there are specific enrichment of the isoforms across 

tissues. The enrichment analysis shows that a total of 1,826 isoforms have tissue 

enrichment. The RNA isoform rank of the enriched proteins in each tissue was further 
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analyzed. We found that most of the enriched isoforms (1,655) are from the rank 1 RNA 

isoforms and approximately 249 enriched proteins were from the rank 2 and lower 

abundance isoforms (Table S5).  

 

 Single Nucleotide Polymorphisms (SNPs) 

Proteomics data obtained in our study was also used to verify the expression of 

SNPs at the protein level. Due to the intrinsic limitation of the mass spectrometry strategy, 

the chances of observing peptides harboring missense mutations are much lower than 

detecting variants in transcripts.  However, protein information not only can provide 

valuable information for mutation expression but also quantitative expression of different 

alleles may provide insight into protein regulation.  A search for peptides with missense 

mutations was performed using two different strategies. One matched spectra against a 

database with the addition of all possible missense peptides.  The other used de novo 

search by PEAKS software. We intersected the two search results to filter less confident 

candidates.  Moreover, missense peptides which were found in individuals without the 

corresponding genomic variant by WGS were also removed. In total, we quantitated 177 

SNP peptides indicating that many SNPs are expressed.  Their tissue enrichment 

information is listed in Table S13.  

 

Discussion 

In this study, we have quantitatively analyzed the proteome across 32 different 

normal human tissues. Proteins that are highly enriched in a single tissue or a group of 

tissues were identified and analyzed with regards to biological function and and help 

provide a comprehensive map of tissue specific or shared functions. A limitation of this 

study is that some highly cell type-specific and/or lowly expressed proteins may be lost 

for identification/quantitation. However, this study is well powered to study widely 

expressed proteins and the variation in their abundance as well as tissue-specific proteins 

expressed at moderate and higher levels. Proteomics analysis also identified a group of 

proteins that have not been previously identified and provided evidence at the protein 

level for specific SNPs and isoforms. However, identification of peptides with SNPs and 

junction sequences of isoforms is still a significant challenge for mass spectrometry based 

proteomics.  

The integrated proteomics and transcriptomics analysis revealed different 

enrichments at protein and RNA levels. Many housekeeping RNAs were enriched in 
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multiple tissues at the protein level and a number of tissue specific RNAs, especially those 

expressed in testis, are not enriched in any tissue at protein level. Protein and RNA 

correlation across tissues showed that about half have significant positive spearman 

correlation. The nonsignificant correlations are primarily caused by different  enrichment 

of protein and RNA in individual tissues. The discordance of enrichment may be due to 

post transcriptional or posttranslational regulation at both RNA and protein level. Our data 

indicated that constitutive secretion of proteins to other tissues is one major cause of the 

significant negative correlation and discordance of protein and RNA.  The concordance 

analysis of all the secreted protein also stratified different secretion mechanisms 

(constitutive vs regulated) in each tissue. These results provide a useful resource of 

candidate constitutive and regulated secreted proteins and expand our understanding of 

regulation at omics level. All of this information can be queried and visualized on our 

website for a more interactive view of protein and RNA across tissues 

(http://snyderome.stanford.edu/TSomics.html).  

The tissue specific distribution of proteins also provides an in-depth view of several 

complex biological events that require the interplay of multiple tissues. For example, 

metabolism is well coordinated by tissue specific and interconnected metabolic pathways 

as shown in the metabolism heatmap (Fig.4). BCAA metabolism is a unique process that 

requires metabolites shuttling among multiple tissues. Protein enrichment analysis 

provided direct evidence of the distribution of all key enzymes across tissues and shed 

new insights into orchestrated energy utilization. Since many complex diseases arise from 

the disrupted balance of metabolism, results from this multi-tissue study are expected to 

help us to understand the underlying mechanisms of the disease. Furthermore, for 

genetic diseases caused by mutations in protein coding regions, the protein enrichment 

information across tissues can help to predict the affected tissues and explain specific 

clinical symptoms. As such, the proteomic information generated in this study is expected 

to provide valuable insights into human biology and disease.  
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Fig. 1 Overview of tissue proteome workflow and results.  
A. Type of tissues and biological replicates analyzed in this study. B. TMT 10plex and 
MS3 based mass spectrometry quantitative proteomics workflow. C. Number of 
proteins quantitated in each tissue.  Each dot represents data from one person. D. 
Distribution of the number of proteins quantified across different numbers of tissues. 
The enrichment category is defined in Suppl Sec 3.1-3.2.  E. Distribution of RNA TPM 
expression in log scale. The RNA with TPM less than 1 is collapsed to 1 here.  The 
chi-square test is applied to test whether protein identification is independent to RNA 
expression (Supp Sec 4 and Table S8(a)). F. Category of proteins and numbers 
identified in this study. The predicated protein classes are from the results of HPA. 
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Fig. 2 Quantitative proteome analysis across tissues. 
A. Clustering of proteome data across tissues from t-SNE. Tissue type is the major 
factor that clusters/separates the samples from the same/different tissues. B. Method 
for defining Tissue Specificity (TS) scores. As an example, for gene PHYH, the left 
panel shows the distribution of its TS scores across tissues fitted using AdaTiSS 
(Supp Sec 3.1-3.2). The right panel shows its TS scores in each tissue.  The vertical 
lines are at 2.5 and 4. C. The number of enriched and specific proteins/RNA across 
tissues. The enrichment categories are defined in Suppl Sec 3.1-3.2. D. Protein 
enrichment across tissues and their biological functions. The enriched proteins 
represent tissue specific/shared functions. The GO term functional enrichment 
results are summarized in Table S3. 
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Fig. 3 Protein and RNA correlation and concordance analysis across and within tissues. 
A. Spearman Correlation of protein and RNA across 32 tissues. The significance is based 
on permutation test from 200 permutations (Supp Sec 3.3). B. The number of 
concordantly and discordantly enriched proteins and RNA in each tissue. The 
concordance and discordance are defined in Suppl Sec 3.3. C. The enrichment of 
housekeeping RNAs at the protein level across tissues. D. TS-score of RAB7A across 
tissues in proteome and transcriptome. It is HK RNA but is enriched in brain in proteome. 
E. An example of two-dimensional distribution of C8G at protein and RNA level across 
tissues. Its RNA is enriched in liver but the protein is enriched in arteries. The ellipse 
indicates outlier boundary (±2.5 projected into the axis) in the RNA and protein joint 
comparison (Supp Sec 3.3). F. Secreted proteins and their concordance to corresponding 
RNAs in each tissue. G. Concordance analysis of proteins secreted by pituitary. All the 
peptide hormones in anterior part of pituitary are concordantly enriched at protein and 
RNA level. Hormones in the posterior part of the pituitary are secreted from hypothalamus 
and stored in pituitary.  
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Fig. 4 Analysis of tissue specific metabolism. 
A. Enrichment of metabolic pathways across different tissues. The heatmap shows the 
significance of the -logp values from pathway enrichment test (Suppl Sec 4 and Table 
S3). The plot only includes the tissues having at least one significantly enriched pathway 
under threshold of 0.001 for the p-value. B. The enrichment map of key enzymes in 
BCAA metabolism. C. Interactive map of BCAA shuttling among tissues and the 
enriched enzymes. D. Enrichment of BCAT1 across tissues. E. Tissue enrichment of the 
BCAT2 and the second step enzyme BCKDH and its activator PPM1K. 

Fig. 5 Association of tissue enriched proteins with genetic diseases. 
A. Heatmap of the enrichment of genetic diseases across tissues. Some genetic 
diseases are significantly enriched in certain tissues such as Bardet-Biedl syndrome 
and Leigh syndrome. The disease terms are from OMIIN database. B. Protein and 
RNA concordance heatmap for genes involved in leigh syndrome. 
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Fig. 6 Protein isoform analysis. 
A. Total number of genes which have different number of isoforms identified at the protein 
level. Different color represents number of RNA isoforms each gene has. Although each 
gene has various RNA isoforms, close to 7000 genes only has one protein isoform 
identified. B. The number of protein isoform identified from genes with different number 
of RNA isoforms. Different color represents the rank of the corresponding RNA isoform. 
C. The proportion of the rank 1 and 2 RNA isoforms identified at the protein level across 
RNA abundance intervals. The chi-square test is applied to test for independence of 
protein identification to corresponding RNA isoform expression level (Suppl Sec 4 and 
Table S9).  
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