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Supplemental Methods
Bias in βyi/βxi as an estimand for γ in the presence of invalid instrumental variables

(IVs) being in LD

Here we present details on the derivation of the bias in the ratio of marginal GWAS

association effect to marginal eQTL effect for a SNP i as an estimand for the

effect of the trans-gene on the trait, γ, in the presence of SNP(s) in LD and with

horizontal pleiotropy effects. We will show that the bias is SNP-specific. Without

loss of generality, we assume that there are two SNPs i and j in LD, and SNP i is

a valid IV if conditioning on SNP j with a horizontal pleiotropic effect as depicted

in Figure 5 of the main text. For multiple eQTLs in an LD block, one can consider

them as being conditionally valid IVs and invalid IVs. Below are the data generating

models in a GWAS study:

X = µx0 + µiLi + µxjLj + εx, (S1)

Y = µy0 + γX + µyjLj + εy, (S2)

where X is the gene expression levels and Y is the continuous complex trait of

interest in a GWAS study; and Li and Lj are the genotypes for SNPs i and j,

respectively. As a valid IV given Lj , the genotype of SNP i (Li) is independent of

the error terms εx and εy. In the above models, the conditional association between

X and Li given Lj is captured by µi, and the conditional association between Y

and Li given Lj is γ · µi. And the ratio of the two, γµi

µi
, recovers the true effect of

interest, γ.

Without adjusting for SNP j, the summary statistics are calculated based on the

following marginal models:

X = βx0 + βxiLi + ε′x, (S3)

Y = βy0 + βyiLi + ε′y, (S4)

where βxi and βyi are the marginal eQTL and GWAS association effects, respec-

tively, in the GWAS study. Note that one could also adjust covariates in the above
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models (S1)-(S4) and that does not affect our conclusion. We ignore covariates for

simplicity. Define ρij =
Cov(Li,Lj)
Var(Li)

, in terms of parameters in (S1) and (S2), the

marginal effects βxi = Cov(X,Li)
Var(Li)

=
Cov(µx0+µiLi+µxjLj+εx,Li)

Var(Li)
= µi + µxjρij , and

βyi = Cov(Y,Li)
Var(Li)

=
Cov(µy0+γX+µyjLj+εy,Li)

Var(Li)
= [γ + (γµxj + µyj)

ρij
µi

]µi.

It can be seen that the bias of marginal eQTL effect estimate for SNP i on gene

expression, βxi, with respect to the true eQTL effect, µi, is µxjρij . And the bias

of marginal GWAS effect estimate for SNP i on complex trait, βyi, with respect to

the mediated effect from SNP to gene to trait, γµi, is (γµxj + µyj)ρij . And it can

be derived that the bias of the ratio of marginal GWAS to eQTL effect estimates,

βyi/βxi, with respect to the true effect, γ, is given by
µyjρij

µi+µxjρij
. All the biases are

functions of SNP i’s eQTL effect size, LD strength to SNP j and effect size of the

pleiotropy. Therefore, the bias will vary from SNP to SNP.

Supplemental Results
Simulation studies to evaluate the performance of CCmed

Here we report additional details regarding the simulation studies evaluating the

performance of the CCmed algorithm.

The performance of CCmedgene in identifying robust gene-level trans-associations

Here we describe additional details of the simulation evaluating the performance of

CCmedgene in identifying robust gene-level trans-associations (results of the simula-

tions are presented in Table 1A in the main text). In this simulation, we generated

5000 genotypes for SNPs and grouped each of 10 SNPs as the cis-eQTL set for a

cis-gene to generate 500 cis-eQTL sets for 500 cis-genes. In each cis-eQTL set, the

pairwise correlations between SNPs were set to be 0.3. Based on the genotypes,

in each tissue type, we randomly selected 1 SNP as the causal eSNP to generate

the cis- and trans-gene expression levels. Note that this way, the causal eSNPs var-

ied across tissues. For each pair of a cis-eQTL set and cis-gene, we generated 500

trans-gene expression levels. We generated cis-trans gene expression data from 10

correlated tissue types. The proportions of trios with the SNP set being associated

with cis-gene in all 10 tissue types, in each combination of exactly 9 tissue types

(there are 10 of them), and in each combination of exactly 8 tissue types (there are

45 of them) were set to be 0.124, 0.026, and 0.008, respectively. The proportion of

trios with the cis-eQTL set being associated with cis-gene in none of the tissues was

0.216, and the probabilities for each of the rest of the possible association patterns

were set to be the same. Among the trios with cis-associations in all 10 tissues, 60%

of them were simulated with conditional cis-trans gene expression correlations in at

least 9 tissues. Among trios with cis-associations in exactly 9 or 8 tissue types, 60%

of them had non-zero conditional cis-trans gene expression correlations in exactly

the same tissue types as their corresponding cis-association tissue types. And in the

simulation studies, we are interested in detecting the trios with cis-association and

conditional expression correlation in at least 9 out of 10 tissue types. For the rest

of the trios, the conditional cis-trans association patterns were randomly generated

with a probability of associations in none of the tissues to be 0.4885, and with prob-

abilities in each of the rest of the possible patterns being 0.0005. Among those trios
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with non-zero cis-mediated trans-associations, 50% of them also had a non-zero di-

rect effect from SNPs on the trans-gene expression levels. Nonzero cis-association

and conditional cis-trans association effect sizes were generated from multivariate

normal distribution with means of either a vector of 0.8 or −0.8, standard devia-

tions 0.3 and correlations 0.3 across tissues. The effect sizes for direct effects were

generated from a normal distribution with mean 0 and standard deviation 0.3. This

simulation setup mimics weak total trans-associations (note that the mean of each

nonzero total trans-association is of size 0.8 × 0.8) observed in the GTEx study.

Performance of CCmedgene in detecting gene-level trans-associations mediated by

cis-gene expression in at least K1 = 9 out of the 10 tissue types is presented in

Table 1A in the main text.

The performance of CCmedGWAS in identifying cis-mediated trans-genes for one

(GWAS) SNP in selected tissue-types

Here we describe additional details of the simulation evaluating the performance of

CCmedGWAS in identifying cis-mediated trans-genes for a GWAS SNP in selected

tissue-types (results of the simulations are presented in Table 1B in the main text).

In this simulation, we simulated cis-gene expression levels being affected by 3 corre-

lated eQTLs with correlation 0.3. We focused on one of them as the (GWAS) SNP

of interest and generated the trans-gene expression levels being affected by the SNP

in selected tissue types. The proportion of trios with the SNP being associated with

cis-gene expression in none of the tissue types, in each combination of exactly 1

tissue (there are 10 of them), exactly 2 tissues (there are 45 of them), and exactly

3 tissues (there are 120 of them) were 0.298, 0.01, 0.006, and 0.002, respectively.

And the proportions for each of the rest of the possible association patterns were

all the same. Among the trios with cis-association in exactly 1 tissue type, exactly

2 tissue types and exactly 3 tissue types, the proportions of them that had non-zero

conditional cis-trans expression correlations in the same tissue types were 60%. For

the rest of the trios, the conditional cis-trans expression correlations were randomly

generated with a probability of non-zero correlations in none of the tissues to be

0.4885, and with probabilities in each of the rest of the possible patterns being

0.0005. Same as in the previous simulation, among those trios with non-zero cis-

mediated trans-associations, 50% of them also had a non-zero direct effect of the

SNP on the trans-gene. Nonzero cis-association and conditional cis-trans expression

correlation effect sizes were generated from multivariate normal distributions with

means of either a vector of 1 or −1, standard deviations 0.5 and correlations 0.3

across tissues. The effect sizes for direct effects were generated from a normal distri-

bution with mean 0 and standard deviation 0.5. This simulation considers scenarios

with weak to moderate effects in certain tissue types. Performance of CCmedGWAS

in identifying associations between the GWAS SNP and trans-gene mediated by

cis-gene expression in at least K ′1 = 2 tissues is presented in Table 1B in the main

text.

Simulation studies to evaluate the performance of MR-Robin

Data generation

We evaluated the performance of MR-Robin using simulations. In each simulation

scenario, we simulated data for a total of N = Ng + NR = 10, 300 independent



Yang et al. Page 4 of 10

subjects: Ng = 10, 000 subjects in a GWAS study, and NR = 300 subjects in a

reference multitissue eQTL study of K = 10 tissues.

First, we simulated an N × I genotype matrix for each gene, L, comprised of Q

independent LD blocks with 20 SNPs in each block (thus, a total of I = 20 × Q
SNPs for each gene). From each LD block, we selected 1 SNP to be the true eQTL.

The Ng ×Q genotype matrix of the Q true eSNPs in the GWAS study is denoted

G, and we generated phenotypes in the GWAS study according to the following

data generation models:

X = Gµx + εx, (S5)

Y = γX +

Q∑
q=1

µyqgq + εy, (S6)

In model S5, X is a vector of gene expression levels; G are the genotypes of eSNPs;

µx ∼ NQ(0, 0.25 · I) are the eQTL effects of eSNPs from independent LD blocks;

and εx ∼ N(0, 0.25) are error terms. In model S6, Y is a vector of the complex trait;

γ is the parameter of interest – the effect of gene X on trait Y – with γ = 0 under

the null and γ = 0.25 under the alternative; gq is the genotype vector of SNP q;

µyq is the direct effect of SNP q on Y ; and εy ∼ N(0, 1) are the error terms. When

SNP q is a valid IV, the direct effect on Y is µyq = 0; otherwise, µyq ∼ N(0, 0.05).

Across scenarios we vary the proportion of the Q SNPs that are invalid.

Data from the eQTL study was generated based on the model:

XR = GRµR
x + εRx , (S7)

where XR is an NR×K matrix of expression levels measured in K tissues; GR is a

NR ×Q genotype matrix of Q eSNPs in the eQTL study; µR
x is a Q×K matrix of

the tissue-specific eQTL effects; and εRx ∼ N(0, 1) are the error terms. Each column

of µR
x is independently drawn from NQ(µx, 0.05 · I), where µx is from model S5.

Summary statistics

After individual-level data was generated in each simulation, we calculated the

marginal eQTL and GWAS summary statistics, and obtained the marginal effect

estimate of each SNP i on gene expression in tissue k in the reference eQTL study,

βRxik; and the marginal effect estimate of each SNP i on its simulated trait in the

GWAS study, βyi, for two-sample MR analyses. We also obtained the standard error

estimates for marginal eQTL and GWAS effects.

Description of competing two-sample MR models and methods

Finally, we applied MR-Robin to the summary statistics β̂Rxik and β̂yi and their

standard errors, and obtained the P -value for each simulated gene, as described in

Algorithm 3 in the main text.

For comparison, we included three competing models. The first one is a single-

tissue model with GWAS effects as the response and eQTL effects as the predictor.

No intercept is included. Each observation is weighted by 1/σ2
yi. We selected one tis-

sue at random from all simulated tissues for the model, and obtained the parametric

Wald P -values testing the hypotheses H0 : γ = 0 vs. HA : γ 6= 0.
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The second model extends the above single-tissue model to a multitissue model

with multitissue eQTL effects as predictor and the corresponding GWAS effects as

response, without an intercept:

β̂yi = γβ̂Rxik + ε (S10)

Each observation is weighted by 1/σ2
yi. We obtain the test statistics for testing the

hypotheses H0 : γ = 0 vs. HA : γ 6= 0, and calculate the P -values by resampling to

account for the correlation among tissues and LD.

As a third comparison model, we performed a weighted, random-intercept regres-

sion based on the following reverse-regression model:

β̂Rxik = θβ̂yi + µi + ε, (S11)

where µi is the SNP-specific random intercept for each IV with mean zero. We test

the hypotheses H0 : θ = 0 vs. HA : θ 6= 0. To make a fair comparison, we weighted

each observation by 1/σ2
xik. We estimated P -values based on resampling.

We also compared the performance of MR-Robin to three existing Mendelian ran-

domization methods reported in the literature: MR-RAPS [1], MR-Egger [2], and

MRMix [3]. Note that these methods were developed for settings where many, inde-

pendent genetic variants may be available as candidate IVs, and those methods are

all developed for single-tissue eQTL statistics. Therefore, they may not be expected

to perform well in the currently proposed setting, where a limited number of cor-

related variants are available as candidate IVs (i.e. variants in cis with a particular

gene). Nonetheless, we include the methods for comparison. For each method, we

performed the analysis using eQTL statistics from a single tissue type – the same

tissue type selected for the single-tissue model (the first competing model described

above).

MR-Robin controls type I error rate with moderate proportion of invalid IVs

In Scenario 1, we evaluated the robustness of MR-Robin to the proportion of invalid

IVs. We simulated the data using Q = 10 LD blocks, varying the proportion of

invalid IVs across settings. That is, we varied the proportion of eSNPs having direct

effects on the complex trait Y (i.e. effects not mediated through gene expression

X). Over 10,000 simulations, we compare the type I error rate and power of MR-

Robin to competing methods. P < 0.05 was used as the significance criterion for

each method. Tables S1, S2 and S3 compare the methods when the selection LD

r2 threshold is set to 0.8, 0.3, and 0.01, respectively (results using selection LD r2

threshold of 0.5 are reported in Table 1 in main text).

Based on the results, we observe that competing methods are generally unable to

control the type I error rate when there are any invalid IVs and IVs are in LD. On

the other hand, MR-Robin is able to control the type I error rate when a majority of

IVs are valid (e.g. when up to 30% are invalid). Power is reasonable for all methods

when a majority of IVs are valid.

Since our method allows for correlated IVs and it is hard to define invalid versus

valid IVs when SNPs are correlated, the proportions of valid IVs in the tables are
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the proportion of LD blocks with no pleiotropy, and is only an approximation of

the valid IVs among all selected ones. In each table, we also presented the average

numbers of selected IVs that are from valid versus invalid LD blocks.

Table S1 Simulation results evaluating the performance of MR-Robin. Averaged type I error rates
and power over 10,000 simulations are shown by percentage of valid instruments. 10 LD blocks
were simulated, with one true eQTL per LD block. Instruments were selected sequentially: the
eSNP with the strongest association with gene expression was selected, and the next selected
eSNP is the strongest-associated SNP remaining also with LD r2 < 0.8 with any already-selected
eSNPs.

Method
Proportion of Valid IVs (%)

100 90 80 70 60 50 30
Type I error rate

MR-Robin 0.050 0.064 0.072 0.091 0.114 0.140 0.213
A single tissue MR model with no intercept 0.466 0.509 0.532 0.554 0.574 0.590 0.588
A multitissue MR model with a fixed slope and no intercept 0.048 0.075 0.093 0.111 0.129 0.140 0.150
Random Intercept 0.048 0.074 0.092 0.113 0.130 0.140 0.150
MR-RAPS 0.431 0.701 0.835 0.899 0.927 0.937 0.940
MR-Egger 0.257 0.332 0.379 0.421 0.440 0.454 0.472
MRMix 0.164 0.221 0.275 0.322 0.381 0.425 0.515

Power
MR-Robin 0.985 0.943 0.902 0.854 0.803 0.760 0.647
A single tissue MR model with no intercept 0.996 0.979 0.960 0.940 0.917 0.900 0.864
A multitissue MR model with a fixed slope and no intercept 0.999 0.948 0.888 0.824 0.773 0.718 0.618
Random Intercept 0.999 0.950 0.890 0.828 0.780 0.724 0.618
MR-RAPS 1.000 0.997 0.994 0.991 0.986 0.981 0.974
MR-Egger 0.912 0.856 0.796 0.750 0.715 0.696 0.640
MRMix 0.537 0.527 0.537 0.530 0.535 0.542 0.561

Avg number of SNPs selected (valid/invalid)
All methods 62.1/0 55.8/6.1 49.6/12.4 43.3/18.6 36.9/25.0 30.8/31.1 18.4/43.5

Table S2 Simulation results evaluating the performance of MR-Robin. Averaged type I error rates
and power over 10,000 simulations are shown by percentage of valid instruments. 10 LD blocks
were simulated, with one true eQTL per LD block. Instruments were selected sequentially: the
eSNP with the strongest association with gene expression was selected, and the next selected
eSNP is the strongest-associated SNP remaining also with LD r2 < 0.3 with any already-selected
eSNPs.

Method
Proportion of valid IV (%)

100 90 80 70 60 50 30
Type I error rate

MR-Robin 0.049 0.055 0.060 0.067 0.076 0.080 0.108
A single tissue MR model with no intercept 0.122 0.169 0.194 0.210 0.224 0.234 0.244
A multitissue MR model with a fixed slope and no intercept 0.050 0.069 0.081 0.100 0.108 0.117 0.124
Random Intercept 0.051 0.066 0.076 0.093 0.101 0.111 0.117
MR-RAPS 0.118 0.548 0.749 0.843 0.882 0.896 0.878
MR-Egger 0.055 0.124 0.155 0.180 0.187 0.195 0.197
MRMix 0.177 0.250 0.323 0.379 0.419 0.464 0.530

Power
MR-Robin 0.950 0.893 0.827 0.757 0.687 0.627 0.480
A single tissue MR model with no intercept 0.981 0.924 0.869 0.810 0.767 0.717 0.640
A multitissue MR model with a fixed slope and no intercept 0.998 0.941 0.875 0.805 0.746 0.688 0.580
Random Intercept 0.998 0.939 0.872 0.801 0.741 0.686 0.572
MR-RAPS 0.999 0.995 0.988 0.982 0.975 0.969 0.953
MR-Egger 0.821 0.704 0.625 0.553 0.506 0.476 0.398
MRMix 0.576 0.575 0.565 0.574 0.578 0.586 0.594

Avg number of SNPs selected (valid/invalid)
All methods 16.6/0 14.9/1.7 13.2/3.3 11.6/5.0 9.9/6.7 8.3/8.3 4.9/11.6

MR-Robin controls type I error rate with small number of IVs

In Scenario 2, we evaluated the performance of MR-Robin when the number of

selected IVs is small. We simulated the data using Q = 3 LD blocks, with two

blocks without pleiotropy and one block with pleiotropy (thus the proportion of LD

blocks with pleiotropic effects is fixed at 33.3%). Table S4 shows the type I error

rates and power when the selection LD r2 threshold is set to 0.8, 0.5, 0.3, 0.2, 0.1

and 0.01. As shown in the table, MR-Robin performs reasonably well even when

the number of IVs is very limited. Though in this setting, MR-Robin requires the

IVs to be less dependent (r2 < 0.3). MR-Robin outperforms competing methods in

this setting.
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Table S3 Simulation results evaluating the performance of MR-Robin. Averaged type I error rates
and power over 10,000 simulations are shown by percentage of valid instruments. 10 LD blocks
were simulated, with one true eQTL per LD block. Instruments were selected sequentially: the
eSNP with the strongest association with gene expression was selected, and the next selected
eSNP is the strongest-associated SNP remaining also with LD r2 < 0.01 with any
already-selected eSNPs.

Method
Proportion of valid IV (%)

100 90 80 70 60 50 30
Type I error rate

MR-Robin 0.050 0.048 0.046 0.044 0.045 0.043 0.041
A single tissue MR model with no intercept 0.046 0.043 0.046 0.046 0.054 0.053 0.059
A multitissue MR model with a fixed slope and no intercept 0.048 0.039 0.033 0.040 0.045 0.046 0.054
Random Intercept 0.049 0.038 0.032 0.036 0.041 0.043 0.052
MR-RAPS 0.044 0.434 0.659 0.785 0.843 0.860 0.865
MR-Egger 0.037 0.088 0.109 0.128 0.132 0.137 0.139
MRMix 0.183 0.281 0.363 0.425 0.476 0.530 0.607

Power
MR-Robin 0.920 0.812 0.714 0.615 0.518 0.444 0.290
A single tissue MR model with no intercept 0.883 0.751 0.646 0.561 0.495 0.442 0.341
A multitissue MR model with a fixed slope and no intercept 0.995 0.880 0.778 0.687 0.612 0.547 0.417
Random Intercept 0.995 0.878 0.773 0.681 0.597 0.539 0.401
MR-RAPS 0.999 0.991 0.981 0.976 0.968 0.960 0.948
MR-Egger 0.577 0.478 0.402 0.352 0.318 0.290 0.237
MRMix 0.709 0.700 0.697 0.686 0.688 0.699 0.701

Avg number of SNPs selected (valid/invalid)
All methods 6.6/0 5.9/0.7 5.2/1.3 4.6/2.0 3.9/2.6 3.3/3.3 2.0/4.6

Table S4 Simulation results evaluating the performance of MR-Robin when there is a small
number of IVs. Averaged type I error rates and power over 10,000 simulations are shown by IV
selection criteria. 3 LD blocks were simulated, with two blocks without pleiotropic effects (valid
IVs) and one block with (invalid IV). Results shown for six IV selection criteria (LD r2 < 0.8, 0.5,
0.3, 0.2, 0.1, and 0.01).

Method
LD selection criteria (r2)

0.8 0.5 0.3 0.2 0.1 0.01
Type I error rate

MR-Robin 0.129 0.113 0.070 0.049 0.030 0.011
A single tissue MR model with no intercept 0.571 0.441 0.239 0.135 0.080 0.033
A multitissue MR model with a fixed slope and no intercept 0.154 0.144 0.114 0.067 0.044 0.012
Random Intercept 0.156 0.147 0.114 0.074 0.053 0.023
MR-RAPS 0.780 0.727 0.665 0.659 0.668 0.720
MR-Egger 0.436 0.330 0.231 0.208 0.213 0.259
MRMix 0.298 0.306 0.319 0.318 0.304 0.303

Power
MR-Robin 0.686 0.638 0.482 0.410 0.330 0.202
A single tissue MR model with no intercept 0.835 0.757 0.550 0.432 0.314 0.150
A multitissue MR model with a fixed slope and no intercept 0.611 0.591 0.493 0.424 0.342 0.180
Random Intercept 0.618 0.596 0.508 0.445 0.371 0.229
MR-RAPS 0.958 0.948 0.928 0.925 0.925 0.920
MR-Egger 0.695 0.608 0.483 0.419 0.392 0.350
MRMix 0.512 0.502 0.523 0.559 0.556 0.585

Avg # of SNPs selected
All methods 18.0/8.4 9.6/4.6 4.2/2.0 3.1/1.5 2.5/1.2 2.0/1.0

MR-Robin validated trans-genes showing evidence of association with scz

In Table S5, we present detailed information on the 46 trans-genes for scz-GWAS

SNPs identified by CCmedGWAS at 80% probability cutoff from GTEx data and

validated by MR-Robin at the P -value cutoff of 0.05.
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Table S5 Detailed information on the 46 trans-genes for scz-GWAS SNPs, identified by
CCmedGWAS at 80% probability cutoff from GTEx data and validated by MR-Robin at the
P -value cutoff of 0.05

Validated trans-Gene CCmedGWAS results Validation results (p-values)

Ensembl ID Gene Symbol GWAS SNP(s) CCmed cis-Gene(s) CCmed probability min. GWAS (local eQTLs) MR-Robin MultiXcan

ENSG00000001461 NIPAL3 rs56972983 WDR55 0.888 7.0 × 10−4 0.0421 0.3407
ENSG00000007376 RPUSD1 rs11693528 SEPHS1P6 0.984 9.9 × 10−2 0.0127 0.7957
ENSG00000040487 PQLC2 rs7432375 PCCB 0.849 8.5 × 10−3 0.0345 0.2703
ENSG00000050393 MCUR1 rs7523273 CD46 0.974 2.7 × 10−2 0.0316 0.0123
ENSG00000064995 TAF11 rs8113357 PRR12 0.994 3.1 × 10−3 0.0020 0.0073
ENSG00000067177 PHKA1 rs8113357 PRR12 0.880 NA 0.0069 NA
ENSG00000072756 TRNT1 rs56972983 WDR55 0.959 4.9 × 10−2 0.0338 0.2067
ENSG00000080345 RIF1 rs2905426 GATAD2A 0.998 1.0 × 10−3 0.0329 0.0761
ENSG00000090054 SPTLC1 rs9607771 SLC25A17 0.891 3.1 × 10−4 0.0183 0.2751
ENSG00000095906 NUBP2 rs7523273 CD46 0.982 6.8 × 10−5 0.0320 0.6571
ENSG00000099338 CATSPERG rs7085104 BORCS7 0.994 1.4 × 10−2 0.0392 0.1363
ENSG00000099810 MTAP rs2102949 PITPNM2 0.858 7.4 × 10−3 0.0130 0.0624
ENSG00000104886 PLEKHJ1 rs679087 TMTC1 0.944 1.9 × 10−5 0.0046 0.0011
ENSG00000105583 WDR83OS rs301797 RERE 0.967 NA 0.0193 NA
ENSG00000108559 NUP88 rs832187 ; rs832187 THOC7 ; AC136289.1 0.974 ; 0.942 3.5 × 10−4 0.0093 0.2180
ENSG00000112667 DNPH1 rs679087 TMTC1 0.966 3.4 × 10−5 0.0017 0.0028
ENSG00000122490 PQLC1 rs832187 THOC7 0.999 6.0 × 10−6 0.0316 < 0.0001
ENSG00000126464 PRR12 rs8082590 DRC3 0.973 7.1 × 10−7 0.0011 < 0.0001
ENSG00000127472 PLA2G5 rs679087 TMTC1 0.805 4.7 × 10−4 0.0286 0.0602
ENSG00000128285 MCHR1 rs8113357 PRR12 0.961 2.6 × 10−6 0.0315 0.0003
ENSG00000130741 EIF2S3 rs7523273 CD46 0.988 5.5 × 10−3 0.0378 NA
ENSG00000130822 PNCK rs9607771 SLC25A17 0.845 1.4 × 10−2 0.0077 NA
ENSG00000137142 IGFBPL1 rs6434928 SF3B1 0.992 9.6 × 10−2 0.0004 0.8936
ENSG00000138778 CENPE rs7432375 ; rs7085104 PCCB ; BORCS7 0.900 ; 0.837 3.5 × 10−4 0.0205 0.0020
ENSG00000139915 MDGA2 rs2905426 GATAD2A 0.802 5.4 × 10−4 0.0244 0.9456
ENSG00000140497 SCAMP2 rs11693528 SEPHS1P6 0.967 3.0 × 10−3 0.0464 0.0473
ENSG00000144847 IGSF11 rs2905426 TM6SF2 0.867 5.0 × 10−2 0.0480 0.0036
ENSG00000145777 TSLP rs7523273 CD46 0.998 2.4 × 10−3 0.0324 0.0787
ENSG00000146733 PSPH rs8082590 DRC3 0.998 5.9 × 10−4 0.0261 0.0435
ENSG00000151233 GXYLT1 rs7432375 PCCB 0.824 2.6 × 10−2 0.0332 0.0236
ENSG00000157911 PEX10 rs679087 TMTC1 0.937 1.9 × 10−2 0.0252 0.0020
ENSG00000162753 SLC9C2 rs7085104 AS3MT 0.809 1.5 × 10−5 0.0006 0.0014
ENSG00000165730 STOX1 rs12691307 INO80E 0.983 1.3 × 10−3 0.0068 0.0079
ENSG00000175264 CHST1 rs11693528 SEPHS1P6 0.984 4.5 × 10−7 0.0377 0.0142
ENSG00000175826 CTDNEP1 rs7523273 CD46 0.999 6.5 × 10−5 0.0321 0.0010
ENSG00000177000 MTHFR rs56972983 WDR55 0.898 1.2 × 10−3 0.0037 0.2608
ENSG00000183628 DGCR6 rs11693528 SEPHS1P6 0.984 4.2 × 10−2 0.0067 0.7435
ENSG00000184209 SNRNP35 rs8082590 DRC3 0.949 2.4 × 10−2 0.0334 0.4386
ENSG00000196417 ZNF765 rs7523273 CD46 0.810 4.4 × 10−2 0.0445 0.5596
ENSG00000196821 C6orf106 rs9607771 SLC25A17 0.985 1.7 × 10−4 0.0085 0.0044
ENSG00000196937 FAM3C rs7432375 PCCB 0.960 5.4 × 10−3 0.0077 0.0804
ENSG00000196972 SMIM10L2B rs9607771 ; rs7523273 SLC25A17 ; CD46 0.944 ; 0.999 5.9 × 10−5 0.0033 NA
ENSG00000197818 SLC9A8 rs8082590 DRC3 0.998 7.1 × 10−3 0.0089 0.0538
ENSG00000198890 PRMT6 rs56972983 PCDHA4 0.961 9.0 × 10−3 0.0215 0.1505
ENSG00000204520 MICA rs56972983 ; rs11693528 PCDHA4 ; SEPHS1P6 0.933 ; 0.882 2.9 × 10−21 0.0463 0.0108
ENSG00000205085 FAM71F2 rs12691307 INO80E 0.993 4.2 × 10−3 0.0116 0.0418

Description of data used in analyses

The Genotype-Tissue Expression project (GTEx)

The Genotype-Tissue Expression (GTEx) project is building a comprehensive re-

source to study tissue-specific gene expression and regulation by collecting post-

mortem tissue samples from non-diseased tissue sites [4]. Data analyzed in this

paper is from GTEx version 8 (v8) [5]. GTEx samples underwent Whole Genome

Sequencing at an average coverage of 30X on Illumina HiSeq 2000 or Illumina HiSeq

X. GTEx RNA sequencing was performed using the Illumina TrueSeq RNA Se-

quencing platform. Data was aligned using STAR (v2.5.3a) [6]. Picard [7] was used

to mark and remove duplicate reads. Transcripts were quantified using RSEM [8].

RNA-SeQC [9] was used for quality control and gene-level expression quantifica-

tion, and TMM [10] was used to normalize read counts. Additional details about

the genotyping pipeline and sample and variant quality control, and on the RNA-

Sequencing pipeline and processing are reported elsewhere [5]. Covariates adjusted

for in analyses of GTEx brain tissues included gender, 5 genotype Principal Com-

ponents, genotyping platform and up to 30 PEER [11] variables.

The Psychiatric Genomics Consortium

Schizophrenia-risk GWAS statistics were obtained from the second schizophrenia

mega-analysis (scz2) conducted by the Psychiatric Genomics Consortium [12]. The

GWAS was conducted using up to 36,989 cases and 113,075 controls. In the final

analysis, 128 LD-independent SNPs in 108 loci were reported as surpassing the

genome-wide significance threshold (P < 5×10−8). Additional details of the second

PGC GWAS of schizophrenia-risk are reported elsewhere [12].
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The eQTLGen Consortium

The eQTLGen Consortium performed cis- and trans-eQTL meta-analysis of blood

tissue samples from 31,684 individuals across 37 datasets [13]. The cis-eQTL anal-

ysis was performed genome-wide while the trans-eQTL analysis was restricted to

10,317 trait-associated variants. After quality control, 16,423 genes were analyzed

in the eQTL analyses. Additional details about the eQTLGen Consortium data are

reported elsewhere [13].

The CommonMind Consortium

The CommonMind Consortium is generating DNA and RNA sequencing, and epi-

genetic data from ∼1000 postmortem brain samples from donors with schizophre-

nia and bipolar disorder, and from subjects with no neuropsychiatric disorders [14].

RNA sequencing data was generated from dorsolateral prefrontal cortex tissue sam-

ples from collections at the Mount Sinai NIH Brain Bank and Tissue Repository,

University of Pennsylvania Brain Bank of Psychiatric illnesses and Alzheimer’s Dis-

ease Core Center, The University of Pittsburgh NIH NeuroBioBank Brain and Tis-

sue Repository, and the NIMH Human Brain Collection Core. Analyses in this

paper used Release 1 of the RNA sequencing data from dorsolateral prefrontal cor-

tex samples of people with schizophrenia (N = 258) and control subjects (N = 279).

Additional details of CMC data have been reported elsewhere [14].
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13. Võsa U, Claringbould A, Westra HJ, Bonder MJ, Deelen P, Zeng B, et al. Unraveling the polygenic

architecture of complex traits using blood eQTL meta-analysis. bioRxiv. 2018;doi: 10.1101/447367.

14. Fromer M, Roussos P, Sieberts SK, Johnson JS, Kavanagh DH, Perumal TM, et al. Gene expression elucidates

functional impact of polygenic risk for schizophrenia. Nat Neurosci. 2016 11;19(11):1442–1453.


