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Figure S1. GapR is a tetramer in solution. A) Determination of the oligomeric state of GapR proteins. Affinity purified proteins were separated 
from co-purified DNA and analyzed by size exclusion chromatography using column Superdex 75 10/300 GL in the presence of 1M NaCl and 1 
mM EDTA. The protein samples were analyzed at the following concentrations: His6-GapR1-89 at 50 µM (monomer), His6-GapR1-69 at 125 µM 
(monomer) and His6-GapR1-76 at 100 µM (monomer). The apparent molecular weight of each elution peak was estimated and divided by the 
molecular weight calculated for the monomeric state of the corresponding protein. B) Neither the His-tag nor sodium phosphate alters the 
oligomeric state of GapR1-89. Tagged and untagged GapR1-89 were dialyzed against either 20 mM HEPES, 150 mM NaCl, 10% glycerol or 50 mM
sodium phosphate, 150 mM NaCl, 10% glycerol and assayed in crosslinking reactions. Proteins at 50 µM (monomer) were treated with 400 mM
EDC + 100 mM NHS for 2 h at room temperature, the reaction products were resolved by SDS-PAGE, and the gel was silver stained. As a 
control, proteins incubated for 2 h at room temperature in the absence of the crosslinking agents were resolved by SDS-PAGE, and the gel was 
stained with Coomassie blue. The apparent molecular weight of each band was estimated and divided by the molecular weight calculated for the 
monomeric state of the corresponding protein. Values denoted in red refer to the main bands detected in the gel. The figure shows that phosphate 
causes both tagged and untagged GapR1-89 to migrate slightly faster in SDS-PAGE compared to the proteins in HEPES buffer.
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Figure S2. Deletion of the C-terminal region renders GapR/Q19R,L30P more soluble. Evaluation of the solubility of GapR proteins by SDS-
PAGE. On the left, suspensions of E. coli expressing either His6-GapR1-89/Q19R,L30P or His6-GapR1-52/Q19R,L30P were sonicated and imaged. 
On the right, soluble and insoluble fractions prepared after cell lysis were resolved by SDS-PAGE, and the gel was stained with Coomassie blue. 
The proteins are indicated by arrowheads.
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Figure S4. Legend on next page



Figure S4. Mutations selectively disrupting oligomerization or DNA binding activity of GapR reduce cell growth and increase cell length. A) Left 
panel: schematic of the strategy used to replace wild-type gapR for a mutant copy of the gene. Right panel: screening for gapR mutants. Colonies 
at the indicated time point after plating in the selection medium were screened. For each strain, the number of colonies analyzed and the number 
of mutant colonies identified are represented. B) Growth analysis of mutant gapR strains. Saturated overnight cultures grown at 22°C were diluted 
to OD600nm of 0.1 and incubated at both 22 and 30°C. At the indicated time points, aliquots were taken for counting colony forming units (CFU). 
Values are the percentage of colony forming units at the indicated time points (t = 2, 4 and 6 h) relative to that determined for the freshly diluted 
cultures (t = 0). Results are mean of three independent biological experiments, and bars indicate standard deviations. C) Cell morphology analysis 
of mutant gapR strains. Exponentially growing cells (OD600nm of 0.3-0.5) at both 22 and 30°C were imaged by phase-contrast microscopy. The 
length of individual cells from each strain was determined by the MicrobeJ tool (1), and data analysis was performed using the R statistical 
program (Table S3). The numbers of individual cells used for analysis were as follows: WT gapR_22°C = 3343, gapR/K59A_22°C = 1226, 
gapR/R65A,K66A_22°C = 1585, gapR/Q19R,L30P_22°C = 1645, WT gapR_30°C = 2378, gapR/K59A_30°C = 1235, gapR/R65A,K66A_30°C = 
1477, gapR/Q19R,L30P_30°C = 690. Representative images of each strain grown at 30°C are shown. For both panels, asterisk represents 
statistically different values according to unpaired Student's t-Test (p<0.001).
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Figure S5. The C-terminal region of GapR is essential for the DNA-binding activity of the protein. His6-GapR1-89 and His6-GapR1-52 purified 
without a nuclease treatment were analyzed by size exclusion chromatography using column Superdex 200 10/300 GL in the presence of 150 mM
NaCl. 50 µM protein (monomer) was used for each run. Fractions 8-20 were resolved by SDS-PAGE, and the gels were silver stained. Inset: SDS-
PAGE of the affinity-purified proteins. The gel was stained with Coomassie blue and then with ethidium bromide. Arrows indicate proteins, and 
the smear corresponds to co-purified DNA, which is only visible in the His6-GapR1-89 sample.



His 6-G
ap

R 1-8
9

His 6-G
ap

R 1-8
9/Q

67
A,R69

A

His 6-G
ap

R 1-8
9

His 6-G
ap

R 1-8
9/Q

67
A,R69

A

150mM NaCl 500mM NaCl

Figure S6. Substitution of non-conserved, polar residues at the C-terminal region of GapR only effects the DNA-binding activity of the protein 
under high ionic strength condition. The DNA-binding affinity of the proteins was monitored by electrophoretic mobility shift assays. 2.5 µM 
protein (monomer) was incubated with 0.1 µM 320 bp PpilA DNA for 30 min at room temperature in the presence of either 150 or 500 mM NaCl, 
the reaction products were resolved by PAGE under native conditions, and the gel was stained with ethidium bromide. A control with no protein 
included is also shown.
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Figure S7. Mutations in the DNA-binding motif do not affect GapR oligomerization. The ability of mutant GapR proteins to interact with wild-
type GapR was analyzed by bacterial two-hybrid assays. E coli BTH101 cells expressing the T18 domain of adenylate cyclase N-terminally fused 
to wild-type full-length GapR and the T25 domain of the same enzyme fused to the N-terminus of different mutant full-length GapR proteins 
were grown to exponential phase (OD600nm of 0.5), and 3 µL from each culture were spotted in 1% maltose-containing MacConkey plates. The 
plates were imaged after 2 days at 30°C.
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Figure S8. GapR does not compete with Netropsin for binding DNA. The DNA-binding affinity of His6-GapR1-89 was monitored by 
electrophoretic mobility shift assays. 0.1 µM 320 bp PpilA DNA was treated with different concentrations of Netropsin (10 nM to 1 mM) for 30 
min at room temperature in the presence of 150 mM NaCl. 2.5 µM His6-GapR1-89 (monomer) was added, and the resulting mixtures were 
incubated for an additional 30 min at room temperature. Controls with no His6-GapR1-89 included were performed to evaluate the binding of 
Netropsin to DNA. The reaction products were resolved by PAGE under native conditions, and the gels were stained with ethidium bromide.



Figure S9. The E28A mutation alters the migration of GapR under native PAGE but not affects the oligomeric state of the protein. Affinity 
purified proteins were separated from co-purified DNA, dialyzed against buffer containing 150 mM NaCl and resolved by native PAGE (A) or 
used in a crosslinking reaction (B). For the native PAGE, proteins at 10 µM (monomer) were used. For the crosslinking reaction, proteins at 50 
µM (monomer) were treated with 400 mM EDC + 100 mM NHS for 2 h at room temperature, and the reaction products were resolved by SDS-
PAGE. The gels were silver stained. His6-GapR/E31A was used as a control. The E31 residue is solvent exposed, so no structural change is 
expected upon replacing it to alanine. Therefore, this residue is appropriate to determine the impact of losing one negative charge on the 
electrophoretic migration of GapR.
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Figure S10. GapR binds DNA that is not overtwisted due to its high AT content. Electrophoretic mobility shift assay performed using 10 µM 
protein (monomer) and 1 µM 12-mer DNA fragment (dCG)6. Protein and DNA were incubated for 30 min at room temperature, the reaction 
products were resolved by PAGE under native conditions, and the gels were stained with ethidium bromide. Controls with no protein added were 
included. The relative amount of DNA in both unbound and bound states were quantified using Image J (2).
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Figure S11. GapR but not H-NS is widespread in the α subdivision of Proteobacteria. Distribution of H-NS-like proteins among selected GapR-
containing alphaproteobacterial species. H-NS orthologs were identified by mining the Kyoto Encyclopedia of Genes and Genomes (KEGG) (3) 
database for amino acid sequences possessing the Pfam domain Histone_HNS and displaying significant identity (threshold for Smith-Waterman 
score of 200) to the trans-acting regulatory protein HvrA from Rhodobacter capsulatus SB 1003, a H-NS-like protein (4,5). The occurrence of H-
NS-like proteins is represented by blue rectangles in a neighbor-joining phylogenetic tree constructed using the Clustal Omega tool (6). Species 
abbreviations: Caulobacter crescentus NA1000 (Ccr; YP_002518801) Phenylobacterium zucineum HLK1 (Pzu; ACG79526), Brevundimonas
subvibrioides ATCC 15264 (Bsb; ADL02288), Asticcacaulis excentricus CB 48 (Aex; ADU13212), Parvibaculum lavamentivorans DS-1 (Pla; 
ABS63648), Mesorhizobium japonicum MAFF 303099 (Mlo; BAB50739), Devosia sp. H5989 (Deq; AKR57895), Aureimonas sp. AU20 (Aua; 
ALN74248), Bosea sp. RAC05 (Bos; AOG04397), Methylobacterium extorquens CM4 (Mch; ACK83815), Chelativorans sp. BNC1 (Mes; 
ABG64738), Oligotropha carboxidovorans OM5 (Oca; ACI92221), Pelagibacterium halotolerans B2 (Phl; AEQ52522), Aminobacter
aminovorans (Aak; AMS40393), Bradyrhizobium sp. ORS 278 (Bra; CAL75095), Starkeya novella DSM 506 (Sno; ADH90386), Blastochloris
viridis (Bvr; ALK07853), Martelella sp. AD-3 (Maad; AMM85466), Methylocystis sp. SC2 (Msc; CCJ06210), Beijerinckia indica subsp. indica
ATCC 9039 (Bid; ACB96787), Rhizobium favelukesii (Rhl; CDM59164), Sinorhizobium sp. RAC02 (Six; AOF92024), Methyloceanibacter
caenitepidi (Mcg; BAQ16066), Nitrobacter winogradskyi Nb-255 (Nwi; ABA04251), Shinella sp. HZN7 (Shz; ANH05253), Rhodopseudomonas
palustris BisA53 (Rpe; ABJ08033), Agrobacterium vitis S4 (Avi; ACM37657), Ochrobactrum pseudogrignonense (Ops; ANG96594), Ensifer
adhaerens (Eah; ANK73839), Hoeflea sp. IMCC20628 (Hoe; AKH99110), Neorhizobium galegae bv. orientalis str. HAMBI 540 (Ngg; 
CDN49226), Xanthobacter autotrophicus Py2 (Xau; ABS67310), Rhodomicrobium vannielii ATCC 17100 (Rva; ADP70897), Candidatus
Liberibacter americanus str. Sao Paulo (Lar; AHA28099), Chelatococcus sp. CO-6 (Chel; ALA16615), Bartonella quintana RM-11 (Bqr; 
AFR26807), Azorhizobium caulinodans ORS 571 (Azc; BAF86439), Hyphomicrobium nitrativorans NL23 (Hni; AHB49456), Methylocella
silvestris BL2 (Msl; ACK52583), Rhodoplanes sp. Z2-YC6860 (Rhz; AMN40225), Candidatus Filomicrobium marinum (Fil; CFX29357), 
Brucella abortus A13334 (Baa; AEW17098), Hirschia baltica ATCC 49814 (Hba; ACT60610), Pannonibacter phragmitetus (Pphr; ALV27237), 
Labrenzia sp. CP4 (Lap; AMN51817), Pseudovibrio sp. FO-BEG1 (Psf; AEV39265), Maricaulis maris MCS10 (Mmr; ABI66821), Hyphomonas
neptunium ATCC 15444 (Hne; ABI77018), Defluviimonas alba (Daa; AMY69002), Ketogulonicigenium vulgare WSH-001 (Kvl; 
YP_005795322), Ruegeria pomeroyi DSS-3 (Sil; AAV94337), Yangia sp. CCB-MM3 (Yan; ANT62436), Roseobacter litoralis Och 149 (Rli; 
AEI93600), Confluentimicrobium sp. EMB200-NS6 (Con; ALG90916), Paracoccus denitrificans PD1222 (Pde; ABL71804), Marinovum algicola
DG 898 (Malg; AKO97568), Celeribacter marinus (Cmar; ALI56317), Octadecabacter temperatus (Otm; AKS45751), Phaeobacter inhibens
DSM 17395 (Pga; AFO91549), Rhodovulum sulfidophilum (Rsu; BAQ70137), Planktomarina temperata RCA23 (Ptp; AII85964), 
Halocynthiibacter arcticus (Hat; AML53785), Rhodobacter capsulatus SB 1003 (Rcp; ADE85717), Dinoroseobacter shibae DFL 12 = DSM 
16493 (Dsh; ABV93161), Leisingera methylohalidivorans DSM 14336 (Lmd; AHD00583), Jannaschia sp. CCS1 (Jan; ABD55552), 
Roseibacterium elongatum DSM 19469 (Red; AHM05525), Sphingorhabdus sp. M41 (Sphg; AMO70626), Sphingobium sp. SYK-6 (Ssy; 
BAK65186), Croceicoccus naphthovorans (Cna; AKM11472), Sphingopyxis granuli (Sgi; AMG73626), Zymomonas mobilis subsp. mobilis ATCC 
29191 (Zmb; AFN56942), Blastomonas sp. RAC04 (Blas; AOG02067), Novosphingobium pentaromativorans US6-1 (Npn; AIT80101), 
Altererythrobacter atlanticus (Aay; AKH42983), Citromicrobium sp. JL477 (Cij; ALG59616), Erythrobacter atlanticus (Ery; AKQ40906), 
Porphyrobacter neustonensis (Pns; ANK12064), Azospirillum thiophilum (Ati; ALG71691), Rhodospirillum centenum SW (Rce; ACI99528), 
Magnetospirillum sp. XM-1 (Magx; CUW40179), Magnetospira sp. QH-2 (Magq; CCQ75212), Granulibacter bethesdensis (Gbc; AHJ62133), 
Thalassospira xiamenensis M-5 = DSM 17429 (Txi; AJD51518), Komagataeibacter medellinensis NBRC 3288 (Gxy; BAK83223), Acidiphilium
cryptum JF-5 (Acr; ABQ29408), Gluconobacter oxydans 621H (Gox; AAW59937), Acetobacter senegalensis (Asz; CEF40008), 
Gluconacetobacter diazotrophicus PA1 5 (Gdi; CAP57119), Pararhodospirillum photometricum DSM 122 (Rpm; CCG09558), Haematospirillum
jordaniae (Hjo; AMW35670), Tistrella mobilis KA081020-065 (Tmo; AFK56936), Asaia bogorensis NBRC 16594 (Abg; BAT19319), Orientia
tsutsugamushi str. Boryong (Ots; CAM79926), Rickettsia bellii RML369-C (Rbe; ABE05266), Wolbachia endosymbiont of Drosophila simulans
wNo (Wed; AGJ98833), Ehrlichia canis str. Jake (Ecn; AAZ68499), Parvularcula bermudensis HTCC2503 (Pbr; ADM10025), Candidatus
Paracaedimonas acanthamoebae (Caq; AIL12384), Candidatus Paracaedibacter acanthamoebae (Paca; AIK97255), Magnetococcus marinus 
MC-1 (Mgm; ABK43434).



Table S1. Strains 
 
Strain 

 
Description 

 
Source 

 

E.coli 

  

NEB Turbo F’ proA+B+ lacIq ΔlacZM15/fhuA2 Δ(lac-proAB) glnV galK16 galE15 R(zgb-

210::Tn10)TetS endA1 thi-1 Δ(hsdS-mcrB)5; for cloning 

New England 

Biolabs 

BL21 (DE3) fhuA2 [lon] ompT gal (λ DE3) [dcm] ∆hsdS λ DE3 = λ sBamHIo ∆EcoRI-B 

int::(lacI::PlacUV5::T7 gene1) i21 ∆nin5; for protein expression 

New England 

Biolabs 

∆hns MG1655 hns::tetRA; for bgl assay (7) 

BTH101 F- cya-99 araD139 galE15 galK16 rpsL1 hsdR2 mcrA1 mcrB1; for bacterial 

two-hybrid assay 

Euromedex 

 

C. crescentus 

  

NA1000 Holdfast mutant derivative of wild-type CB15; for phenotypic analyses (8) 

gapR/Q19R,L30P NA1000 gapR/Q19R,L30P, SpecR; for phenotypic analyses This work 

gapR/K59A NA1000 gapR/K59A, SpecR; for phenotypic analyses This work 

gapR/R65A,K66A NA1000 gapR/R65A,K66A, SpecR; for phenotypic analyses This work 

 
 
 
Table S2. Plasmids 
 
Plasmid 

 
Description 

 
Source  

 

pBAD33 

 

Replicating vector for arabinose-inducible expression; CmR 

 

(9) 

pKT25 Replicating vector for IPTG-inducible expression of CyaAT25 fused to the N 

terminus of a protein of interest; KanR 

Euromedex 

pUT18C  Replicating vector for PTG-inducible expression of CyaAT18 fused to the N 

terminus of a protein of interest; AmpR 

Euromedex 

pET28b Replicating vector for IPTG-inducible expression of His6 fused to the N 

terminus of a protein of interest; KanR 

Novagen 

pNPTS138 Suicide vector for two-step recombination; KanR, SucS (10) 

pBAD33gapR1-89 For arabinose-inducible expression of GapR1-89 (11) 

pBAD33hns1-137 For arabinose-inducible expression of H-NS1-137 (11) 

pBAD33gapR1-49-

hns85-137  

For arabinose-inducible expression of GapR1-49-H-NS85-137 This work 

pBAD33gapR1-47-

hns51-137  

For arabinose-inducible expression of GapR1-47-H-NS51-137 This work 

pBAD33hns1-22-

gapR20-49-hns85-137  

For arabinose-inducible expression of H-NS1-22-GapR20-49-H-NS85-137 This work 

pBAD33hns1-22-

gapR20-47-hns51-137 

For arabinose-inducible expression of H-NS1-22-GapR20-47-H-NS51-137 This work 



pBAD33hns1-84  For arabinose-inducible expression of H-NS1-84 This work 

pBAD33hns1-84-

gapR50-89  

For arabinose-inducible expression of H-NS1-84-GapR50-89 This work 

pBAD33hns1-110-

gapR50-89 

For arabinose-inducible expression of H-NS1-110-GapR50-89 This work 

pBAD33hnsΔ23-84 For arabinose-inducible expression of H-NS with an internal deletion 

corresponding to residues 23-84 

This work 

pBAD33hnsΔ23-50  For arabinose-inducible expression of H-NS with an internal deletion 

corresponding to residues 23-50 

This work 

pBAD33hnsΔ51-84  For arabinose-inducible expression of H-NS with an internal deletion 

corresponding to residues 51-84 

This work 

pUT18CgapR1-89  For IPTG-inducible expression of CyaAT18-GapR1-89 (11) 

pKT25gapR1-89 For IPTG-inducible expression of CyaAT25-GapR1-89 (11) 

pKT25gapR1-89/I23N 

(M1) 

For IPTG-inducible expression of CyaAT25-GapR1-89/I23N This work 

pKT25gapR1-

89/Q19R,L30P (M2) 

For IPTG-inducible expression of CyaAT25-GapR1-89/Q19R,L30P This work 

pKT25gapR1-

89/L20R,I24N,K42E 

(M3) 

For IPTG-inducible expression of CyaAT25-GapR1-89/L20R,I24N,K42E This work 

pKT25gapR1-89/K59A For IPTG-inducible expression of CyaAT25-GapR1-89/K59A This work 

pKT25gapR1-

89/R65A,K66A 

For IPTG-inducible expression of CyaAT25-GapR1-89/R65A,K66A This work 

pKT25gapR1-

89/Q67A,R69A 

For IPTG-inducible expression of CyaAT25-GapR1-89/Q67A,R69A This work 

pKT25gapR1-52 For IPTG-inducible expression of CyaAT25-GapR1-52 This work 

pKT25gapR1-52/I23N 

(M1) 

For IPTG-inducible expression of CyaAT25-GapR1-52/I23N This work 

pKT25gapR1-

52/Q19R,L30P (M2) 

For IPTG-inducible expression of CyaAT25-GapR1-52/Q19R,L30P This work 

pKT25gapR1-

52/L20R,I24N,K42E 

(M3) 

For IPTG-inducible expression of CyaAT25-GapR1-52/L20R,I24N,K42E This work 

pET28bgapR1-89 For IPTG-inducible expression of His6-GapR1-89 This work 

pET28bgapR1-

89/Q19R,L30P 

For IPTG-inducible expression of His6-GapR1-89/Q19R,L30P This work 

pET28bgapR1-89/K59A For IPTG-inducible expression of His6-GapR1-89/K59A This work 

pET28bgapR1-

89/R65A,K66A 

For IPTG-inducible expression of His6-GapR1-89/R65A,K66A This work 



pET28bgapR1-

89/Q67A,R69A 

For IPTG-inducible expression of His6-GapR1-89/Q67A,R69A This work 

pET28bgapR1-89/E28A For IPTG-inducible expression of His6-GapR1-89/E28A This work 

pET28bgapR1-89/E31A For IPTG-inducible expression of His6-GapR1-89/E31A This work 

pET28bgapR1-76 For IPTG-inducible expression of His6-GapR1-76 This work 

pET28bgapR1-69 For IPTG-inducible expression of His6-GapR1-69 This work 

pET28bgapR1-52 For IPTG-inducible expression of His6-GapR1-52 This work 

pET28bgapR1-

52/Q19R,L30P 

For IPTG-inducible expression of His6-GapR1-52/Q19R,L30P This work 

pNPTS138specgapR/Q1

9R,L30P 

For replacement of WT gapR with the mutant allele gapR/Q19R,L30P and 

insertion of the Ω cassette in NA1000 

This work 

pNPTS138specgapR/K5

9A 

For replacement of WT gapR with the mutant allele gapR/K59A and insertion 

of the Ω cassette in NA1000 

This work 

pNPTS138specgapR/R6

5A,K66A 

For replacement of WT gapR with the mutant allele gapR/R65A,K66A and 

insertion of the Ω cassette in NA1000 

This work 

 
 
 
Table S3. Statistical analysis of the data obtained by measuring the cell length of individual cells. 
 
Mean length (µm) of C. crescentus cells expressing different GapR proteins 
Temperature (°C) WT gapR gapR/K59A gapR/R65A,K66A gapR/Q19R,L30P 

22°C 3.148 3.786 4.355 5.177 

30°C 3.216 3.872 5.091 5.282 

 
Comparison of the cell length distribution of different strains at the same temperature 
 Temperature (°C) gapR/K59A x  

WT 

gapR/R65A,K66A x 

WT 

gapR/Q19R,L30P x 

WT 

mean length difference 

(µm) (IC - 95%) 

22°C 
0.639 

(0.564 to 0.713) 

1.207 

(1.119 to 1.295) 

2.029 

(1.897 to 2.161) 

30°C 
0.656 

(0.563 to 0.749) 

1.875 

(1.761 to 1.989) 

2.066 

(1.828 to 2.304) 

 
Comparison of the cell length distribution of each strain at different temperatures 

 
WT 

(22 x 30°C) 

gapR/K59A 

(22 x 30°C) 

gapR/R65A,K66A 

(22 x 30°C) 

gapR/Q19R,L30P 

(22 x 30°C) 

mean length difference 

(µm) (IC - 95%) 

0.068 

(0.018 to 0.118) 

0.085 

(-0.023 to 0.193) 

0.736 

(0.601 to 0.871) 

0.106 

(-0.161 to 0.373) 
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