
Apparent Propagator Anisotropy from reduced Diffusion MRI
acquisitions

Santiago Aja-Fernández∗,a,b, Antonio Tristán-Vegaa, Derek Jonesb

aLaboratorio de Procesado de Imagen (LPI), Universidad de Valladolid, Valladolid, Spain
bCardiff University Brain Research Imaging Center (CUBRIC), School of Psychology, University of Cardiff, UK

Abstract

The Propagator Anisotropy (PA) is a measurement of the orientational variability inside a tissue esti-
mated from diffusion MRI using the Ensemble Average diffusion Propagator (EAP). It is based on the
quantification of the angular difference between the propagator in a specific voxel and its isotropic coun-
terpart. The PA has shown the ability to reveal microstructural information of interest and meaningful
descriptive maps inside the white matter. However, the use of PA is not generalized among the clinical
community, due to the great amount of data needed for its calculation, together with the associated
long processing times. In order to calculate the PA, the EAP must also be properly estimated. This
task would require a dense sampling of the Cartesian q-space. Alternatively, more efficient techniques
have been proposed in the last decade. Even so, all of them imply acquiring a large number of diffusion
gradients with different b-values and long processing times.

In this work, we propose an alternative implementation to drastically reduce the number of samples
needed, as well as boosting the estimation procedure. We avoid the calculation of the whole EAP by
assuming that the diffusion anisotropy is roughly independent from the radial direction. With such an
assumption, we achieve a closed-form expression for a measure similar to the PA but using information
from one single shell: the Apparent Propagator Anisotropy (APA). The new measure remains compatible
with standard acquisition protocols commonly used for HARDI (based on just one b-value). The intention
of the APA is not to exactly replicate the PA but inferring microstructural information with comparable
discrimination power as the PA but using a reduced amount of data.

We report extensive results showing that the proposed measures present a robust behavior in clinical
studies and they are computationally efficient and robust when compared with PA and other anisotropy
measures.
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1. Introduction

The term Diffusion Magnetic Resonance Imaging (DMRI) refers to a set of diverse imaging techniques
that, applied to brain studies, provide useful information about the organization and connectivity of the
white matter. The most relevant feature of DMRI is its ability to measure orientational variance in
the different tissues, i.e. anisotropy. Nowadays, the most common way to estimate the anisotropy is
still via the popular diffusion tensor (DT) approach (Basser and Pierpaoli, 1996). DT-MRI brought to
light one of the most common problems in DMRI techniques: in order to carry out clinical studies, the
information given by the selected diffusion analysis method must be translated into some scalar measures
that describe different features of the diffusion within every voxel. That way, metrics like the Fractional
Anisotropy (FA) were defined with the DT as a starting point (Westin et al., 2002). Despite the strong
limitations the underlying Gaussian assumption imposes to the diffusion model, the FA is still widely
used in clinical studies involving DMRI.

Nevertheless, the diffusion mechanisms cannot be accurately described by DT-MRI because of the
oversimplified Gaussian fitting. Accordingly, more evolved techniques with more degrees-of-freedom
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naturally arose, such as High Angular Resolution Diffusion Imaging (Tuch et al., 2003; Özarslan et al.,
2006, HARDI) or Diffusion Kurtosis Imaging (Hansen and Jespersen, 2016, DKI). The trend over the
last decade has consisted in acquiring a large number of diffusion-weighted images distributed over
several shells (i.e. with several gradient strengths) and with moderate-to-high b-values to estimate
more advanced diffusion descriptors, as the Ensemble Average Diffusion Propagator (Özarslan et al.,
2013, EAP). The estimation relies more on model-free, non parametric approaches that can accurately
describe most of the relevant phenomena associated to diffusion.

In order to estimate the EAP, a straight forward strategy like Diffusion Spectrum Imaging (Wedeen
et al., 2005, DSI), would requires a huge number of images to attain a decent accuracy. Hence, alternative
methods proposed from reduced (as opposed to dense) samplings of the q-space, being the most prominent
Hybrid Diffusion Imaging (Wu and Alexander, 2007; Wu et al., 2008, HYDI), Multiple q-shell Diffusion
Propagator Imaging: (Descoteaux et al., 2009, 2011, mq-DPI), Bessel Fourier Orientation Reconstruction
(Hosseinbor et al., 2013, BFOR), the directional radial basis functions (Ning et al., 2015, RBFs), the
Mean Apparent Propagator MRI (Özarslan et al., 2013; Avram et al., 2016, MAP-MRI) or the Laplacian-
regularized MAP-MRI (Fick et al., 2016b, MAPL).

Regardless of the method selected to estimate the EAP, practical applications only use a reduce set
of scalar measures derived from it: the probability of zero displacement, Q-space inverse variance, the
return-to-plane and return-to-axis probabilities (Hosseinbor et al., 2012; Wu et al., 2008; Ning et al.,
2015) or the Propagator Anisotropy (Özarslan et al., 2013, PA). In this work we will focus on the later.

Although the use of the PA is not generalized among the clinical community, there is a growing
interest on the exploration of their potential clinical applicability, since it has shown the ability to reveal
microstructural information of interest and meaningful descriptive maps of the white matter. Some
seminal works have shown that the PA could be a valid biomarker for Alzheimer when evaluated over
transgenic rats (Fick et al., 2016a). The same study also shows that the PA could be an important
marker for longitudinal studies, since it uniformly changes over time, indicating a possible dependency
with age. In Avram et al. (2016), PA shows higher tissue contrast than the FA and a more uniform
behavior in white matter. Finally, the study carried out in Bernstein (2019) raises one of the problems
of the PA: the bottleneck of studies with EAP-derived measures is the amount of data needed for the
calculation. This issue, together with the long processing times needed for EAP estimation, has slowed
down a widespread clinical adoption of such a measure.

The present paper delves into the hypothesis that the computation of the model-free EAP is not
necessary to calculate the PA, on the contrary, a constrained model for radial diffusion may reveal
analogous information using simpler protocols. To that end, we have first reformulated the inner product
needed for the PA calculation for single-shell acquisitions based on different diffusion models, so that the
corresponding scalar measures are compatible with more standard acquisition protocols like those used in
HARDI or DKI, i.e., with faster acquisitions based on heavily reduced data sets and therefore applicable
to data acquired within the clinical domain. Then, a novel diffusion anisotropy metric based on the PA
is proposed, namely the Apparent Propagator Anisotropy (APA). Alternative implementations of the
measure are also presented. The new metrics are extensively tested against PA and other anisotropy-
based indices to check its capability to detect different configurations and its performance in the analysis
of clinical data.

2. Theory

2.1. The Diffusion Signal

The EAP, P (R), is the Probability Density Function (PDF) of the water molecules inside a voxel
moving an effective distance R in a time ∆. It is related to the normalized magnitude image provided
by the MRI scanner, E(q), by the Fourier transform (Callaghan et al., 1988):

P (R) =

∫
R3

E(q)e−2πjq·Rdq = F {|E(q)|} (R). (1)

The inference of exact information on the R–space would require the sampling of the whole q–space to
use the Fourier relationship between both spaces.

In order to obtain a closed-form analytical solution from a reduced number of acquired images, a
model of the diffusion behavior must be adopted. The most common techniques rely on the assumption
of a Gaussian diffusion profile and a steady state regime of the diffusion process that yields to the
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well-known Diffusion Tensor (DT) approach. Alternatively, a more general expression for E(q) can be
used:

E(q) = exp
(
−4π2τq20D(q)

)
= exp (−b ·D(q)) (2)

where the positive function D(q) = D(q0, θ, φ) is the Apparent Diffusion Coefficient (ADC), b =
4π2τ‖q‖2 is the so-called b-value and q0 = ‖q‖ and θ, φ are the angular coordinates in the spherical
system. The effective diffusion time τ is defined as τ = ∆ − δ/3, where the diffusion time ∆ is usually
corrected with the pulse duration δ. According to Basser (2002), in the mammalian brain, this mono-
exponential model is predominant for values of b up to 2000 s/mm2 and it can be extended to higher
values if appropriate multicompartment models of diffusion are used.

2.2. Inner Product and Propagator Anisotropy

Let P (R) and Q(R) be two different propagators. If we consider them as two different signals defined
over a common signal space S, we can define an inner product as (Özarslan et al., 2013; Gallager, 2008)

〈P (R), Q(R)〉 =

∫
R3

P (R)Q∗(R)dR. (3)

According to the Parseval Theorem (Gallager, 2008), since variables R and q are related via the Fourier
Transform, there is an equivalence of this product in the q-space. Considering that the magnitude-
reconstructed diffusion-weighted MR signal E(q) is always real and symmetric, E∗(q) = E(q) and
E(q) = E(−q), we can write

〈P (R), Q(R)〉 =

∫
R3

Ep(q)Eq(q)dq, (4)

where Ep(q) = F−1 {P (R)} (q) and Eq(q) = F−1 {Q(R)} (q). We can accordingly define the norm of a
signal as

||P (R)|| = 〈P (R), P (R)〉1/2 =

(∫
R3

|Ep(q)|2dq
)1/2

. (5)

The similitude of two signals is given by the cosine of the angle between them, defined as

cos (∠[P (R), Q(R)]) = cos θP,Q =
〈P (R), Q(R)〉
||P (R)|| · ||Q(R)||

. (6)

This measure can be used as an anisotropy measure using the EAP. In Özarslan et al. (2013), authors
propose a measure called the Propagator Anisotropy (PA) which can be seen as a quantification of how
a propagator diverges from the isotropic one. It is defined as

PA = γ (sin (∠[P (R), PI(R)]) , ε) (7)

where P (R) is the actual propagator and PI(R) and equivalent isotropic propagator. The function
γ (., ε) is a nonlinear transformation to better distribute the output values in the range [0, 1]. The sine
is calculated from the cosine in eq. (6) as:

sin (∠[P (R), PI(R)]) = sin θP,PI =
√

1− cos2 θP,PI . (8)

2.3. Apparent Propagator Anisotropy

As previously stated, one of the problems in the calculation of the PA is the large amount of measures
needed in order to accurately estimate the EAP from the samples. In order to use a limited amount of
acquisitions to estimate a similar anisotropy metric, we assume a prior model that assures that it can
be carried out using data collected over one single shell. To that end, we are forced to consider that the
diffusion D(q) does not depend on the radial direction, i.e. D(q) = D(θ, φ), so that eq. (2) becomes:

E(q) = E(q0, θ, φ) = exp
(
−4π2τq20 D(θ, φ)

)
. (9)

Note that, although D(q) no longer depends on q0, E(q) does. This assumption, although restrictive,
is used to define certain diffusion modalities in HARDI (Descoteaux et al., 2006; Özarslan et al., 2006),
where only one shell is usually acquired. This simplification was initially intended to overcome the
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limitations of the DT by allowing the diffusion to be evaluated across many orientations, as opposed to
the single orientation described by the DT.

In what follows, we redefine the inner product using the simplification in eq. (9) and we use it to
define an anisotropy metric related to the PA for a specific shell.

First, we define the isotropic equivalence of the signal, EI(q) as

EI(q) = exp
(
−4π2τq20 DAV

)
(10)

where DAV is the average diffusivity. It can be seen as the as the value of the ADC over a unitary sphere:

DAV =
1

4π

∫
S

D(θ, φ)dS, (11)

In order to calculate the integration on the surface of the sphere from a limited number of samples we
use a Spherical Harmonics (SH) decomposition:

C0,0 {H(θ, φ)} =
1√
4π

∫
S

H(θ, φ)dS, (12)

and therefore the DAV can be calculated as:

DAV =
1√
4π
C0,0 {D(θ, φ)} . (13)

Second, we calculate the norm of P (R) and PI(R) under the considered assumption:

||P (R)||2 =

∫
R3

exp
(
−4π2τq20 2 D(θ, φ)

)
dq

=

∫ ∞
0

∫ 2π

0

∫ π

0

exp{−4π2τq20 2 D(θ, φ)}q20 sin θ dφ dθ dq0

= Cp

∫
S

1

(2 ·D(θ, φ))3/2
dS, (14)

where Cp is a constant. Using a SH decomposition we can write

||P (R)||2 = Cp ·
√
π

2
· C0,0

{
D(θ, φ)−3/2

}
. (15)

Following the same reasoning, the norm of the isotropic equivalent is:

||PI(R)||2 =

∫
R3

exp
(
−4π2τq20 2 DAV

)
dq

= Cp
√

2π ·D−3/2AV . (16)

Third, we calculate the inner product of both signals using the single shell assumption:

〈P (R), PI(R)〉 =

∫
R3

exp
(
−4π2τq20 (D(θ, φ) +DAV)

)
dq

= Cp

∫
S

1

(D(θ, φ) +DAV)3/2
dS, (17)

And using the SH decomposition for the calculation of the integral:

〈P (R), PI(R)〉 = Cp ·
√

4π · C0,0

{
(D(θ, φ) +DAV)−3/2

}
. (18)

Next, we calculate the cosine and sin of the angle between both signals

cos2 θP,PI =
〈P (R), PI(R)〉2

||P (R)||2 · ||PI(R)||2

=
4√
π

[
C0,0

{
(D(θ, φ) +DAV)−3/2

}]2
C0,0

{
·D(θ, φ)−3/2

}
·D−3/2AV

(19)

sin θP,PI =
√

1− cos2 θP,PI . (20)
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Finally, the PA is calculated using the Gamma transformation proposed by Özarslan et al. (2013):

γ(t, ε) =
t3ε

1− 3tε + 3t2ε
. (21)

Since the measure is grounded on a initial assumption, the value could vary for different shells. This
way, the Apparent Propagator Anisotropy (APA) at a given b-value is calculated as

APA = γ (sin θP,PI , ε) . (22)

We define also the measure without the non-linear transformation as:

APA0 = sin θP,PI . (23)

2.4. Dependence with Acquisition Parameters
The measure previously defined can be subject to acquisition artifacts, and it will be corrupted with

acquisition noise. The presence of noise will introduce a bias in the estimator that depends on the signal-
to-noise ratio (SNR) and may also depend on other acquisition parameters. In what follows we will
analyze the dependence of the bias with those acquisition parameters and, in particular, its dependence
with the b-value.

The signal E(x) is the acquired magnitude signal Si(x) normalized by the baseline S0(x):

Ei(x) =
Si(x)

S0(x)
.

For the sake of simplicity, we assume that the acquired signals Si(x) are corrupted with Rician noise (Aja-
Fernández and Vegas-Sánchez-Ferrero, 2016):

Si(x) = |Ai(x) +N(x; 0, σ2)|, i = 1, · · · , Ng,

where Ai(x) is the original signal if no noise is present and N(x; 0, σ2) is a complex additive Gaussian
noise with zero mean and variance σ2. This is a common assumption in MRI acquisitions, valid for
single–coil acquisitions and multi–coil parallel imaging reconstructed with a spatial matched filter, like
SENSE, for instance. In the latter, noise can become non–stationary, i.e., the variance of noise will
depend on the position and σ must be replaced by σ(x), which does not affect to the following study.
We can also assume that the SNR in the baseline is high enough so we can consider S0(x) a noiseless
image.

For the sake of simplicity in the analysis, we will estimate the bias of the cos2 in eq. (19) instead
of APA, since it is easier to calculate and the bias will be related. The analytical study of the bias is
described in Appendix A.

To better understand the effect of the SNR and the b-value, let us simplify the resulting bias by
assuming an isotropic diffusion. This way, we can write the mean of the measure as

E
{

cos2 θ
}
≈ 1− 15

16

1

SNR2

1

b2D2
AV

. (24)

Therefore, the estimation bias of the cos2 θ can be quantified, for the isotropic case as:

bias
{

cos2 θ
}
≈ −15

16

1

SNR2

1

b2D2
AV

. (25)

Note that the SNR is the signal to noise ratio at the acquired DWI. We can write it as

SNR = SNR0 exp(−bDAV).

where SNR0 is the SNR measured at the baseline. So, we can rewrite the bias as:

bias
{

cos2 θ
}
≈ −15

16

1

SNR2
0

e2bDAV

b2D2
AV

. (26)

Although this is a very restricted case, it gives us a very helpful insight of the dependence of the measure
with b and SNR. In fig. 1 the bias in eq. (26) is depicted as a function of the SNR (for a fixed diffusivity)
and as a function of the ADC (for a fixed SNR=10).

Note that, for the same diffusion, there is a different bias for different values of b. For low SNR, this
bias can grow, but when the SNR grows, the values for the different b converge. However, as we can see
in the fig. 1-(b), the differences between values are also a function of the ADC: different values of the
ADC can produce different bias for different b values. We will test this on real data in the experiments
section.
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Figure 1: Bias of cos2 θ for the isotropic case as a function on the b-value and the SNR. (a) DAV = 3× 10−4 (b) SNR=10

2.5. Relation of APA with other anisotropy measures

The APA can be seen as the projection of diffusion E(q) over an isotropic equivalent considering just
one shell and no radial diffusion. The same idea can be extrapolated to the diffusivity D(θ, φ). Thus,
the equations can be modified accordingly:

〈D1(q), D2(q)〉 =

∫
S

D1(θ, φ)D2(θ, φ)dS (27)

||D(q)||2 =

∫
S

D2(θ, φ)dS. (28)

If we do not consider the Gamma transformation, the Diffusion Anisotropy (DiA) can be defined as

DiA = sin (∠[D(θ, φ), DAV])

=

√√√√1−
[
DAV ·

∫
S
D(θ, φ)dS

]2
4π ·D2

AV ·
∫
S
D2(θ, φ)dS

=

√√√√4π ·
∫
S
D2(θ, φ)dS −

[∫
S
D(θ, φ)dS

]2
4π ·

∫
S
D2(θ, φ)dS

(29)

Note that the dependency with DAV disappears. Using the SH decomposition for the calculation of the
integral, we can write:

DiA =

(
C0,0{D2(θ, φ)} − 1√

4π
· C2

0,0{D(θ, φ)}
C0,0{D2(θ, φ)}

)1/2

(30)

The DiA so defined, can be seen as a generalization of the Coefficient of Variation of the Diffusion (CVD)
defined in Aja-Fernández et al. (2018) as a robust alternative for the FA. According to Tristán-Vega
(2009), this measure is as an alternative implementation of the Generalized Anisotropy (Özarslan et al.,
2005):

GA =

(
1
4π

∫
S
D2(θ, φ)dS −

(
1
4π

∫
S
D(θ, φ)dS

)2
1
4π

∫
S
D2(θ, φ)dS

)1/2

. (31)

In order to increase the dynamic range of the metric, we can also use the γ(t, ε) transformation in eq. (21).
This way, the DiA can be alternatively defined as:

DiAγ = γ (DiA, ε) . (32)

An overview of all the proposed diffusion anisotropy metrics, together with the specific numerical
implementation, is presented in Table 1.
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Measure Formula Practical implementation

DAV
1
4π

∫
S
D(θ, φ)dS 1√

4π
C0,0 {D(θ, φ)}

APA0

√
1− [

∫
S
(D(θ,φ)+DAV)−3/2dS]

2

√
2πD

−3/2
AV

∫
S
(2D(θ,φ))−3/2dS

√
1− 4√

π

[C0,0{(D(θ,φ)+DAV)−3/2}]2
C0,0{D(θ,φ)−3/2}·D−3/2

AV

APA γ (APA0, ε) γ (APA0, ε)

DiA

√
4π·

∫
S
D2(θ,φ)dS−[

∫
S
D(θ,φ)dS]

2

4π·
∫
S
D2(θ,φ)dS

√
1−

1√
4π
·C2

0,0{D(θ,φ)}
C0,0{D2(θ,φ)}

DiAγ γ (DiA, ε) γ (DiA, ε)

Table 1: Survey of the proposed anisotropic diffusion metrics.

3. Experiments and Results

3.1. Setting-up of the experiments

For the following experiments, the different methods are implemented using SH expansions of even
orders up to 6 in all cases (when needed), with a Tikhonov regularization parameter λ = 0.006. PA is
calculated using the DIPY toolbox with anisotropic basis and radial order 6 Özarslan et al. (2013).

Four different real data sets are used for the experiments:

• Human Connectome Project (HCP)1 are considered, specifically, five different volumes: MGH
1007, MGH 1010, MGH 1016, MGH 1018 and MGH 1019, acquired in a Siemens 3T Connectome
scanner with 4 different shells at b = [1000, 3000, 5000, 10000] s/mm2, with [64, 64, 128, 256]
gradient directions each, in-plane resolution 1.5 mm and slice thickness was 1.5 mm. The acquisition
included 40 different baselines that were averaged to reduce the noise2.

• Public Parkinson’s disease database (PDD): public available data base3 acquired in the Cyclotron
Research Centre, University of Liège. It consists on 53 subjects in a cross-sectional Parkinson’s
disease (PD) study: 27 PD patients and 26 age, sex, and education-matched control subjects. Data
were acquired on a 3 T head-only MR scanner (Magnetom Allegra, Siemens Medical Solutions,
Erlangen, Germany) operated with an 8-channel head coil. Diffusion-weighted (DW) images were
acquired with a twice-refocused spin-echo sequence with EPI readout at two distinct b-values (b
= 1000, b = 2500 s/mm2) along 120 encoding gradients that were uniformly distributed in space
by an electrostatic repulsion approach. For the purposes of motion correction, 22 unweighted (b =
0) volumes, interleaved with the DW images, were acquired. Acquisition parameters are TR=6800
ms, TE=91 ms, and FOV=211 mm2, no parallel imaging and 6/8 partial Fourier were used. More
information can be found in Ziegler et al. (2014).

• Multi–parameter dataset (GMH): acquired in a PHILIPS 1.5 T MR scanner at the Gregorio
Marañón Hospital (Madrid, Spain). Thirteen healthy male adults, aged between 23 and 31 (aver-
age age 27 years), participated in this study. DWIs were acquired using a multi-shot pseudo-3D
double spin-echo echo-planar imaging (SE-EPI) sequence. Each exam was composed of different
DTI acquisitions with different combination of parameters. Two different b-values were used: 800,

1Data obtained from the Human Connectome Project (HCP) database (https://ida.loni.usc.edu/login.jsp). The HCP
project (Principal Investigators: Bruce Rosen, M.D., Ph.D., Martinos Center at Massachusetts General Hospital; Arthur W.
Toga, Ph.D., University of Southern California, Van J. Weeden, MD, Martinos Center at Massachusetts General Hospital)
is supported by the National Institute of Dental and Craniofacial Research (NIDCR), the National Institute of Mental
Health (NIMH) and the National Institute of Neurological Disorders and Stroke (NINDS). HCP is the result of efforts
of co-investigators from the University of Southern California, Martinos Center for Biomedical Imaging at Massachusetts
General Hospital (MGH), Washington University, and the University of Minnesota.

2The SNR of each of the individual baseline is high enough to make a Gaussian approximation feasible with a small error.
Under this approximation we can assure that the average operator provides an unbiased output image (Aja-Fernández and
Vegas-Sánchez-Ferrero, 2016).

3https://www.nitrc.org/frs/?group id=835.
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FA GA PA DiA- APA DiA APA0 GAPA

Figure 2: Visual comparison of the diffusion anisotropy metrics using slices 42, 52 and 65 of of the MGH1007 volume from
HCP. FA is calculated using b=1000 s/mm2, GA, PA, SIN, DiA and DiAγ using b=3000 s/mm2 and PA using 4 shells
(1000, 3000, 5000 and 10000 s/mm2).

and 1300 s/mm2. All the scans were acquired with 61 gradient directions and one baseline vol-
ume. The gradient directions were specifically acquired so that they can be subsampled to 40, 21
or 6 gradient directions while remaining equally spaced for each configuration. This subsampling
technique allows the measurement of the effect of different number of gradients with only one data
acquisition. The scans were acquired with a spatial resolution of 2.5 × 2.5 × 2.5 mm3. Other
diffusion acquisition parameters are: echo time (TE) 1.6 ms, repetition time (TR) 8 ms. More
information can be found in Barrio-Arranz et al. (2015).

• Multishell data acquired at CUBRIC (CBR): 14 healthy volunteers scanned in a 3T Siemens Prisma
scanner (80 mT/m) with a pulsed-gradient spin-echo (PGSE) sequence. Three shells were acquired
at b=[1200, 3000, 5000] s/mm2 with 60 directions per value. The resolution is isotropic of 1.5
mm3. Other acquisition parameters are: TE=80 ms, TR=4500ms, ∆/δ = 38.3/19.5 ms, parallel
imaging acquisition (GRAPPA2) with sum of squares combination and 32 channels.

3.2. Visual Results

First, a visual comparison of the metrics is done using 3 slices (42,52,65) from the HCP volume
(MGH1007). The proposed measures (APA, APA0,DiA and DiAγ) are calculated using a single shell
for b=3000 s/mm2. For the sake of comparison, we have also calculated FA at b=1000 s/mm2, GA at
b=3000 s/mm2 and PA using all the available information (4 shells). Results are shown in Fig. 2. All
the metrics show a similar look, highlighting those anisotropic areas inside of the white matter. APA0

and DiA, as expected, show little contrast, a fact that is corrected by APA and DiAγ. However, it is not
the visual aspect what we are interested in, but the ability to discriminate differences inside the white
matter.

3.3. Validation with Clinical Data

Next, we intend to test the clinical potential of the new metrics, for which we have explored the PPD
database. Parkinson disease is known to affect the substantia nigra or the gray matter more than white
matter. However, significant differences have also been reported in several white matter regions such as
the corpus callosum (CC), the corticospinal tract, or the fornix Atkinson-Clement et al. (2017). Since
the aim of this experiment is testing the capability of the proposed metrics to probe the micro-structural
properties of the white matter, we have accordingly focused on commonly-studied white matter tracts.
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APA APA0 DiA DiA-

APA APA0 DiA DiA-

Figure 3: Significant differences found by statistical test for the Parkinson database, using a voxelwise analysis over the
FA skeleton for the different considered metrics (sagittal view). In red, those points where the considered metric decreases
in the PD with respect to the controls with statistical significance above 99% (p< 0.01).

FA is calculated as a reference value using MRTRIX4 with the data at b=1000 s/mm2. The FA
maps of all the volumes are warped to a common template using the standard TBSS pipeline Smith
et al. (2006). The same transformation is applied to all the metrics considered for the experiment (APA,
APA0, DiA, DiAγ, PA and GA). Two different analysis are considered:

1. A voxelwise cross-subject analysis using the FA skeleton with the randomise tool from the FSL
toolbox (which performs a nonparametric permutation inference over the data) with 500 realiza-
tions. Those voxels with p< 0.01 are highlighted in Fig. 3. In red, those points where the considered
metric decreases in the PD with respect to the controls.

2. A region of interest oriented analysis. The three regions of the CC (genu –GCC–, body –BCC–,
and splenium –SCC–) are identified on the subjects using the JHU WM atlas Mori et al. (2005).
The average value of the different measures inside each ROI is calculated using the values similar
to the 2% and 98% percentiles. First, effect sizes were estimated using the Cohen’s d. Results are
depicted in Fig 4. Then we carry out a two-sample, pooled variance t-tests between controls and
patients for each of the measures considered and at each of the three sections of the CC segmented
in the JHU WM. Table 2 shows the results.

Since the aim of this experiment is testing the capability of the proposed measures to probe the
micro-structural properties of the white matter, we have accordingly focused on the CC, where previous
studies have reported main differences between PD and healthy controls. If we focus on this area in a
sagittal plane, see Fig. 3, we can see that the FA and GA only find some isolated voxels with statistically
significant differences. PA finds some extra voxels, but it cannot show its true potential due to the small
b-values considered (higher b-values should result in more accurate EAP estimates). In contrast, the

4mrtrix.org
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Figure 4: Absolute value of effect sizes (Absolute Cohen’s d) for associations between PD and controls in the Parkinson
data base.

proposed measures show more differences along the whole CC. All of them, specially DiA and DiAγ find
differences in the Genu of the CC (GCC).

In the region-of-interest analysis, it is precisely in the same area SCC that all the measures show the
greatest values of Cohen’s d, see Fig. 4. Once again, DiA is the ones showing larger effect sizes, although
in this area, GA (with b=2500) is also able to find significant differences, see Table 2. However, note
that DiA shows a statistical significance above 99%. If we focus on the GCC, in this ROI analysis, only
APA is able to find differences. On the other hand, note that PA calculated with MAPMRI and the DTI
version show very low effect sizes and they are not able to detect significant differences in any part of
the CC. This is related to the need of the measures of great amounts of information to properly estimate
the EAP and then derive the PA. The use of only two shells, although possible, is not enough for an
accurate estimation. Hence, the need of alternative measures for these scenarios.

B val GCC BCC SCC

FA 1000 0.378 0.205 0.192

MAPMRI-PA all 0.656 0.585 0.517
MAP-PA-DTI all 0.664 0.290 0.345

GA 1000 0.443 0.151 0.102

2500 0.063 0.078 0.015

APA 1000 0.555 0.296 0.310

2500 0.038 0.238 0.116

APA0 1000 0.309 0.676 0.436
2500 0.180 0.472 0.062

DIA-γ 1000 0.448 0.125 0.110

2500 0.093 0.099 0.029

DIA 1000 0.431 0.183 0.047

2500 0.057 0.071 0.004

Table 2: Two-sample, pooled variance, t-tests for each measure and at each section of the corpus callosum: GCC (genu),
BCC (body), and SCC (splenium). The p-values represent the probability that the averaged values (using the values
between the 2% and 98% percentiles) of each region of the corresponding tract have identical means for both controls and
patients. Differences with statistical significance above 99% are highlighted in green, and those with significance over 95%
are highlighted in amber.

3.4. Sensitivity analysis to acquisition parameters

The initial assumption for APA is that D(θ, φ) does not heavily depend on the b-value. However, we
have shown that the bias on the measure depends on the SNR and on the b-value. So, next, we carry
out three different experiments to quantify the sensibility of the proposed measures to the b-value.

First, in section 2.4 and appendix A the bias of the cos2 θ is quantified for high SNR. In order to test
the model, a simulation is done: two voxels with isotropic and three anisotropic ones are simulated, using
three different b values: 1000, 1500 and 2000 s/mm2. For the isotropic voxels two diffusivity values are
considered, DISO = 300µm2/s and DISO = 1000µm2/s. The anisotropic ones are created with a tensor
model with the greatest eigenvalue of value D and radial eigenvalues of value d, see fig 5.
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Figure 5: Bias of the estimation of cos2 θ for 5 different cases.
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Figure 6: Evolution of the proposed measures with the b-value, using data from the A 3T PRISMA SCANNER.
The volume has been clustered in 6 different sets and the median of each set is shown. Centroids of the data
CL = {0.21, 0.35, 0.48, 0.63, 0.78, 0.93}.

For the experiment, the bias for different SNR values is calculated for the simulations, together with
the theoretical value. Results are depicted in Fig. 5. Note that the bias decreases in all cases when
the SNR increases. However, in the anisotropic case, the decrease is slower; the differences of bias for
different b values can be see for higher SNR. In addition, note that although the theoretical values are
not exactly the numerical ones, the trend and the separation for different b values can still be perceived.

Some conclusions may be raised from these results: (1), the bias and the dependence with b decreases
with the SNR. If the SNR is high enough, the bias will disappear. (2) The bias is smaller for higher b
values. However, note that the SNR also depends on the b value. So, a reduction of the bias cannot be
achieved by only increasing b.

These preliminary results give an interesting insight of what is happening with the measures. However,
we will now move to real data, to better quantify the effect of changing the b value. Data from the CBR
database is used for the next experiment. Each volume is divided in 6 different regions according to their
diffusion features. To do that, the APA is first calculated and those voxels with APA< 0.1 are removed.
The remaining voxels are clustered in 6 different groups using k-means, being the resulting centroids:
CL = {0.21, 0.35, 0.48, 0.63, 0.78, 0.93}. Each voxel in the white matter is assigned to one cluster using
its PA value and the minimum distance. All the proposed anisotropic diffusion measures are computed
for each shell, and the median value inside each of the five clusters is depicted in Fig. 6.

All of the measures show a dependence with the b-value: the smallest values values increase together
with the b-value, whereas the higher values show a decrease. However, and this is the key point,
the separation between clusters remains for different b values. This means that the differences in the
anisotropy detected by these measures can be detected when using different shells.

Finally, we aim to quantify the effect of the variation of the number of gradients together with the
b-value on real data. To that end, we consider the GMH data set, acquired with different acquisition
parameters. The FA maps of all the volumes are warped to a common template using the standard
TBSS pipeline. 48 different white matter regions of interest are identified on the subjects using the JHU
WM atlas Mori et al. (2005). Different anisotropy measures are calculated for each region, with different
b values and different number of gradients. The average value of the different measures inside each ROI
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is calculated using the values similar to the 5% and 95% percentiles. Then we carry out a two-sample,
pooled variance t-tests between each metric calculated with different acquisition parameters for each of
the regions. This way, we can quantify if the same volumes are detected as different when using different
acquisition parameters. Table 3 shows the results.

B value (s/mm2) 800 1300 800-1300
Number of grads. 21-40 21-61 40-61 21-40 21-61 40-61 21 40 61

FA 5 15 1 13 25 1 2 5 5
GA 0 25 31 0 38 43 3 5 5

APA 1 4 0 5 13 0 8 9 9
APA0 4 15 1 9 28 0 25 28 28
DIA 0 1 0 7 32 0 2 3 6
DIA-γ 1 1 0 4 27 0 2 4 4

Table 3: Number of ROIS considered to be different with statistical significance above 99% (out of the 48 regions defined
in the JHU WM atlas) for the dataset GMH for different acquisition parameters.

From the results we can see that, as expected, when the number of acquired directions highly differ
(21 vs 61 gradients) a great number of differences arises for all the metrics, specially for the higher b
value, b=1300 s/mm2. For the same b value, a smaller variation in the directions (40 vs 61) gives much
better results is most metrics, except the GA. The proposed metrics seem to be robust to this small
changes. When the change is between 21 and 40, the numbers drop again, since 21 gradient did to
capture all the directional information needed for the accurate estimation of APA and DiA. On the other
hand, as expected from the previous experiment, APA and APA0 are very sensitive to the changes in
the b-value. DiA shows here a most robust behavior.

3.5. Execution Times

The long processing times associated to the estimation of EAP-based measures is one of the issues
that has slowed down a widespread clinical adoption of the PA. Precisely, the linear nature of SH needed
to estimate the APA usually yields to a significant reduction of the calculation time, that can be several
orders of magnitude faster than whole EAP-based techniques.

To test this extreme, a volume from the PDD is used here to compute APA and PA measures
on a quad-core Intel(R) Core(TM) i7-4770K 3.50GHz processor under Ubuntu Linux 16.04 SO. PA is
calculated using the two available shells with MAP-MRI using the DIPY library under Python 3.6.4
(scipy 1.0.0)5. APA is implemented using one single shell in MATLAB without multi-threading. The
results are reported in Table 4.

Though raw execution times are an ambiguous performance index (they can be dramatically improved,
for example, via GPU acceleration), they give a reasonable idea of the complexity of each method. The
calculation of the APA for the whole volume is almost instantaneous, which makes it feasible for practical
studies.

4. Discussion and conclusions

The intention of the new anisotropy measure proposed, APA, as well as the other related measures
derived, is not to exactly replicate a measure like the PA but, using a similar philosophy, inferring
microstructural information with comparable discrimination power as the PA estimated using EAP-
based methods. The original PA calculated from the EAP explicitly account for the radial behavior
of the diffusion signal, which is actually sampled. For the APA calculation, the radial behavior is not
sampled but modeled as a mono-exponential decay. Initially we can think that the computation of
the whole EAP would provide a more specific and sensitive measure, since the anisotropy information
encoded in the radial direction would be neglected in APA. Although this could be the case for a dense
sampling of the q−space, results for the clinical data (see the PDD experiment) paradoxically show the
opposite. When only two shells are available, i.e. there is a reduced acquired data set, there is not
enough information to accurately estimate the EAP and, consequently, a smooth version of the actual

5The PA calculation is not available in the public distribution of DIPY. The current implementation has been kindly
provided by Dr. Fick.
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Method Time

PA (MAP-MRI) 2h 53min

APA 3.17s

Table 4: Estimated execution times for the calculation of APA and PA for a single volume.

EAP is estimated instead. As a result, in these environments, the PA has shown a power to resolve
microstructural features even below the capabilities of conventional DT-MRI.

On the other hand, experiments carried out in this paper confirm that the proposed measures show
a discriminant power over traditional DT markers and, in some occasions, even over the PA. The aim of
the experiment is not demonstrating the clinical usefulness of the new measures in the particular case
of PD, but testing its capability to describe microstructural features when compare with state-of-the-art
methods. We are aware that the finding of more significant differences does not directly implies that one
method is better than other. But we can assure that the new measures are more sensitive to changes
between groups. It will require further clinical studies to determine how this differences are linked to
structural differences.

The main advantage of the proposed measures, when compared to PA, is that they can be calculated
from a reduced set of measures. Initially they are intended for one shell, but the methodology can be
easily extrapolated to more that one. In addition, the experiments with the GMH data set have shown a
great robustness to the variability on the number of gradient directions, specifically between 40 and 61,
which will allow a further reduction of the acquired data, compatible with nowadays standard acquisition
protocols, with as few as 64 gradient directions. It is a common practice acquiring two shells (b=[1000,
3000] s/mm2, for instance) to estimate classical diffusion parameters, like the FA and MD, but also
advanced models (DKI, HARDI, CHARMED, etcetera). APA and the additional anisotropy measures
proposed can also be calculated with no additional effort and without changing the acquisition protocol.

Moreover, since the computation of APA avoids the estimation of the actual EAP it can be done
in a fast and robust way, i.e., without imposing a computational burden to the standard protocols, see
Table 4. A whole volume can be processed in a matter of seconds while the processing of the original
PA usually take some hours, which obviously limits its applicability.

On the other hand, the major drawback of APA is the explicit assumption of a specific radial behavior
for the diffusion, which cannot fit the whole q-space. As a consequence, the selection of the b-value may
change the values of the measures. However, as we have shown, although the values change with b, the
differences between areas remain. This implies the results of clinical trials could be compared against
each other only if the same b-value is preserved across the studies. This is by no means something
new to diffusion imaging: it is well-known that a change in the acquisition parameters (number of
gradients, b-value, resolution, scanner vendor, etcetera) seriously affects scalar measures like the FA or
the MD (Aja-Fernández et al., 2018; Barrio-Arranz et al., 2015).

Acknowledgments

This work was supported by Ministerio de Ciencia e Innovación of Spain with research grants RTI2018-
094569-B-I00 and PRX18/00253 (Estancias de profesores e investigadores senior en centros extranjeros).

The authors thank the contributors of DIPY project (http://nipy.org/dipy/) for providing the MAP-
MRI basis implementation and specially to Rutger Fick for his implementation for PA calculation and
interesting discussion about MAP-MRI model.

Data collection and sharing for this project was provided by (1) the Human Connectome Project
(HCP; Principal Investigators: Bruce Rosen, M.D., Ph.D., Arthur W. Toga, Ph.D., Van J. Weeden, MD).
HCP funding was provided by the National Institute of Dental and Craniofacial Research (NIDCR), the
National Institute of Mental Health (NIMH), and the National Institute of Neurological Disorders and
Stroke (NINDS). HCP data are disseminated by the Laboratory of Neuro Imaging at the University of
Southern California; (2) the High-quality diffusion-weighted imaging of Parkinson’s disease data base,
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A. Noise Analysis of the Diffusion Measures

For the sake of simplicity in the analysis, we will estimate the bias of the cos2 in eq. (19). Note that
it can be defined as

cos2 θ =

(∫
S

1
(D(θ,φ)+DAV)3/2

dS
)2

√
2πD

−3/2
AV

∫
S

1
(2D(θ,φ))3/2

dS
.

In this work we have approximated the surface integral by SH. However, for a noise analysis, it would
be more convenient to use a summation, similar to what was done in Aja-Fernández et al. (2018):∫

S

H(S)dS ≈ 4π

N

N∑
k=1

Hi,

where Hi are N samples of H(S) uniformly distributed over the surface of the sphere. THis way, ve can
write:

cos2 θ =

8D
3/2
AV

(
1
N

N∑
k=1

(DAV +Dk)
−3/2

)2

1
N

N∑
k=1

D
−3/2
k

,

where Dk are samples of the signal D(θ, φ). We will assume that the SNR is high enough in the baseline,
so we can consider it noiseless. We will assume that acquired signal Sk is corrupted by Rician noise, but,
in the high SNR regime, it becomes a Gaussian. Thus, we can approximate the adquired signal as

Sk ≈ Ak + nk(σ2) = Ak

(
1 +

nk(σ2)

Ak

)
.

Ak is the original signal if no noise is present and nk(σ2) is the Gaussian noise, with zero mean and
variance σ2. Under this assumption, we can write Dk as

Dk = −1

b
log

(
Sk
S0

)
= −1

b
log

(
Ak
S0

)
− 1

b
log

(
1 +

nk(σ2)

Ak

)
= D0,k −

1

b
log

(
1 +

nk(σ2)

Ak

)
,

where D0,k is the original diffusivity if no noise is present.
Our aim is now to calculate E

{
cos2 θ

}
. Let us define two variables:

X =

(
1

N

N∑
k=1

(DAV +Dk)
−3/2

)2

Y =
1

N

N∑
k=1

D
−3/2
k

so that

cos2 θ = 8D
3/2
AV

X

Y
.

The expectation of cos2 θ can be written as Papoulis (1991)

E
{

cos2 θ
}

= 8D
3/2
AVE

{
X

Y

}
≈ 8D

3/2
AV

(
E {X}
E {Y }

− Cov(X,Y )

E {Y }2
+

Var{Y }E {X}
E {Y }3

)
If we assume a high SNR we can make a first orden simplification. In order to calculate the bias, we will

use a series expansion of Dk, so that σ2

Ak
→ 0:

D
−3/2
k = D

−3/2
0,k +

nk
Ak

3

2bD
5/2
0,k

+
n2k
A2
k

3(2bD0,k − 5)

8bD
7/2
0,k

+O

[
n3k
A3
k

]
.
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Similarly, we can also make the expansions for (Dk +DAV)−3/2 and (Dk +DAV)−3. After some algebra
we can write:

E
{

cos2 θ
}
≈ cos2 θ0

(
1 +

15σ2

4b2
〈A−2k (D0,k +DAV)−7/2〉
〈(D0,k +DAV)−3/2〉

− 3σ2

2b

〈A−2k (D0,k +DAV)−5/2〉
〈(D0,k +DAV)−3/2〉

−15σ2

8b2
〈A−2k D

−7/2
0,k 〉

〈D−3/20,k 〉
+

3σ2

4b

〈A−2k D
−5/2
0,k 〉

〈D−3/20,k 〉

)
(33)

where cos2 θ0 is the original value (without noise) and 〈.〉 is the averaging operator:

〈Ik〉 =
1

N

N∑
k=1

Ik. (34)

To better understand the effect of the SNR and the b-value, let us simplify eq. (33) by assuming an
isotropic diffusion. In that case, D0,k = DAV for all k, and we can rewrite the expectation as:

E
{

cos2 θISO
}

= 1− 15

16

1

SNR2

1

b2D2
AV

. (35)

Therefore, the estimation bias of the cos2 θISO can be quantified, for the isotropic case as:

bias
{

cos2 θISO
}

= −15

16

1

SNR2

1

b2D2
AV

. (36)
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apparent propagator (MAP) MRI: a novel diffusion imaging method for mapping tissue microstructure. NeuroImage 78,
16–32.
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