
 

1 

Prediction of the functional impact of missense variants in BRCA1 and BRCA2 with BRCA-ML 

  

Steven N. Hart1*, Eric C. Polley1, Hermella Shimelis2, Siddhartha Yadav3, and Fergus J. Couch1,2 

  

1   Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA 

2 Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA 

3 Department of Oncology, Mayo Clinic, Rochester, MN, USA 

*Correspondence: hart.steven@mayo.edu 

 

Abstract 

In silico predictions of missense variants is an important consideration when interpreting variants of uncertain 

significance (VUS) in the BRCA1 and BRCA2 genes. We trained and evaluated hundreds of machine learning 

algorithms based on results from validated functional assays to better predict missense variants in these genes 

as damaging or neutral. This new optimal “BRCA-ML” model yielded a substantially more accurate method 

than current algorithms for interpreting the functional impact of variants in these genes, making BRCA-ML a 

valuable addition to data sources for VUS classification.  

 

Introduction 

Failure to accurately predict the effects of missense variants in BRCA1 and BRCA2 confound interpretation of 

gene sequencing studies and clinical care.  Until recently, few missense variants had been functionally 

evaluated using validated assays, so interpretations of pathogenicity have relied on in silico predictions of 

functional effect in combination with family-based data. Many in silico prediction models are derived from 

supervised learning methods using variants in many different genes across the genome. The objective of 

supervised learning is to identify and weight a set of input features to correctly predict whether a variant is 

damaging, neutral, or somewhere in between. 

 

Machine learning (ML) is a suite of computational algorithms that are able to parse data, learn higher 

dimensional representations of that data, and ultimately make a prediction using that data.  A subclass of ML, 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2019. ; https://doi.org/10.1101/792754doi: bioRxiv preprint 

https://doi.org/10.1101/792754
http://creativecommons.org/licenses/by/4.0/


 

2 

known as supervised learning, involves utilizing a training dataset with known outcomes and learning a 

function to be able to evaluate new unknown outcome observations and make predictions of the outcome.  

Examples of machine learning include logistic regression algorithms and more complex ones like random 

forests, gradient boosting machines, and neural networks. Choosing the algorithms most suited to a particular 

task is an active area of research, since no single algorithm outperforms all others on every task.1 An efficient 

exploration of many different ML algorithms can be achieved through an automated machine learning (AutoML) 

approach. 

 

A key limitation to the application of existing in silico models to assessment of variants in a specific gene is the 

reliance on known damaging variants in other genes. Such variants are likely to cause a number of different 

effects (e.g. alternative splicing, disruption of protein-protein interactions, altered protein folding, etc.) that may 

or may not be relevant for a given gene of interest. Gene specific models will likely outperform any general 

model, but only a few genes have been characterized to a degree that would be informative for single gene 

models. Two such exceptions are BRCA1 and BRCA2. The landscape of functionally characterized variants in 

BRCA1 has dramatically increased because of three major analyses. Starita et al.2, measured the impact of 

1056 N-terminal variants on the homologous recombination DNA repair activity of BRCA1. Findlay et al.3, 

exploited the essentiality of BRCA1 for cell survival by used a saturating genome editing approach in HAP1 

cells to evaluate nearly 4,000 SNVs (n=1837 distinct missense). Finally, Fernandes et al.4, reported on 

analysis of 354 distinct missense variants (n=79 in IARC classes 0 or 1 [benign] or 4,5 [pathogenic]) in the 

BRCT domain of BRCA1 using a validated transcriptional assay. Combined with results from a homology 

directed repair assay of 207 missense variants in the DNA binding domain of BRCA2,5 there are now sufficient 

numbers of variants to apply supervised learning methods to better predict damaging mutations in BRCA1 and 

BRCA2. 

 

Methods 

We employed the AutoML approach with the R (version 3.4.2) package h2o.ai (version: 3.16.0.2)6 to identify 

the optimal model for predicting the functional effect of missense variants in BRCA1 and BRCA2.  Variants 

were loaded in the following order: Hart5, Startia2, Fernandes4, and Findlay3; keeping only variants not 
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observed in the previous studies. We also included new BRCA2 functional data for 15 neutral (V2527A, 

G2544S, I2627V, M2634T, Y2658H, A2671S, I2675V, V2728A, P2767S, A2770T, A2770D, S2806L, I2822F, 

S3123R, Q2829R) and seven damaging mutations (F2562C, W2619G, K2657T, D2723N, L2753P, Y3006D, 

L3101R) (Supplemental Table 1). Since not all variants could unequivocally be assigned to a given class, we 

selected variants for inclusion if they satisfied the following criteria:  “FUNC” (Neutral) or “LOF” (Damaging)3, 

HDR score <= 0.33 (Damaging) or >= 0.772, or International Agency for Research on Cancer classes 0,1 

(Neutral) and 4,5 (Damaging)4. Variants were excluded if they were not observed in known functional domains 

in BRCA1 (BRCT: amino acids 1-109, RING: amino acids 1642-1855) or BRCA2 (DNA-Binding: amino acids 

2479-3192). This left 1902 variants (n=259 damaging) for BRCA1 and 202 variants (n=74 damaging) for 

BRCA2.  

 

For training each gene, 80% of variants were selected and trained to maximize the per class accuracy, with 

robustness assessed using 5-fold cross-validation. Input features were missense prediction models from 

dbNSFP (version 3.4)7, including SiftScore, Polyphen2HdivScore, Polyphen2HvarScore, LrtScore, 

MutationtasterScore, FathmmScore, ProveanScore, Vest3Score, MetasvmScore, MetalrScore, MCapScore, 

RevelScore, MutpredScore, CaddRaw, DannScore, FathmmMklCodingScore, GenocanyonScore, 

IntegratedFitconsScore, Gm12878FitconsScore, H1HescFitconsScore, HuvecFitconsScore, BayesDel, 

AlignGVGDPrior, EigenRaw, and EigenPcRaw.  AlignGVGD8 and BayesDel9 were also added using the BioR 

framework.10 Optimal cutpoints for each of the individual input features (n=25) from dbNSFP, AlignGVGD, and 

BayesDel were determined using the same training data as used in AutoML so as to make a fair comparison. 

 

For the test set evaluation, statistical measures of sensitivity, specificity were computed with the caret 

package11. The Matthews Correlation Coefficient (MCC) is used throughout as an optimal metric for gauging 

the performance of a binary classifier, as it represents a singular value that takes into consideration the 

proportion of each class. The values of MCC range from -1 to 1, where -1 represents the worst possible 

agreement and 1 representing perfect agreement. We also present traditional measures of performance for 

machine learning models such as receiver operating curves and precision-recall curves. 
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Results 
An iterative process was used to build hundreds of predictive models with different algorithms (Linear models, 

Gradient Boosting Machines, XGBoost, Neural Networks, Random Forests, Extremely Randomized Forests) 

and their associated hyperparameters. For BRCA1, 663 model/parameter combinations were tested with 

AutoML. The best performing model was a Gradient Boosting Machine with 48 trees of depth=8 and between 

16-33 leaves. The mean MCC was 0.66 土0.049 s.d., corresponding to 89.5% sensitivity and 91.5% specificity.  

Similarly, for BRCA2, 76 model/parameter combinations were tested. The best performing model being an 

XGBoosted Machine with 50 trees with a mean MCC of 0.73 土0.057 s.d, sensitivity of 97.7% and specificity of 

85.1%. Throughout the remainder of the manuscript, we will simply refer to these gene-specific models as 

BRCA-ML.  

 

  
For the individual predictors (excluding BRCA-ML), the best model as determined by MCC for BRCA1 was 

MutPredScore (MCC=0.399, sensitivity=94.5%, specificity=77.8%) and BayesDel (MCC=0.673, 

sensitivity=85.3%, specificity=83.0%) for BRCA2. More globally, we show the Receiver Operating and 

Precision-Recall Curves in Figure 1, which demonstrates better performance of BRCA-ML compared to other 

prediction models. In particular, the nigh number of false negative calls in BRCA1 many of the models yielded 

low area under the precision recall curves.  BRCA-ML scores for every possible missense mutation caused by 

a single nucleotide variation are also given in Supplemental Table 2.  

 

Figure 2 shows the gene-level scores for every possible missense variant caused by a single nucleotide 

variant in BRCA1 and BRCA2 using BRCA-ML and BayesDel9, a commonly used and highly accurate 

predictor. While BayesDel is correctly assigning higher scores to known functional domains, the higher scores 

are not much more than predicted benign variants across the gene. However, in BRCA-ML, the signal to noise 

ratio is considerably higher between damaging and neutral variants. This evidence suggests that, unlike 

BayesDel, changing the threshold for damaging mutations will not significantly affect the number of predicted 

damaging mutations in BRCA-ML. 
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Discussion 

We have shown that AutoML methods are efficient means to derive optimal machine learning models for 

predicting damaging missense mutations in BRCA1 and BRCA2. The final models derived for each gene, 

which we collectively term BRCA-ML, show marked improvements in MCC and other metrics with respect to 

individual missense prediction algorithms.  

 

Even in the age of large scale mutational scanning techniques like those from Findlay3 and Starita2,3, in silico 

mutation analysis will likely continue to be relevant. While the number of variants functionally tested is 

impressive for both studies (1,056 and 3,893, respectively), there are over 12,520 and 22,772 possible single 

nucleotide variants in BRCA1 and BRCA2. Therefore, it could be several years before the technology exists to 

scale to all possible variants, hence a short term need for computational predictions. 

 

It should be noted that there remain several limitations for these models. First, there are a limited number of 

known damaging mutations in BRCA1 and BRCA2 from which to build a model. The lack of damaging 

mutations limits the model ability to capture the complete variability of input data. Second, the training data are 

limited to characterized mutations in regions of the proteins known to be associated with impaired DNA 

damage repair. For example, the only missense variants in BRCA2 that are associated with disease are in the 

DNA binding domain. It is not known if variants in other domains that we or others predict to cause damaging 

missense mutations are able to inhibit DNA repair. Third, it is possible that there is some overfitting of the 

model due to the inherent biases in the 25 input features from dbNSFP. However, by keeping the test set 

isolated from the training data, this influence should be minimal. More known mutations in these genes will be 

necessary to quantify the amount of overfitting. 

 

The data presented in this paper show that highly accurate prediction of missense variants in BRCA1 and 

BRCA2 are not only possible but simple to access (see Supplemental Table 2 for all possible SNVs in both 

genes). This improved performance in BRCA-ML should provide higher quality evidence to genetic counselors 

and researchers for interpreting deleteriousness of missense variants.   
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Code 

All data and code are available at https://github.com/Steven-N-Hart/BRCA-ML 
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FIGURES 

Figure 1. Receiver Operating Curves (top) and Precision-Recall Curves (bottom) for BRCA1 (right) and 

BRCA2 (left) for the hold out test set. The ideal location in the ROC curve is the top left corner, whereas the 

optimal position in the PR curve is the top right. 

 

Figure 2. BayesDel (top) versus BRCA-ML (bottom) score distribution by gene. Distribution of missense 

prediction scores for BRCA1 (left) and BRCA2 (right) for each amino acid substitution. The blue line is a 

smoothed function to show where the density of scores is located. 
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