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Abstract  
Multiplexed gene-signature-based phenotypic assays are increasingly used for the identification and 

profiling of small molecule-tool compounds and drugs. Here we introduce a method (provided as R-

package) for the quantification of the dose-response potency of a gene-signature as EC50 and IC50 

values.  

Two signaling pathways were used as models to validate our methods: beta-adrenergic agonistic activity 

on cAMP generation (dedicated dataset generated for this study) and EGFR inhibitory effect on cancer 

cell viability. In both cases, potencies derived from multi-gene expression data were highly correlated with 

orthogonal potencies derived from cAMP and cell growth readouts, and superior to potencies derived 

from single individual genes.   

Our results show that gene-signature potencies are a novel valid alternative to conventional readouts for 

compound potency quantification, in particular in scenarios where no other established readouts are 

available. 
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Introduction 
Gene expression signatures are widely used in the field of translational medicine to define disease sub-

types [1], severity [2] and predict treatment outcome [3].  Bridging this technology to early drug discovery 

was previously proposed years ago [4, 5] but its prohibitive costs limited this approach. The recent 

advancement of massively parallel gene expression technologies such as RASL-seq [6], DRUG-seq [7], 

QIAseq [8, 9], PLATE-seq [10], or LINCS L1000 [11] are now transforming the field of compound profiling, 

enabling larger scale profiling and screening experiments at a more affordable cost [12-17]. 

In drug discovery, dose-response experiments enable researchers to compare the efficacy of various 

compounds to modulate biological processes of interest, finding doses for animal and human experiments 

and estimating windows to off-target and toxic effects. Multiple statistical methods are reported for the 

identification of individual genes with a dose dependent effect from dose-response gene expression data 

[18-23]. However, in the case of multivariate gene expression profiling there are no generally accepted 

methods to estimate the key pharmacological efficacy variables EC50 (compound concentration of half-

maximal activating effect) and IC50 (compound concentration of half-maximal inhibitory effect) from multi-

parametric readouts. 

  

 

Figure 1. Introduction to gene-signature quantification methods. a) Within the manuscript, we consider 

methods measuring the similarity of gene-signature changes relative to an active control (AC) or a neutral 

control (NC). b) Two main characteristics of signature similarity can be distinguished: similar changes in 

magnitude or similar changes in the direction of the gene expression. The magnitude can be interpreted 

biologically as the efficacy, while the direction emphasizes the direction of the change of the phenotype, 

e.g. different pathways might result in different directions of changes in gene expression. 

 

Connectivity Map (CMap) established the concept that compounds with similar mode of actions (MOAs) 

are highly similar in their differential expression profiles over many genes [4, 11, 24]. We postulate that 

this concept can be applied for quantifying compound potencies based on compound/pathway specific 

gene expression signatures. This work aims at defining and comparing several multivariate statistical 

summaries to enable classical compound potency estimation. In this study, we focus mainly on methods 

measuring the similarity of gene-signature changes relative to a gene-signature induced by an active 

control compound, representing a defined phenotype of interest, e.g. a tool compound for a target or 

pathway of interest. The overall principal relies on assessing the similarity of a compound-induced gene-

signature profile relative to the one generated by an active control compound; hence, the AC profile will 

anchor all other measurements in the form of a global reference. 

The different similarity methods explored in this paper differ by their approach to assess either the 

direction of the effect (as example by the geometric angle (cosine) to the AC; referred as direction-based 
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methods) and / or by how the magnitude of the effect is assessed (e.g. Euclidean distance to the NC, 

referred as magnitude-based methods). Combined, the two measures quantify the strength and direction 

of a phenotypic effect (see Fig. 1 and Table 1). Methods referred to as direction&magnitude-based 

combine both types of information into a single measure. 

 

Table 1: Overview over gene-signature quantification methods.   

Method  Description Method class 

cor_p_AC Pearson correlation of the compound signature to the active control 
signature 

direction 

cor_s_AC Spearman rank correlation of the compound signature to the active control 
signature 

direction 

cos_AC Cosine of the compound signature to the active control signature direction 

cos_weight_AC cos_AC * significance_weight.  
Idea: downweight cosine values for signatures with very small / non-
significant amplitudes, likely caused by noise. 
Significance weight = weight from 0 to 1 quantifying the significance of the 
signal amplitude of the compound gene-signature vector. Formula:  
min(1, mean(abs(gene rscores)) /3). The mean of the absolute gene 
expression value rscores of the signature readouts divided by 3 equals 1, if 
on average the rscores of the signature are 3 standard deviations away from 
the background. This is considered the threshold from where on signals are 
considered strong enough not to be downweighted. This score requires the 
gene expression readouts to be scaled as rscores. 

direction 

dot_p_AC Dot product of compound signature with the active control signature direction&magnitude 

scalar_projection_AC Scalar projection of the signature to the active control signature direction&magnitude 

vec_norm Norm of the compound signature vector magnitude 

euc_NC Euclidean distance of compound signature from neutral control signature magnitude 

maha_NC Mahalanobis distance of the compound signature from the neutral control 
signature 

magnitude 

num_readouts_changed Number of readouts with signal different from background (abs(rscore) > 3) magnitude 

euc_AC Euclidean distance of the compound signature to the active control signature AC_similarity 

maha_AC Mahalanobis distance of the compounds signature to the active control 
signature 

AC_similarity 

 

 

For this study, two well-characterized biological pathways with multiple well-characterized ligands were 

selected: the beta-adrenergic receptor pathway for which we generated experimental biological data for 

this manuscript, and the EGFR pathway, which is publicly available through the LINCS L1000 project [11]. 

For the beta-adrenergic pathway we used cAMP EC50s as functional orthogonal readout [25]. For 

practical purposes, we had to measure a small set of biologically relevant genes, instead of the full 

transcriptome like in CMap. RNA-seq was used to determine a beta-adrenergic receptor specific gene-

signature that was subsequently used to quantify compound potencies on the level of gene expression. 

The L1000 assay is a panel of ca. 1000 measured genes, which are used to infer the differential gene 

expression of a total of ca. 13k genes. This allowed us to benchmark our methods using all L1000 genes, 

and subsets thereof specific for EGFR signaling or cell proliferation. The IC50s calculated from gene 

expression were compared to compound potencies measuring the inhibition of cell growth rate (GR50) 

[26].  

Our results demonstrate that gene-signature-based compound EC50 and IC50 values estimated with multi-

variate gene-signatures are highly related to potencies inferred with relevant but independent reference 

readouts. Therefore, we expect that these methods will find a wide application in gene-signature based 

assays in the near future. All methods in Table 1 and an EC50 and IC50 fitting method are made available 

in the R-package mvAC50 on github [https://github.com/Novartis/mvAC50]. 
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Results 
 

Generation of the beta-adrenergic receptor dataset  
Vitamin-D3 differentiated THP1 cells were chosen as an experimental model for its sensitivity to beta 

agonists over a large dynamic range of compound concentrations and the ease of measuring cAMP [27]. 

To identify a gene-signature for beta agonists, a series of RNA-seq experiments were performed on 

THP1 cells sampled at baseline and after four hours stimulation with adrenaline, noradrenaline or 

isoproterenol.  

Genes differentially expressed over all three treatments were identified, and prioritized for large fold 

change and high expression levels, for independent qPCR validation (Supplementary Fig. 1a). Our 

internal compound screening setup allows us to simultaneously multiplex the measurement of eight 

genes. Two independent sets of seven genes were defined from 14 qPCR validated genes 

(Supplementary Table 1, Supplementary Fig. 1b) with the eighth gene per set (TBP) serving as a baseline 

house keeper gene. For our analysis, we considered the two sets of genes as two independant 

signatures. Not all of these 14 identified genes produced a detectable signal in the QuantiGene Plex 

technology due to decreased sensitivity of this method compared to qPCR (Supplementary Fig. 1b). The 

two sets of genes contain respectively three (CD55, DOCK4, and NR4A1) and five genes (PDE4B, 

SGK1, THBS1, TOB1 and VEGFA) responding consistently to 10uM of isoproterenol.  

 

Comparison of EC50s from single genes, gene-signatures, and cAMP 
A total of 21 beta agonists (Supplementary Table 2) covering a wide range of potencies (<10pM to ca. 

5uM), were chosen for this study. Other cAMP modulators were also included in this compound set: the 

histamine receptor H3 antagonist N-alpha-methylhistamine and the adenylyl cyclase activator forskolin. 

As additional control, we added the beta-1 antagonist CGP-20712A, which, as expected, failed to 

increase cAMP levels. All compounds were measured in dose-response mode in the cAMP assay and for 

both gene signatures. An overview of dose-response curves of the genes is shown in Supplementary Fig. 

2. The gene-expression data, derived gene-signature scores, and fitted EC50s are presented in 

Supplementary Tables 3 and 4.  

The relationship of EC50 values derived from genes and gene-signatures compared to cAMP-derived 

EC50s depends on the gene-signature methods used. Representative examples for method classes are 

shown in Fig. 2a. (all methods and genes are shown in Supplementary Fig. 3). The EC50s derived from 

direction-based methods cor_p_AC and cos_weight_AC are found almost entirely within a window of one 

log unit around the cAMP-derived EC50s, which is very close considering the different incubation times 

and the different locations of the readouts in the adrenergic signaling pathway (gene expression vs 

cAMP). In contrast, the EC50s derived from gene-signature methods containing magnitude information 

(scalar_projection_AC and vec_norm) and EC50s from the individual genes NR4A1 and THBS1 are 

almost all more than one log unit above the cAMP-derived EC50s. The ranking of cAMP potencies is not 

preserved as well (e.g. Spearman correlation for scalar_projection_AC to cAMP = 0.32). 

A performance overview of all genes and gene-signature methods is given in Fig. 2b. The similarity 

between gene or gene-signature derived EC50s with cAMP derived EC50s over all tested compounds is 

quantified by the Pearson correlation between logged EC50s. Most methods within one method-class 

performed equally well. While direction&magnitude and magnitude-based methods showed no significant 

difference to individual genes (TukeyHSD test with p-val < 0.05), direction-based methods performed 

significantly better than the other methods with Pearson correlations ranging between 0.6 and 0.9. All 

other method classes showed mean Pearson correlations < 0.5. The AC_similarity method performed 

significantly worse relative to others (only negative correlations).   
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Figure 2: Comparison of EC50s from gene-signatures, single-genes and cAMP for the beta agonists 

dataset. a) Example of gene and gene-signature EC50s from representative methods compared to cAMP 

EC50s. The dashed red lines indicates one log unit above and below the red line of equality. The shown 

gene and gene-signature EC50s are from signature one, except THBS1 from signature two. The shown 

data is from replicate two. Axes are log10 transformed. b) Correlation of gene-signature and single-gene 

EC50s with cAMP EC50s. c) PCA of the cAMP, gene, and gene-signature summary methods logged EC50s 

of all compounds in the dataset. Colors of a), b), and c) are according to the definition in c). d). Dose 

dependent change of the genes in the gene-signature (left panel, with y-axis values > 50 not shown, 

orange dashed lines at three rscores indicating significant changes from the background), compared with 

the dose dependent change in gene-signature summary score methods and cAMP for metaproterenol 

(right panel, boxes colored according concentrations shown in left panel, dashed grey line at 100% 

activity).  

 

The relationship between all gene-signature methods, single genes and cAMP EC50s is shown by a 

principle component analysis (PCA) projection of the dataset (Fig. 2c). Each data point represents the 

vector of logged EC50s calculated by one method (for one replicate and one gene-signature) of all 

compounds in the dataset, Methods generating similar EC50s are projected close to each other. The PCA 
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projection confirms that direction methods cluster together with the cAMP EC50s, and all EC50s containing 

magnitude information cluster together with single gene EC50s. As mentioned above, the AC_similarity 

methods are outliers relative to the two major clusters. 

Fig. 2d visualizes the expression levels of the individual genes over compound concentrations (left panel) 

and the resulting dose-response curves of derived multivariate EC50 methods (right panel). Increasing 

concentrations of metaproterenol result in increasing expression of the genes of the gene-signature. 

While the shape of the gene-signature remains similar to the active control signature (isoproterenol 

[10uM], red line), the magnitude of the metaproterenol signature exceeds the AC signature with 

increasing concentrations (left panel). The observed difference in gene expression magnitude between 

high concentrations of metaproterenol and the active control signature is only captured by metrics that 

make use of this information (Fig. 2d, right panel, green line).  It is important to note that the difference 

between methods does not only lead to different maximal effect plateaus of the dose-response curve, but 

also to different EC50 values of the fitted curves.  

The increase in gene expression beyond the active control also explains why AC_similarity methods 

cannot work in this scenario: the maximum similarity between compounds and AC signature is reached at 

identical magnitudes of both signatures. Both lower and larger magnitudes result in less similar 

signatures, resulting in bell shaped curves. 

 

 

EGFR inhibitors dataset from L1000 
For the L1000 EGFR (“Epidermal growth factor receptor”) inhibitor dataset, we selected a set of eight 

EGFR inhibitors measured in six-point dose-response in MCF10A cells after 3h and 24h incubation time 

[11]. As reference univariate readout, the corresponding growth rate inhibition GR50 measured after three 

days was used [26]. As the LINC technology reported 12,717 genes, it was possible to test several gene-

signatures: (1) a published EGFR signature [28], and (2) a published cell proliferation gene-signature [3], 

further referred to by the gene name “Targeting protein for Xklp2” (TPX2). As a third biologically unbiased 

gene-set, all genes from L1000 were used for comparison. We also investigated the performance of 

single gene measurements, for which we chose the 20 genes from each of the three signatures with the 

strongest response to the active control (gefitinib at 3.33uM).  

Like with the beta agonist pathway data, gene-signature IC50s of the EGFR inhibitors corresponded well 

to the reference GR50s (Fig. 3a for representative readouts, all results in Supplementary Fig. 4-6). Results 

show a strong influence of the incubation time. At 24h all shown gene-signature methods over all three 

gene-signatures resulted in IC50 vs GR50 correlations >= 0.88, except scalar_projection_AC and 

vec_norm with the TPX2 gene-signature resulting in slightly lower correlations each of 0.68. The 

individual single gene IC50s at 24h incubation showed more variance, with Pearson correlations ranging 

from -0.36 with the TPX2 signature to 0.9 with the EGFR signature. The individual genes from the EGFR 

signature resulted in the highest median correlation of 0.88. Two very similar median correlations of 0.68 

and 0.69 were found for the individual genes of the TPX2 signature and from all L1000 genes, confirming 

the lower biological relevance for the EGFR pathway of the latter signatures. Even though all three gene-

signatures contained individual genes that correlated very well with the GR50s (> 0.9), all of them also 

contained genes with correlations to GR50s  < 0.5, few even around 0. It is not clear how one could 

reliably distinguish more relevant from less relevant genes in the absence of another orthogonal 

reference-readout like the GR50s. 

At 3h incubation time, differences between methods and gene-signatures are more pronounced, showing 

highest correlations for direction-based methods with the EGFR signature (both above 0.75). Again 

individual genes show a wide distribution of results ranging from -0.38 for TPX2 to ca. 0.85 for all three 

gene-sets. Like with the beta agonists, the values of gene-signature IC50s are very close to the values 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 9, 2019. ; https://doi.org/10.1101/799106doi: bioRxiv preprint 

https://doi.org/10.1101/799106
http://creativecommons.org/licenses/by/4.0/


7 
 

from GR50s and more than 50% of the gene-signature IC50 values are within a one-log-unit window to the 

GR50s (Fig. 3b). 

 

 

Figure 3. Comparison of gene and gene-signature IC50s to growth rate inhibition GR50s of EGFR 

inhibitors. a) Pearson correlation of representative methods and 20 individual gene IC50s to GR50s. b) 

Comparison of representative EGFR gene-signature IC50s in MCF10A vs. GR50s. The dashed red lines 

indicate one log unit above and below the red line of equality. 

 

 

Discussion 
The two main contributions of this work are: (1) the development and validation of an analytical 

framework for calculating compound potency based on multivariate readouts and (2) the provision of an 

open-source R-package to facilitate the application of our methods on new data by the scientific 

community. 

The principal of this framework is to first summarize the information contained in multiple-genes into a 

single value and then pass it into a logistic function for potency estimation. The optimal metrics were 

selected based on their degree of concordance with compound potencies estimated with standard 

readouts (cAMP/GR50). 

The fact that IC50/EC50 potency measurements are specific to a given biologic process (cAMP, gene 

expression, cell viability), and not a general property of the compound, is a potential challenge for 

comparing methods. However, choosing experimental models where gene expression is closely linked to 

pathway activation provides us confidence in our working model. The conservation of the compounds 

potency rank-order regardless of using gene expression or standard readouts supports our premise.  

Indeed, very close potency relationship (Pearson correlations up to 0.9) were observed for reference 

potency values (cAMP, GR50) upstream (cAMP) and downstream (GR50) of the gene expression readout, 

and independent of very different compound incubation times of readouts. The assessments of optimal 
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methods was not influenced by gene-signature composition. Indeed, all signatures used in this work were 

previously reported, or constructed independently of the screening datasets.  

Of the five methodological classes of metrics: (1) direction-based, (2) distance based (magnitude) to the 

NC, (3) distance based (magnitude) to the AC, (4) magnitude and direction-based and (5) single genes, 

results show that magnitude-based methods to the AC clearly underperformed to other methods while 

direction-based methods performed consistently well in the two explored datasets. We did not find large 

differences in the performance of the methods within a single method class in these two datasets. Yet we 

recommend cos_weight_AC for direction-based methods due to its ability to down-weight signal with very 

small magnitude. To our surprise, adding information about the magnitude of the gene expression did not 

improve the results.  

To this date, there is still very limited data available in the public domain that enables the comparison of 

multivariate EC50/IC50 with standard readouts, hence it is impossible to generalized current findings to 

future situations. Nonetheless, with the raise of novel sequencing methods that enable low to medium 

throughput compound screening based on hundreds to thousands of genes, the need for multivariate 

potency estimation will be strong. 

Finally, our work enables the of use gene-signatures as screening readouts and biomarkers throughout 

all stages of research from early cell line experiments, to animal models and clinical studies.  Using the 

same readout will in many cases contribute to increased biological relevancy at all stage of the drug 

discovery process.  Similar multiplexed readouts like the data from cell painting or metabolomics [29, 30] 

might also benefit from our multiplexed potency methods. 

The publication of the first dedicated dataset to investigate the quantification of the dose-response based 

on gene-signatures together with the first analysis of such data and the publication of an R-package 

providing the methods for such analyses will enable the further exploration and application of these 

methods by the scientific community. The algorithms and datasets used in the publications are available 

in the R-package mvAC50 from https://github.com/Novartis/mvAC50 . 
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Abbreviations 
CMap: Connectivity Map 

EC50 = Compound concentration of half-maximal activating effect. 

IC50 = Compound concentration of half-maximal inhibitory effect. 

AC50 = Compound concentration of half-maximal effect, independent of curve direction. General term 

including both EC50 and IC50. 

GR50 = Compound concentration of 50% reduction of the GR values, where the GR value is the ratio 

between growth rates under treated and untreated conditions normalized to a single cell division. 

AC = active control. 

NC = neutral control.  

 

 

Methods 
 

THP1 cells  
Human promonocytic THP-1 cells (TIB-202, ATCC) were cultured at 37°C/CO2 in medium (Hepes 

(72400-054, Life Technologies), with 10% FBS (2-01F16-I, Amimed/Bioconcept),  1% Pen/Strep (15140-

122, Life Technologies), 1mM Sodium Pyruvate (11360-039, Life Technologies), 2mM L-Glutamine 

(25030-024, Life Technologies), 0.0mM Mercaptoethanol (31350-010, Life Technologies)). Before 

compound treatment and for all experiments, the THP1 cells were differentiated with 100nM Vitamin D3 

(Biotrend Chemicals AG, Switzerland, Cat. No. BG0684) for 3 days at 37°C/CO2. 

 

cAMP HTRF assay 
The assay was run using the Cisbio cAMP dynamic 2 Kit (62AM4PEB), in white 384well-plates BioCoat 

#354661, with 20,000 cells/well in 10µL/well HBSS/HEPES/IBMX. Isoproterenol [10uM] was used as 

active control. Cells were incubated with compounds for 20 min. at 37°C in HBSS/HEPES, in the 

presence of the Phosphodiesterase (PDE) inhibitor IBMX. Then, cells were lysed and the amount of 

generated cAMP was quantified by HTRF (Homogeneous Time Resolved Fluorescence).  

 

Beta agonists gene-signature. 
RNASeq experiments were done comparing untreated cells with a treatment with isoproterenol, 

adrenaline or noradrenaline for 4h in THP1 cells.  

qPCR was run in THP1 cells for 4h incubation time with isoproterenol and formoterol at 1, 10 and 100 nM. 

Total RNAs were isolated with MagMAX™-96 Total RNA Isolation Kit (Ambion ref#AM1830), and cDNA 

was made using a cDNA Synthesis Kit (Applied Biosystems™ Ref#4368813 ) RT-PCRs were performed 

in 384-well plates on an AB7900HT cycler (Applied Biosystems) using specific TaqMan probes (Applied 

Biosystems). Housekeeper normalization was done relative to the one of the three genes GAPDH, PPIB 

or TBP, which had the most similar expression level to the gene of interest, according to our DMSO qPCR 

data. All measurements were done in quadruplicates.  
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QuantiGene Plex assay  
Gene expression changes were measured using a customized QuantiGene Plex assay (Thermo Fisher 

Scientific).  

Two different eight-gene-signatures were designed (obtained from Thermo Fisher Scientific), as the 

internal QuantiGene process was set up to handle custom-designed signatures of eight genes. Each of 

the eight-gene-signatures consisted of seven target genes responding to cAMP and one housekeeper 

gene (TBP). 

Measurements were done in THP1 cells. Compounds were measured in six replicates on the same day 

on different plates, and the procedure was repeated on another day using three replicates on different 

plates (referred to as biological replicates in the manuscript). 

For the assay, 100,000 cells were seeded in a volume of 20uL in each well of a 384 well plate (Greiner 

PP V bottom 781280). Compounds were added in serial dilutions of 1:10 (200nL volume added per well) 

with maximal compound concentrations of 100uM. After 4h incubation, cells were lysed with QuantiGene 

lysis mixture (10uL), and after 2 min, stored at -80°C.  

Targeted mRNA transcripts were captured to their respective beads by combining lysis mixture (5uL), 

blocking reagent (2uL), probe mix (1.125uL), water (11.25uL), and magnetic beads (0.3 uL; 500 

beads/region/uL) and  incubated overnight. 

Signal amplification via branched DNA is added by sequential hybridization of 2.0 Pre Amplifier 

biotinylated label probe, and binding with Steptavidin-conjugated Phycoerythrin (SAPE). For this purpose, 

each 15uL/well pre-amplifier, amplifier and label probe & SAPE were added after washing followed by 1h 

incubation at 50°C and multitron shaking 300rpm 1h.  

The amount of RNA in 90uL of probe was quantified using a Luminex Flexmap 3D instrument (Luminex). 

The identity of the mRNA is encoded by the hybridized Luminex beads, and the level of SAPE 

fluorescence is proportional to the amount of mRNA transcripts captured by the respective beads.  

 

QuantiGene Plex data processing 
The raw readout of the assay was processed as follows: 

1. Fold change = 50 * log2 ( mRNA count / median mRNA count for NC well ) 

2. Rscore = (Fold change for well – median Fold change for NC wells ) / MAD (mRNA count for NC wells) 

3. HKnorm = Rscore for well – HK_Rscore for well; with HK = housekeeper gene. 

 

L1000 / GR50 dataset 
EGFR inhibitors in MCF10A cells were selected as model system, because (1) they showed a strong 

GR50 dynamic range (Dose-response curves visualization http://www.grcalculator.org/grbrowser/.), and 

(2) were measured in six concentrations in L1000 (10uM, 3.33uM, 1.11uM, 0.37uM, 0.12uM, 0.04uM).  

The L1000 data was obtained in two files 

(GSE70138_Broad_LINCS_Level4_ZSVCINF_mlr12k_n78980x22268_2015-06-30.gct.gz and 

GSE70138_Broad_LINCS_Level4_ZSVCINF_mlr12k_n115209x22268_2015-12-31.gct.gz) from NCBI 

GEO (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70138).  

This version of the data contains the changed gene-expression normalized as z-scores relative to the 

DMSO controls on each plate, a similar normalization procedure to the one performed for the beta-
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agonists expression data. When multiple probes were measured for the same gene_symbol, the probe 

with the highest variance was kept, for each timepoint. The gefitinib treatment at 3.33 uM was defined as 

the active control of the experiment. Compounds, smiles, and inchi_key were downloaded from the 

LINCS webpage (http://lincs.hms.harvard.edu/db/datasets/20000/). 

From the 12,727 genes in the L1000 dataset, two different subsets were selected based on published 

gene-signatures. An EGFR (entrez gene_id 1956) signature [28] (“EGFR_UP.V1_UP” with 193 genes, 

“EGFR_UP.V1_DN” with 196 genes) was downloaded from msigdb [31, 32], of which a total of 381 genes 

could be mapped to the L1000 data. This gene-signature was derived from profiling of MCF-7 cell lines 

stably overexpressing ligand-activatable EGFR. A TPX2 (entrez gene_id 22974) signature (50 genes, of 

which 39 could be mapped to L1000) was taken from Farmer et al [3], representing a more general 

signature for cell proliferation.  

The GR50 cell viability potency values after three days compound incubation time were also obtained from 

the LINCS consortium (http://lincs.hms.harvard.edu/db/datasets/20252/results). To make the data more 

comparable to the fitted IC50’s from the gene-signatures, compounds with flat GR50 dose-response curves 

were set to either one log unit above or below the highest or lowest tested concentration, depending 

whether their fitted GRInf value was larger or smaller than 0.5. 

As the files from L1000 and the GR50s contained slightly different compound and cell line names, the 

names were set all to lowercase and whitespaces and “-“ were removed. Eight known EGFR inhibitors 

afatinib, neratinib, pelitinib, gefitinib, erlotinib, canertinib, lapatinib, and HG-5-88-01 overlapped between 

the two datasets. The two EGFR/ERBB2 dual inhibitors neratinib and afatinib were considered as EGFR 

inhibitors for this study (even though they are annotated as ERBB2 inhibitors in the LINCS nominal target 

annotation). 

 

Dose-response (DRC) fitting 
Four-point parametric logistic fits were calculated with an R function included in the mvAC50 R-package 

[https://github.com/Novartis/mvAC50]. The fitting algorithm was adopted from our in-house HTS analysis 

software Helios [33]. The fits were constrained to A0 and Ainf (minimal and maximal fitted activities) 

between -50% and 500% of the active control effect, respectively, and a hill slope between 0.1 and 10. 

The IC50s or EC50s were constrained to one log unit above and below the experimentally measured range 

of concentrations, (for the beta agonists ranging from 0.00001uM to 100uM, and for the L1000 data 

ranging from 0.04uM to 10uM)  

In the case of constant fits, IC50 or EC50 values one-log unit above or below the range of tested 

concentrations were assigned to the compounds to be able to use those data points as well in the 

correlation of calculated potencies to the reference potencies. Depending on whether the Amax of the 

constant fit was below or above 50%, a potency of either one log unit below or above the tested 

concentration range was assigned. Fitted AC50s with Ainf  values < 50% were set to one log unit above 

the highest tested concentration as well, assuming that the observed effect is not caused by the same 

mode of action as in the active control. 

In parallel to the four-point parametric fit and constant fits, a nonparametric fit was also calculated and 

compared to the other fits, to allow for more unusual curve shapes, e.g. bell shaped curves. For these fits 

the reported potency is the concentration at which the fit crosses the line of 50% activity.  The decision for 

the reported fit and potency was done as follows: If the non-parametric fit resulted in r2 < 0.5, the data 

was considered as not suitable for curve fitting and assigned as constant fit. If the curve had a bell-shape, 

the nonparametric potency was reported. If parametric fits had r2 < 0.5 or the absolute (amin-amax) < 30, 

a constant fit was reported as well, where amin and amax correspond to A0 and Ainf within the measured 

concentration range. For the remaining curves (the majority) parametric potencies were reported. 
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cAMP EC50s were fitted with the same algorithm and settings, to ensure a higher consistency in the data. 

The fitted cAMP EC50s were in agreement with the fits generated by the biologists who ran the assays. 

For the GR50 dataset this approach was not feasible, as no raw data was available, and the GR50 

algorithm was claimed to be superior to four-point parametric fits of the same data [26]. 

 

 

Acknowledgment 
We would like to acknowledge Stan Lazic, Xian Zhang, and Jeremy Jenkins for helpful discussions about 

the concept of multivariate AC50s, Wendy Broom, Elaine Donohue and Jacques Hamon for help with the 

QuantiGene assay, Magalie Mathies for help with setting up the THP-1 assays, Pierre Rigo, Thomas 

Hoerter, Cornelia Mouzo and Valerie Heidinger for production of THP-1 cells, Ioannis Moutsatsos for help 

with the QuantigGene analysis pipeline, and Pascale Anderle for referring Andrea Amati as NIBR intern 

for this project.   

 

 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 9, 2019. ; https://doi.org/10.1101/799106doi: bioRxiv preprint 

https://doi.org/10.1101/799106
http://creativecommons.org/licenses/by/4.0/


14 
 

Supplementary Information 
 

Supplementary Table 1: Genes selected for quantification of beta agonist potencies. 

Gene symbol Gene id Name Set Comment 

CCL22 6367 C-C motif chemokine ligand 22 1  

CD55 1604 CD55 molecule (Cromer blood group) 1  

DKK2 27123 dickkopf WNT signaling pathway inhibitor 2 1  

DOCK4 9732 dedicator of cytokinesis 4 1  

DUSP4 1846 dual specificity phosphatase 4 1  

IRF8 3394 interferon regulatory factor 8 1  

NR4A1 3164 nuclear receptor subfamily 4 group A member 1 1  

TBP 6908 TATA-box binding protein 1 Housekeeper 

NR4A3 8013 nuclear receptor subfamily 4 group A member 3 2  

PDE4B 5142 phosphodiesterase 4B 2  

PPARGC1B 133522 PPARG coactivator 1 beta 2  

SGK1 6446 serum/glucocorticoid regulated kinase 1 2  

THBS1 6908 TATA-box binding protein 2  

TOB1 7057 thrombospondin 1 2  

VEGFA 10140 transducer of ERBB2, 1 2  

TBP 7422 vascular endothelial growth factor A 2 Housekeeper 
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Supplementary Table 2: Overview over compounds used in THP1 experiments, comparing cAMP and 

QuantiGene readouts. 

 

Compound MOA Inchi_key Smiles EC50 repl1 Amax 
repl1 

EC50 
repl2 

Amax 
repl2 

(+/-)-
isoproterenol 

beta agonist JWZZKOKVBUJMES-
UHFFFAOYSA-N 

CC(C)NCC(O)c1ccc(O)c(O)c1 0.00008 109 < 0.00001 110 

terbutaline beta agonist XWTYSIMOBUGWOL-
UHFFFAOYSA-N 

CC(C)(C)NCC(O)c1cc(O)cc(O)c1 0.713 101 0.202 98 

fenoterol beta agonist LSLYOANBFKQKPT-
UHFFFAOYSA-N 

CC(Cc1ccc(O)cc1)NCC(O)c2cc(O)cc(O)c2 0.0036 106 0.0013 111 

adrenaline beta agonist UCTWMZQNUQWSLP-
VIFPVBQESA-N 

CNC[C@H](O)c1ccc(O)c(O)c1 0.139 106 0.0171 115 

metaproterenol beta agonist LMOINURANNBYCM-
UHFFFAOYSA-N 

CC(C)NCC(O)c1cc(O)cc(O)c1 0.0036 108 0.0141 111 

isoetharine beta agonist HUYWAWARQUIQLE-
UHFFFAOYSA-N 

CCC(NC(C)C)C(O)c1ccc(O)c(O)c1 0.0012 93 0.0115 108 

BRL 37344 beta agonist ZGGNJJJYUVRADP-
UHFFFAOYSA-N 

CC(Cc1ccc(cc1)OCC(O)=O)NCC(O)c2cccc(Cl)c
2 

0.0282 84 0.0984 91 

ritodrine beta agonist IOVGROKTTNBUGK-
SJCJKPOMSA-N 

C[C@H](NCCc1ccc(O)cc1)[C@H](O)c2ccc(O)cc
2 

0.846 91 0.51 83 

norepinephrine beta agonist SFLSHLFXELFNJZ-
QMMMGPOBSA-N 

NC[C@H](O)c1ccc(O)c(O)c1 0.0002792 109 0.000582
9 

115 

procaterol beta agonist FKNXQNWAXFXVNW-
BLLLJJGKSA-N 

CC[C@H](NC(C)C)[C@H](O)c1ccc(O)c2NC(=O)
C=Cc12 

0.008542 93 0.00013 102 

dobutamine beta agonist JRWZLRBJNMZMFE-
UHFFFAOYSA-N 

CC(CCc1ccc(O)cc1)NCCc2ccc(O)c(O)c2 0.0008564 106 0.00242 106 

abediterol beta agonist SFYAXIFVXBKRPK-
QFIPXVFZSA-N 

O[C@@H](CNCCCCCCOCC(F)(F)c1ccccc1)c2c
cc(O)c3NC(=O)C=Cc23 

< 0.00001 101 < 0.00001 105 

olodaterol beta agonist COUYJEVMBVSIHV-
SFHVURJKSA-N 

COc3ccc(CC(C)(C)NC[C@H](O)c2cc(O)cc1NC(=
O)COc12)cc3 

0.00001869 97 < 0.00001 102 

batefenterol beta agonist URWYQGVSPQJGGB-
DHUJRADRSA-N 

COc4cc(NC(=O)CCN1CCC(CC1)OC(=O)Nc2ccc
cc2c3ccccc3)c(Cl)cc4CNC[C@H](O)c5ccc(O)c6
NC(=O)C=Cc56 

0.0021 101 1.89E-04 101 

vilanterol beta agonist DAFYYTQWSAWIGS-
DEOSSOPVSA-N 

OCc1cc(ccc1O)[C@@H](O)CNCCCCCCOCCO
Cc2c(Cl)cccc2Cl 

0.00001721 96 < 0.00001 98 

tulobuterol beta agonist YREYLAVBNPACJM-
UHFFFAOYSA-N 

CC(C)(C)NCC(O)c1ccccc1Cl 0.016 68 0.0366 50 

salbutamol beta agonist NDAUXUAQIAJITI-
UHFFFAOYSA-N 

CC(C)(C)NCC(O)c1ccc(O)c(CO)c1 0.02 89 0.004285 88 

zinterol beta agonist XJBCFFLVLOPYBV-
UHFFFAOYSA-N 

CC(C)(Cc1ccccc1)NCC(O)c2ccc(O)c(c2)NS(C)(=
O)=O 

< 0.00001 99 0.000043
44 

95 

tretoquinol beta agonist RGVPOXRFEPSFGH-
UHFFFAOYSA-N 

COc3cc(CC1NCCc2cc(O)c(O)cc12)cc(OC)c3OC 0.00005932 101 < 0.00001 105 

dopexamine beta agonist RYBJORHCUPVNMB-
UHFFFAOYSA-N 

Oc2ccc(CCNCCCCCCNCCc1ccccc1)cc2O 4.1 56 5.837 62 

formoterol beta agonist BPZSYCZIITTYBL-
YJYMSZOUSA-N 

COc2ccc(C[C@@H](C)NC[C@H](O)c1ccc(O)c(c
1)NC=O)cc2 

0.00001267 106 0.000023
1 

109 

forskolin AC activator OHCQJHSOBUTRHG-
KENMSXPPSA-N 

CC(=O)OC2C(O)[C@H]1C(C)(C)CC[C@H](O)[C
@]1(C)[C@@]3(O)C(=O)C[C@](C)(C=C)O[C@]
23C 

6.283 90 3.757 104 

N-alpha-
methylhistamine 

histamine H3 
antagonist 

PHSPJQZRQAJPPF-
UHFFFAOYSA-N 

CNCCC1=CNC=N1 0.161 98 0.199 102 

CGP-20712A beta-1 
antagonist 

GKJZEKSHCJELPL-
UHFFFAOYSA-N 

CN1C=C(N=C1c2ccc(cc2)OCC(O)CNCCOc3ccc
(O)c(c3)C(N)=O)C(F)(F)F 

> 100 -17 > 100 -19 
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Supplementary Figure 1: Validation of the beta agonists gene-signature. a) qPCR results for DMSO, 

formoterol and isoproterenol demonstrate dose dependent effect on genes after 4h incubation. b) 

QuantiGene Plex results for the two gene-signatures for 10uM of isoproterenol after 4h incubation, shown 

at two different scales: upper = full scale with THBS1 having a much stronger response than the other 

genes, and lower = y-axis cut at 80 to visualize the genes with lower variance. Shown are mean standard 

deviations of the rscore_HK values of active control wells of each plate.  
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Supplementary Figure 2: Dose-response of genes for each compound in the beta agonists dataset. 
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Supplementary Figure 3: Correlation of gene and gene-signature EC50s with cAMP EC50s of the beta 

agonist dataset. 
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Supplementary Figure 4: Correlation of cell growth inhibition GR50s with all gene and gene-signature 

EC50s of the EGFR inhibitor dataset. 
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Supplementary Figure 5: Correlation of gene-signature IC50s to GR50s of the EGFR inhibitor dataset. 
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Supplementary Figure 6: Correlation of single gene IC50s to GR50s of the EGFR inhibitor dataset, for the 

20 genes most responding to the active control from the EGFR and TPX2 signatures. 
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