
1

Accurate cell tracking and lineage construction in live-cell imaging experiments with deep learning

Erick Moen1, Enrico Borba2, Geneva Miller1, Morgan Schwartz1, Dylan Bannon1, Nora Koe3, Isabella Camplisson2,

Daniel Kyme2, Cole Pavelchek4, Tyler Price1, Takamasa Kudo5, Edward Pao1, William Graf1, David Van Valen1, †

1. Division of Biology and Bioengineering, California Institute of Technology
2. Department of Computer Science, California Institute of Technology
3. Department of Electrical Engineering, California Institute of Technology
4. Department of Neurosciences, University of California, San Diego
5. Department of Chemical and Systems Biology, Stanford University
†: Corresponding author – vanvalen@caltech.edu

Abstract

Live-cell imaging experiments have opened an exciting window into the behavior of living systems. While these

experiments can produce rich data, the computational analysis of these datasets is challenging. Single-cell analysis

requires that cells be accurately identified in each image and subsequently tracked over time. Increasingly, deep

learning is being used to interpret microscopy image with single cell resolution. In this work, we apply deep learning

to the problem of tracking single cells in live-cell imaging data. Using crowdsourcing and a human-in-the-loop

approach to data annotation, we constructed a dataset of over 11,000 trajectories of cell nuclei that includes lineage

information. Using this dataset, we successfully trained a deep learning model to perform cell tracking within a linear

programming framework. Benchmarking tests demonstrate that our method achieves state-of-the-art performance

on the task of cell tracking with respect to multiple accuracy metrics. Further, we show that our deep learning-based

method generalizes to perform cell tracking for both fluorescent and brightfield images of the cell cytoplasm, despite

having never been trained on those data types. This enables analysis of live-cell imaging data collected across

imaging modalities. A persistent cloud deployment of our cell tracker is available at http://www.deepcell.org.

Introduction

Live-cell imaging experiments, where living cells are imaged over time with fluorescence or brightfield microscopy,

has provided crucial insights into the inner workings of biological systems. To date, these experiments have shed

light on numerous problems, including information processing in signaling networks1–3 and quantifying stochastic

gene expression4–7. One key strength of live-cell imaging experiments is the ability to obtain dynamic data with

single-cell resolution. It is now well appreciated that individual cells can vary considerably in their behavior, and the

ability to capture the temporal evolution of cell-to-cell differences has proven essential to understanding cellular

heterogeneity. Increasingly, these dynamic data are being integrated with end-point genomic assays to uncover even

more insights into cellular behavior8–10.

Central to the interpretation of these experiments is image analysis. Traditionally, the analysis of these data occurs

in three phases. First, images are cleaned with steps that include background subtraction and drift correction. Next,

the image is segmented to identify each individual cell in every frame. This segmentation step can capture the whole

cell or cellular compartments like the nucleus. Lastly, all the detections for an individual cell are linked together in

time to form a temporally cohesive record for each cell; a schematic of this step is shown in Figure 1(a). With a

suitable algorithm and data structure, these records can contain lineage information such as parent-child

relationships for each cell. The output of this analysis pipeline is a record for each cell of which pixels are associated

with it in each frame of the dataset as well as lineage information. This record can then be used to obtain quantitative

information – ranging from metrics of cellular morphology to fluorescence intensity – over time.

Advances in imaging technologies – both in microscopes11 and fluorescent reporters12 – have significantly reduced

the difficulty of acquiring live-cell imaging data while at the same time increasing the throughput and the number of

systems amenable to this approach. Increasingly, image analysis is a bottleneck for discovery as there is a gap

between our ability to collect and analyze data. This gap can be traced to the limited accuracy and generality of cell

segmentation and tracking algorithms. These limitations lead to a significant curation time, recently estimated to be
>100 hours for one manuscript worth of data13. Recent advances in computer vision, specifically deep learning, are

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 14, 2019. ; https://doi.org/10.1101/803205doi: bioRxiv preprint

mailto:vanvalen@caltech.edu
http://www.deepcell.org/
https://doi.org/10.1101/803205
http://creativecommons.org/licenses/by-nc-nd/4.0/

2

closing this gap14. For the purposes of this paper, deep learning refers to a set of machine learning methods capable

of learning effective representations from data in a supervised or unsupervised fashion. Deep learning has shown a

remarkable ability to extract information from images and it is increasingly being recognized that it is a natural fit

for the image analysis needs of the life sciences15,16. As a result, deep learning is increasingly being applied to

biological imaging data – applications include using classification to determine cellular phenotypes17, enhancing

image resolution18, and extracting latent information from brightfield microscope images19,20. Of interest to those

who use live-cell imaging has been the application of this technology to single-cell segmentation. The popular deep

learning model architecture U-Net targeted cell segmentation as its first use case21,22 and our group’s prior work has

shown that deep learning can perform single-cell segmentation for organisms spanning the domains of life as well

as in images of tissues13,23. Recent approaches have extended these methods to 3D datasets24. The improved accuracy

of single-cell segmentations for live-cell imaging is crucially important, as a single segmentation error in a single

frame can impair subsequent attempts at cell tracking and render a cell unsuitable for analysis.

While deep learning has been successfully applied to single-cell segmentation, a robust deep learning-based cell

tracker for mammalian cells has been elusive. Integration of deep learning into live-cell imaging analysis pipelines

achieve performance boosts by combining the improved segmentation accuracy of deep learning with conventional

object tracking algorithms13,25–27. These algorithms include linear programming28 and the Viterbi algorithm29; both

have seen extensive use on live-cell imaging data. While useful, these object tracking algorithms have limitations.

Common events that lead to tracking errors include cell division and cells entering and leaving the field of view.

Furthermore, their use often necessitates tuning numerous parameters to optimize performance for specific

datasets, which leads to fragility on unseen data. Though there have been attempts at adapting deep learning to track

cells30, their performance is significantly limited by a lack of training data, as fine-tuned conventional methods still

achieve superior performance.

Three technical challenges have impeded the creation of a readily available, deep learning-based cell tracker. First,

as previously mentioned, the unique features of live-cell imaging data (i.e. cell divisions) confound traditional

tracking methods as well as deep learning-based object trackers. Second, successful deep learning solutions are data

hungry. While unsupervised deep learning can be a useful tool, most applications of deep learning to imaging data

are supervised and require significant amounts of specialized training data. Aggregating and curating training data

for tracking is especially difficult because of the additional temporal dimension – objects must be segmented and

tracked through every frame of a training dataset. Third, deep learning’s requirement for hardware acceleration

presents a barrier for performing large inference tasks. On premise computing has limited throughput, while cloud

computing poses additional software engineering challenges.

In this paper, we address each of these challenges to construct an effective deep learning-based solution to cell

tracking in two dimensional live-cell imaging data. We show how cell tracking can be solved with deep learning and

linear programming. We then demonstrate how a combination of crowdsourcing and human-in-the-loop data

annotation can be used to create a live-cell imaging training dataset consisting of over 11,000 single cell trajectories.

We benchmark the resulting tracker using multiple metrics and show it achieves state-of-the-art performance on

several datasets, including data from the ISBI cell tracking challenge. Lastly, leveraging our prior work with cloud

computing31, we show how our cell tracker can be integrated into the DeepCell 2.0 single-cell image analysis

framework to enable segmentation and tracking live-cell imaging datasets through their web browser.

Tracking single cells with deep learning and linear programming

Our approach to cell tracking is motivated by the now classic work of Jaqaman et al32 and recent work applying deep

learning to object tracking33. In these works, object tracking is treated as a linear assignment problem (Figure 2a).

In this framework, Ni objects in frame i must be assigned to Ni+1 objects in frame i+1. To solve this assignment

problem, one constructs a cost function for a possible pairing across frames, which is traditionally based on each

object’s location and appearance features (brightness, size, etc.)28. The guiding intuition is that objects are unlikely

to move large distances or have distinct changes in appearance from frame-to-frame if the frame rate is sufficiently

high. The problem is then reduced to the selection of one assignment out of the set of all possible assignments that

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 14, 2019. ; https://doi.org/10.1101/803205doi: bioRxiv preprint

https://doi.org/10.1101/803205
http://creativecommons.org/licenses/by-nc-nd/4.0/

3

minimizes the cost function, a task that can be accomplished with the Hungarian algorithm34. One complicating factor

of biological object tracking is that objects can appear and disappear – this often leads to Ni and Ni+1 being unequal.

This problem can be solved by introducing a “shadow object” for each object in the two frames32 – Ni+1 shadow

objects in frame i and Ni shadow objects in frame i+1. These shadow objects represent an opportunity for objects to

“die” (if an object in frame i is matched with its shadow object in frame i+1) or to be “born” (if an object in frame i+1

is matched with its shadow object in frame i). This framework leads to a cost matrix describing the cost of every

possible assignment that is size Ni + Ni+1 x Ni + Ni+1; its structure is shown in Figure 2a.

Assuming error-free image segmentation and an accommodation for dealing with cell divisions, cell tracking can fit

neatly into this framework. Whole movies are tracked by sequentially tracking every pair of frames – this is to be

contrasted with approaches like the Viterbi algorithm that incorporate multiple frames worth of information to

determine assignments. One advantage of this approach is that it can cope with missing objects – instead of using

the objects in frame i for comparison, we instead compare all objects that have been successfully tracked up to frame

i. If objects disappear and reappear, the opportunity to correctly track them still exists. Optimization of the linear

assignment approach’s performance on real data comes about through cost function engineering. By varying key

aspects of the cost function – how sensitive it is to the distance between two cells, how much it weights the

importance of cell movement vs cell appearance, etc. – it is possible to tune the approach to have acceptable

performance on live-cell imaging datasets. However, this approach has several downsides – the accuracy is limited,

the time required for cost function engineering and curation of results is prohibitive, and solutions are tailored to

specific datasets which reduces their generality.

Here, we take a supervised deep learning approach to learn an optimal cost function for the linear assignment

framework. Our approach was inspired by previous work applying deep learning to object tracking33. Building on

this work, we make adaptations to deal with the unique features of live-cell imaging data (Figure 1c). To construct

our learned cost function, we consider it as a classification task. Let us suppose we have two cells – cell 1 in frame i

and cell 2 in frame i+1. Our goal is to construct a classifier that would take in information about each cell and produce

a probability that these two cells are either the same, are different, or have a parent-child relationship. If such a

classifier worked perfectly, then we could use it in lieu of our hand engineered cost function, as is shown in Figure

2b. To incorporate temporal information, we can use multiple frames of information for cell 1 as an input to the

classifier. This allows us access to the temporal information beyond just the two frames we are comparing. For our

work here, we use 7 frames worth of information.

Our classifier for performing this task is a hybrid recurrent-convolutional deep learning model; its architecture is

shown in Figure 1c. This deep learning model takes in 4 pieces of information about each cell using 4 separate

branches. Conceptually, each branch seeks to summarize its input information as a vector. These summary vectors

can then be fed into a fully connected neural network to classify the two cells being compared. The first branch takes

in the appearance, that is a cropped and resized image, of each cell and uses a deep convolutional neural network to

generate a summary. This network is applied to every frame for cell 1, creating a sequence of summary vectors.

Conversely, cell 2 only has 1 frame of information and hence only has 1 summary vector. The appearance gives us

access to information on what the two cells look like, but the resizing operation removes notions of size scale. To

mitigate this, we incorporate a second branch that takes in a vector of morphological information for each cell and

uses a densely connected neural network to create a summary vector of this information. The morphology

information used includes the area, perimeter, and eccentricity. The third branch acquires information about cell

motion over time. For cell 1, we collect a vector of all the centroid displacements. For cell 2, we create a single vector

that is the displacement between cell 1 and cell 2’s centroid. This branch gives us a history of cell 1’s motion and

allows us to see whether a potential positive assignment of cell 2 would be inconsistent from the point of view of cell

motion. The last branch incorporates neighborhoods, which is an image cropped out around the region surrounding

cell 1. We reasoned that because neighborhoods contain information about cell divisions, they could prove useful in

performing lineage assignments. Just as with appearances, a deep convolutional neural network is used to

summarize the neighborhoods as a vector. We extract the neighborhood around the area cell 1 is predicted to be

located given cell 1’s velocity vectors and use it as the neighborhood for cell 2. The result of these 4 branches are

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 14, 2019. ; https://doi.org/10.1101/803205doi: bioRxiv preprint

https://doi.org/10.1101/803205
http://creativecommons.org/licenses/by-nc-nd/4.0/

4

sequences of summary vectors for cell 1 and individual summary vectors for cell 2. Long short-term memory (LSTM)

layers are then applied to each of cell 1’s sequence of summary vectors to merge the temporal information and create

4 individual vectors that summarize each of the 4 branches. The vectors for cell 1 and cell 2 are then concatenated

and fed into fully connected layers. The final layer applies the softmax transform to produce the final classification

scores – psame, pdiff, and pparent-child. These three scores, which are all positive and sum to 1, can be thought of as

probabilities. They are used to construct the cost matrix, as shown in Figure 2b. If a cell in frame i+1 is assigned to a

shadow cell, i.e. it is “born,” then we check whether there is a parent-child relationship. This is done by finding the

highest pparent-child among all eligible cells (i.e. the cells in frame i that were assigned to “die”) – if this is above a

threshold then we make the lineage assignment. Full details of the model architecture, training, hyperparameter

optimization, and post processing are described in the Supplemental Information.

Dataset annotation and cell segmentation

To power our deep learning approach to cell tracking, we generated an annotated dataset specific to live-cell imaging.

This dataset consists of movies of 4 different cell lines – HeLa-S3, RAW 264.7, HEK293, and NIH-3T3. For each cell

line, we collected fluorescence images of the cell nucleus. We note that the nucleus is a commonly used landmark for

quantitative analysis of live-cell imaging data, and that recent work has made it possible to translate brightfield

images into images of the cell nucleus20. The annotations we sought to create consisted of label movies – movies in

which every pixel that belongs to a cell gets a unique integer id in every frame that cell exists – and lineage

information which accounts for cell divisions. This latter piece of information, referred to as relational data, takes

the form of a JSON object that links the ids of parent cells with the ids of child cells. In total, our dataset consists of

11,393 cell trajectories (~25 frames per trajectory) with 855 cell divisions in total. This dataset is as essential to our

approach as the deep learning code itself. Existing single-cell datasets were not adequate for a deep learning

approach, as they were either too small35 or did not contain temporal information13,36.

Our approach to constructing this dataset is shown in Figure 2a. Briefly, our dataset annotation consisted of two

phases. The first phase relied on crowdsourcing and internal annotators. Using the Figure 8 platform, annotators

were given a sequence of frames and instructed to color each cell with a unique color for every frame it appeared in.

In this fashion, contributors provided both segmentation and tracking annotations simultaneously. Internal

annotators took these annotations and manually corrected errors and recorded cell division events in these data.

Once enough training data was collected (~2,000 trajectories), we trained preliminary models for segmentation and

cell tracking. These were accurate enough to empower annotators to correct algorithm mistakes as opposed to

creating annotations from scratch. To facilitate this human-in-the-loop approach, we developed a software tool

called Caliban37 to specifically curate live-cell imaging data. Caliban, also shown in Figure 2a, takes in segmented and

tracked live-cell imaging data and enables users to quickly correct errors using their keyboard and mouse.

The resulting dataset was used to train our cell tracking model as well as nuclear segmentation models. We used a

model based on RetinaMask38 for nuclear segmentation, which provided moderate gains to our previously published

approach13 (Table S1). We also used our pipeline for crowdsourcing to create single cell annotations of static

fluorescent cytoplasm images and brightfield images of 7 different cell lines – MSC (mesenchymal stem cells), NIH-

3T3, A549, HeLa, HeLa-S3, CHO, and PC3. This dataset consisted of 63,280 single cell annotations and was used to

train models for single cell segmentation of fluorescent cytoplasm and brightfield images, allowing us to benchmark

our cell tracking algorithm on cytoplasmic images. Full details of our annotation methods, model architectures, and

model training can be found in the Supplemental Information.

Deployment
The need for hardware acceleration and software infrastructure can pose a significant barrier to entry for new

adopters of deep learning methods15. This is particularly true for large inference tasks, as is often the case in the life

sciences. To solve these issues, we recently developed a platform for performing large-scale cellular image analysis

in the cloud using deep learning-enabled models39. This platform uses a micro-service architecture and allows

sequences of image analysis steps – some enabled by deep learning and some not - to be applied to an image before

returning the result to the user. It also scales resources requested from cloud computing providers to meet demand.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 14, 2019. ; https://doi.org/10.1101/803205doi: bioRxiv preprint

https://doi.org/10.1101/803205
http://creativecommons.org/licenses/by-nc-nd/4.0/

5

This ability allows large analysis tasks to be finished quickly, making data transfer the sole bottleneck. Further, this

software allows analysis to be performed through a web portal.

We integrated our deep learning-enabled cell segmentation and tracking software into this platform (Figure 2b),

allowing users to interface with this algorithm through a web portal. Data in the form of a tiff stack (or a zip file with

directories that contain multiple tiff stacks) is uploaded into a cloud bucket. Once there, the images are segmented,

cells are tracked, and the end result is returned to the user in the form of “.trk” files, a custom file format with the

raw movie, the label movie, and a json with the mother-daughter information. The results can be curated with
Caliban to correct errors and then queried for single cell analysis using user generated scripts. While we have made

this work is accessible in the form of Jupyter notebooks for both training and inference, incorporating this algorithm

into a cloud deployment makes it more accessible as analysis can be performed through a web portal. Further, it will

make it significantly easier to perform large inference tasks.

Benchmarking
A visual montage of our algorithm’s output is shown in Figure 3a. To benchmark our method, we reserved 10% of

our annotated data solely for testing. We also made use of the ISBI cell tracking dataset; where necessary, we used

our pipeline to create label movies of these data. As a baseline for the current state-of-the-art, we used an existing

implementation of the Viterbi algorithm29,40. One challenge of benchmarking tracking methods is that errors can

arise from both segmentation and tracking. Here, we make use of three different tracking metrics. The first are

confusion matrices for our deep learning model, which provides a sense of which linkage errors are most likely. The

second is a graph-based metric35,41 that treats cell lineage as a directed acyclic graph (DAG). The number of graph

operations (split/delete/add a node and delete/add/change an edge) needed to map the DAGs generated by an

algorithm to the ground truth DAGs is used to generate a score from 0 to 1. Last, we quantified the true positive, false

positive, and false negative rates for detecting cell divisions, one of the most challenging tasks of cell tracking.

We first computed confusion matrices for our method on our testing dataset; these are shown in the Supplemental

Information. These demonstrate that the most common error made by our method is confusing linkages between

the same cell with linkages between mother and daughter cells. This leads to false division events, where the mother

cell only has one daughter, and missed cell divisions. The former can be mitigated with appropriate post-processing.

Next, we used the graph-based metric to compare the performance of our method to a Viterbi based method that has

produced state-of-the-art performance in the ISBI cell tracking challenge; this is shown in Figure 3b. To separate cell

segmentation performance from cell tracking performance, we applied this metric in three settings. First, we used a

classical computer vision method to segment cells and applied the Viterbi cell tracking algorithm to generate a

baseline score. Next, to measure the improvement provided by deep learning-enabled cell segmentation, we used

deep learning to generate cell segmentations and applied both the Viterbi and our method to link cells together over

time. Last, to measure the improvement provided by deep learning-enabled cell tracking, we used our ground truth

segmentations as the input to both cell trackers. This comparison (Figure 3b) reveals that the bulk of the

performance boost offered by deep learning comes from improved cell segmentations, an insight that is consistent

with previous work13. This comparison also shows that our deep learning-enabled cell tracker outperforms the

Viterbi algorithm on these data with respect to the graph-based metric, albeit by a small margin.

While the graph-based metric provides a global measure of performance, it is less informative for rare but important

events like cell divisions. To complete our analysis, we quantified the recall, precision, and F1 score for cell division

detection on our held-out datasets. This was done for both deep learning generated and ground truth segmentations

for our method and the Viterbi algorithm. As seen in Figure 3c, deep learning provides a marked improvement in cell

division detection, and hence lineage construction. With ground truth segmentations, our approach achieves a recall

and precision of 89% and 84%; the Viterbi algorithm achieves 57% and 85% respectively on these measures. The

performance of our method falls to a recall of 72% and a precision of 71% when deep learning generated

segmentations are used. These results are consistent with the minor differences seen in the graph-based metric
because divisions are rare events, and hence require only a few graph operations to fix if they are misidentified. This

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 14, 2019. ; https://doi.org/10.1101/803205doi: bioRxiv preprint

https://doi.org/10.1101/803205
http://creativecommons.org/licenses/by-nc-nd/4.0/

6

analysis highlights the strength of our approach; live-cell imaging experiments that require correct lineage

construction stand to benefit the most.

Last, because our deep learning model was trained in the same fashion as Siamese neural networks (i.e. same vs

different), we wondered whether it would generalize beyond just nuclear data. To test this, we used our

crowdsourcing pipeline to generate label movies of brightfield and fluorescent cytoplasmic data from the ISBI cell

tracking challenge. We then used the segmentations from these label movies as the input into our cell tracker.

Surprisingly, our cell tracker performed markedly well on this challenge, despite never having seen cytoplasmic data.
This finding means that single model can be used to track cells irrespective of the imaging modality. This raises the

possibility of a pipeline that can process live-cell imaging data while being agnostic to image type or acquisition

parameters. As a proof of principle, we constructed a pipeline that uses deep learning models to find the relative

scale of input images to our training data and identify the imaging modality. Using this information, we can rescale

images, direct them to the appropriate segmentation model, and then send the results to our deep learning-based

cell tracker for lineage construction. While this demonstrates the feasibility of analyzing diverse datasets with a

single pipeline, additional training data is necessary to produce cytoplasmic segmentations accurate enough for

automated analysis.

Discussion

Live-cell imaging is a transformative technology. It has led to numerous insights into the behavior of single cells and

will continue to do so for many years to come as imaging and reporter technologies evolve. While the adoption of

this method has typically been limited to labs with the computational expertise single cell analysis of these data

demands, the arrival of deep learning is changing this landscape. With suitable architectures and deployment tools,

deep learning can turn single cell image segmentation into a data annotation problem. With the work we present

here, the same can be said for cell tracking. The applications of this technology are numerous, as it enables high

throughput studies of cell signaling, cell lineage experiments, and potentially dynamic live-cell imaging-based

screens of pharmaceutical compounds.

While deep learning methods are powerful, they are not without limitations. This is particularly true for our

approach. Accurate detection is still essential to cell tracking performance, and deep learning-based segmentation

methods still make impactful errors as cells become more crowded. We expect this to be mitigated as more expansive

sets of data are annotated, and as segmentation methods that use spatiotemporal information to inform

segmentation decisions come online42. This method, and all supervised machine learning methods, is limited by the

training data that empower it. Our training dataset contains less than 1000 cell divisions; we expect division

detection to become more accurate with additional annotated data. Because our training data did not include

perturbations that markedly change cell phenotypes or fates (i.e. apoptosis or differentiation), it is possible

performance will be limited if these are features of processed data. This can be mitigated by collecting additional

training data; we anticipate our existing models combined with a human-in-the-loop approach will enhance future

annotation efforts. We also focused on 2D images, as are collected with widefield imaging. Modern confocal and light

sheet microscopes can collect 3D data over long time periods. We suspect that our approach can be adapted to these

data by using 3D deep learning sub-models, but the requisite annotation task is more challenging than the one

undertaken here.

Lastly, our work has centered on live-cell imaging of mammalian cell lines. While these are important model systems

for understanding human biology, and the potential of deep learning applications to these systems has for improving

human health is substantial, they vastly under sample the diversity of life. Much of our understanding of living

systems comes from basic science explorations of bacteria, yeast, and archaea. Live-cell imaging and single cell

analysis are powerful methods for these systems; extending deep learning-enabled methods to these systems43 by

annotating the requisite data could be just as impactful, if not more so, as the discoveries that will be derived from

the work presented here.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 14, 2019. ; https://doi.org/10.1101/803205doi: bioRxiv preprint

https://doi.org/10.1101/803205
http://creativecommons.org/licenses/by-nc-nd/4.0/

7

Acknowledgements

We thank Anima Anandkumar, Michael Angelo, Michael Elowitz, Christopher Frick, Lea Geontoro, Kerwyn Casey

Huang, and Gregory Johnson for helpful suggestions and sharing data. We thank Ian Brown and Andy Butkovic for

assistance using the Figure 8 image annotation platform, as well as numerous anonymous annotators whose efforts

enabled this work. We also thank Henrietta Lacks for graciously donating source material. We gratefully

acknowledge support from the Paul Allen Family Foundation through the Discovery Centers at Stanford University

and Caltech, The Rosen Center for Bioengineering at Caltech, The Center for Environmental and Microbial

Interactions at Caltech, Google Research Cloud, Figure 8’s AI for everyone award, and a subaward from NIH

U24CA224309-01.

Author contributions

EM, WG, and DVV conceived of the project; EM, EB, MS, DB, WG, and DVV designed and wrote the cell tracking

algorithm and its deployment; EB, EM, and GM designed and wrote the Caliban software; GM designed and oversaw

the data annotation; GM, NK, IC, DK, CP, and TP annotated data; MS, EM, and CP designed and performed

benchmarking; TK and EP collected data for annotation; EM and DVV wrote the paper; DVV supervised the project.

Datasets

All of the data used in this paper and the associated annotations can be accessed at http://www.deepcell.org/data

or at http://www.github.com/vanvalenlab through the datasets module.

Source code

A persistent deployment of the software described here can be accessed at http://www.deepcell.org. All source

code for cell tracking is available in the DeepCell repository at http://www.github.com/vanvalenlab/deepcell-tf.
The source code for the Caliban software is available at http://www.github.com/vanvalenlab/Caliban. Detailed

instructions are available at http://deepcell.readthedocs.io/.

Competing interests
The authors have filed a provisional patent for the described work; the software described here is available under a
modified Apache license and is free for non-commercial uses.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 14, 2019. ; https://doi.org/10.1101/803205doi: bioRxiv preprint

http://www.deepcell.org/data
http://www.github.com/vanvalenlab
http://www.deepcell.org/
http://www.github.com/vanvalenlab/deepcell-tf
http://www.github.com/vanvalenlab/Caliban
http://deepcell.readthedocs.io/
https://doi.org/10.1101/803205
http://creativecommons.org/licenses/by-nc-nd/4.0/

8

References

1. Purvis, J. E. & Lahav, G. Encoding and Decoding Cellular Information through Signaling Dynamics. Cell 152,
945–956 (2013).

2. Selimkhanov, J. et al. Accurate information transmission through dynamic biochemical signaling networks.
Science 346, 1370–1373 (2014).

3. Regot, S., Hughey, J. J., Bajar, B. T., Carrasco, S. & Covert, M. W. High-sensitivity measurements of multiple
kinase activities in live single cells. Cell 157, 1724–1734 (2014).

4. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic Gene Expression in a Single Cell. Science 297,
1183–1186 (2002).

5. Golding, I., Paulsson, J., Zawilski, S. M. & Cox, E. C. Real-Time Kinetics of Gene Activity in Individual Bacteria. Cell
123, 1025–1036 (2005).

6. Weinberger, L. S., Burnett, J. C., Toettcher, J. E., Arkin, A. P. & Schaffer, D. V. Stochastic Gene Expression in a
Lentiviral Positive-Feedback Loop: HIV-1 Tat Fluctuations Drive Phenotypic Diversity. Cell 122, 169–182
(2005).

7. Bintu, L. et al. Dynamics of epigenetic regulation at the single-cell level. Science 351, 720–724 (2016).
8. Lane, K. et al. Measuring Signaling and RNA-Seq in the Same Cell Links Gene Expression to Dynamic Patterns of

NF-κB Activation. Cell Syst. 4, 458-469.e5 (2017).
9. Hormoz, S. et al. Inferring Cell-State Transition Dynamics from Lineage Trees and Endpoint Single-Cell

Measurements. Cell Syst. 3, 419-433.e8 (2016).
10. Foreman, R. & Wollman, R. Mammalian gene expression variability is explained by underlying cell state. bioRxiv

626424 (2019) doi:10.1101/626424.
11. Girkin, J. M. & Carvalho, M. T. The light-sheet microscopy revolution. J. Opt. 20, 053002 (2018).
12. Ni, Q., Mehta, S. & Zhang, J. Live-cell imaging of cell signaling using genetically encoded fluorescent reporters.

FEBS J. 285, 203–219 (2018).
13. Van Valen, D. A. et al. Deep Learning Automates the Quantitative Analysis of Individual Cells in Live-Cell

Imaging Experiments. PLOS Comput. Biol. 12, e1005177 (2016).
14. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
15. Moen, E. et al. Deep learning for cellular image analysis. Nat. Methods 1 (2019) doi:10.1038/s41592-019-0403-

1.
16. Belthangady, C. & Royer, L. A. Applications, promises, and pitfalls of deep learning for fluorescence image

reconstruction. Nat. Methods 1 (2019) doi:10.1038/s41592-019-0458-z.
17. Kraus, O. Z. et al. Automated analysis of high‐content microscopy data with deep learning. Mol. Syst. Biol. 13,

924 (2017).
18. Weigert, M. et al. Content-Aware Image Restoration: Pushing the Limits of Fluorescence Microscopy. (2018).
19. Christiansen, E. M. et al. In Silico Labeling: Predicting Fluorescent Labels in Unlabeled Images. Cell 173, 792-

803.e19 (2018).
20. Ounkomol, C., Seshamani, S., Maleckar, M. M., Collman, F. & Johnson, G. R. Label-free prediction of three-

dimensional fluorescence images from transmitted-light microscopy. Nat. Methods 1 (2018)
doi:10.1038/s41592-018-0111-2.

21. Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. in
Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 (eds. Navab, N., Hornegger, J.,
Wells, W. M. & Frangi, A. F.) 234–241 (Springer International Publishing, 2015).

22. Falk, T. et al. U-Net: deep learning for cell counting, detection, and morphometry. Nat. Methods 16, 67 (2019).
23. Keren, L. et al. A Structured Tumor-Immune Microenvironment in Triple Negative Breast Cancer Revealed by

Multiplexed Ion Beam Imaging. Cell 174, 1373-1387.e19 (2018).
24. Haberl, M. G. et al. CDeep3M—Plug-and-Play cloud-based deep learning for image segmentation. Nat. Methods

15, 677–680 (2018).
25. Akram, S. U., Kannala, J., Eklund, L. & Heikkilä, J. Cell tracking via proposal generation and selection. (2017).
26. Tsai, H.-F., Gajda, J., Sloan, T. F. W., Rares, A. & Shen, A. Q. Usiigaci: Instance-aware cell tracking in stain-free

phase contrast microscopy enabled by machine learning. (2019).
27. Newby, J. M., Schaefer, A. M., Lee, P. T., Forest, M. G. & Lai, S. K. Convolutional neural networks automate

detection for tracking of submicron-scale particles in 2D and 3D. Proc. Natl. Acad. Sci. 115, 9026–9031 (2018).

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 14, 2019. ; https://doi.org/10.1101/803205doi: bioRxiv preprint

https://doi.org/10.1101/803205
http://creativecommons.org/licenses/by-nc-nd/4.0/

9

28. Kudo, T. et al. Live-cell measurements of kinase activity in single cells using translocation reporters. Nat.
Protoc. 13, 155–169 (2018).

29. Magnusson, K. E. G., Jalden, J., Gilbert, P. M. & Blau, H. M. Global linking of cell tracks using the Viterbi algorithm.
IEEE Trans. Med. Imaging 34, 911–929 (2015).

30. Payer, C., Štern, D., Neff, T., Bischof, H. & Urschler, M. Instance Segmentation and Tracking with Cosine
Embeddings and Recurrent Hourglass Networks. in Medical Image Computing and Computer Assisted
Intervention – MICCAI 2018 (eds. Frangi, A. F., Schnabel, J. A., Davatzikos, C., Alberola-López, C. & Fichtinger, G.)
3–11 (Springer International Publishing, 2018).

31. Bannon, D. et al. Dynamic allocation of computational resources for deep learning-enabled cellular image
analysis with Kubernetes. bioRxiv 505032 (2019) doi:10.1101/505032.

32. Jaqaman, K. et al. Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods 5, 695–702
(2008).

33. Sadeghian, A., Alahi, A. & Savarese, S. Tracking The Untrackable: Learning To Track Multiple Cues with Long-
Term Dependencies. in Computer Vision and Pattern Recognition (CVPR) (2017).

34. Kuhn, H. W. The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 2, 83–97 (1955).
35. Maška, M. et al. A benchmark for comparison of cell tracking algorithms. Bioinformatics 30, 1609–1617 (2014).
36. Caicedo, J. C. et al. Evaluation of Deep Learning Strategies for Nucleus Segmentation in Fluorescence Images.

(2018).
37. Claremont, C. & Cockrum. Uncanny X-Men.
38. Fu, C.-Y., Shvets, M. & Berg, A. C. RetinaMask: Learning to predict masks improves state-of-the-art single-shot

detection for free. ArXiv190103353 Cs (2019).
39. Bannon, D. et al. DeepCell 2.0: Automated cloud deployment of deep learning models for large-scale cellular

image analysis. (2018).
40. Ulman, V. et al. An Objective Comparison of Cell Tracking Algorithms. Nat. Methods 14, 1141–1152 (2017).
41. Matula, P. et al. Cell Tracking Accuracy Measurement Based on Comparison of Acyclic Oriented Graphs. PLOS

ONE 10, e0144959 (2015).
42. Voigtlaender, P. et al. MOTS: Multi-Object Tracking and Segmentation. in 7942–7951 (2019).
43. Lugagne, J.-B., Lin, H. & Dunlop, M. J. DeLTA: Automated cell segmentation, tracking, and lineage reconstruction

using deep learning. bioRxiv 720615 (2019) doi:10.1101/720615.
44. Lin, T., Goyal, P., Girshick, R., He, K. & Dollar, P. Focal Loss for Dense Object Detection. in 2017 IEEE

International Conference on Computer Vision (ICCV) 2999–3007 (2018). doi:10.1109/ICCV.2017.324.
45. Ren, S., He, K., Girshick, R. & Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal

Networks. in Advances in Neural Information Processing Systems 28 (eds. Cortes, C., Lawrence, N. D., Lee, D. D.,
Sugiyama, M. & Garnett, R.) 91–99 (Curran Associates, Inc., 2015).

46. Kirillov, A., Girshick, R., He, K. & Dollar, P. Panoptic Feature Pyramid Networks. in 6399–6408 (2019).
47. Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Optimization. ArXiv14126980 Cs (2014).
48. Walt, S. van der et al. scikit-image: image processing in Python. PeerJ 2, e453 (2014).

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 14, 2019. ; https://doi.org/10.1101/803205doi: bioRxiv preprint

https://doi.org/10.1101/803205
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

Figures

Figure 1: Tracking single cells with deep learning and linear programming. (a, b) Computational analysis is a

significant barrier for extracting single cell information from movies of living cells. Cells must be identified in every

frame and then these detections must be linked together over time to form a temporal record for each cell. (c) Cell

tracking can be framed as a linear assignment problem in which Ni objects in frame i are matched up with Ni+1 objects

in frame i+1. Shadow objects can be introduced to account for births (i.e. from cell division events) or deaths (i.e.

cells leaving the field of view). Solving the linear assignment problem requires first creating a cost matrix that scores

each possible assignment. The Hungarian algorithm34 is then used to find the optimal assignment that minimizes the

cost function. Instead of manually engineering this cost function, we use a deep learning model to learn one from

annotated data. Here, psame is the probability that two cells being compared are the same, b is the cost associated

with cell “births” (i.e. a cell in frame i+1 being assigned to a shadow cell), and d is the cost associate with a cell death

(i.e. a cell in frame i being assigned to a shadow cell). A deep learning model learns to take information from two

cells and compute the probability these are the same cell, different cells, or have a parent-child relationship. This

model takes information on each cell’s appearance, local neighborhood, morphology, and motion and summarizes

as a vector using a deep learning sub-model. A fully connected layer reads these summaries and determines the

scores for the three classes.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 14, 2019. ; https://doi.org/10.1101/803205doi: bioRxiv preprint

https://doi.org/10.1101/803205
http://creativecommons.org/licenses/by-nc-nd/4.0/

11

Figure 2: A human-in-the-loop to dataset construction and cloud computing facilitate a scalable solution to live-cell

image analysis. (a) Combining crowd sourcing and a human-in-the-loop approach to dataset annotation enables the

construction of an ImageNet for live-cell imaging. By annotating montages, crowd contributors both segment and

track single cells in live-cell imaging data. This data leads to models that are used to process additional data; expert

annotators use Caliban to correct model errors and identify cell division events. The resulting data is then used to

train a final set of deep learning models to perform cell segmentation and tracking. (b) Integration of a cell tracking

service into DeepCell 2.0. Datasets are uploaded to a cloud bucket; once there, a tracking consumer object facilitates

interactions with deep learning models via Tensorflow serving for segmentation and tracking. The implementation

within the Kubernetes engine includes an autoscaling module that monitors resource utilization and scales the

compute resources accordingly.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 14, 2019. ; https://doi.org/10.1101/803205doi: bioRxiv preprint

https://doi.org/10.1101/803205
http://creativecommons.org/licenses/by-nc-nd/4.0/

12

Figure 3: Benchmarking demonstrates that deep learning achieves state-of-the-art performance on cell tracking

tasks for a variety of cell types. (a) A montage of tracking results for fluorescent images of cell nuclei and brightfield

images of cells. (b) Confusion matrices for our deep learning model identify the linkages between mother cells and

daughter cells as our dominant error mode. These linkage errors lead to erroneous and missed divisions. (c) A graph-

based metric for cell tracking demonstrates that deep learning enables state-of-the-art performance, with the bulk

of this performance boost coming from improved segmentations. (d) Analysis of performance in cell division

detection reveals that the performance boost offered by deep learning comes from more accurate detection of cell

divisions.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 14, 2019. ; https://doi.org/10.1101/803205doi: bioRxiv preprint

https://doi.org/10.1101/803205
http://creativecommons.org/licenses/by-nc-nd/4.0/

13

Supplemental Information

Cell line acquisition and culture methods. We used the mammalian cell lines NIH-3T3, HeLa-S3, HEK 293, and RAW
264.7 to collect training data for nuclear segmentation and the cell lines NIH-3T3 and RAW 264.7 to collect training
data for augmented microscopy. All cell lines were acquired from ATCC. The cells have not been authenticated and
were not tested for mycoplasma contamination.

Mammalian cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM, Invitrogen or Caisson)
supplemented with 2mM L-Glutamine (Gibco), 100 U/ml penicillin, 100μg/ml streptomycin (Gibco or Caisson), and
either 10% fetal bovine serum (Omega Scientific or Thermo Fisher) for HeLa-S3 cells, or 10% calf serum (Colorado
Serum Company) for NIH-3T3 cells. Cells were incubated at 37°C in a humidified 5% CO2 atmosphere. When 70-
80% confluent, cells were passaged and seeded onto fibronectin coated glass bottom 96-well plates (Thermo Fisher)
at 10,000-20,000 cells/well. The seeded cells were then incubated for 1-2 hours to allow for cell adhesion to the
bottom of the well plate before imaging.

Collection of live-cell imaging data. For fluorescent nuclear imaging, mammalian cells were seeded onto fibronectin
(Sigma, 10ug/ml) coated glass bottom 96-well plates (Nunc) and allowed to attach overnight. Media was removed
and replaced with imaging media (FluoroBrite DMEM (Invitrogen) supplemented with 10mM Hepes, 1% FBS, 2mM
L-Glutamine) at least 1 hour prior to imaging. For nuclear imaging, cells without a genetically encoded nuclear
marker were incubated with 50ng/ml Hoechst (Sigma) prior to imaging. For cytoplasm imaging, cells were incubated
with 2 µM CellTracker CMFDA prior to imaging. Cells were imaged with either a Nikon Ti-E or Nikon Ti2 fluorescence
microscope with environmental control (37°C, 5% CO2) and controlled by Micro-Manager or Nikon Elements. Images
were acquired with a 20x objective (40x for RAW 264.7 cells) and either an Andor Neo 5.5 CMOS camera with 2x2
binning or a Photometrics Prime 95B CMOS camera with 2x2 binning. All data was scaled to so that pixels had the
same physical dimension prior to training. Fluorescence images were taken for nuclear data, while both brightfield
and fluorescence images were taken for cytoplasmic data. For time-lapse experiments, images were acquired at 6-
minute intervals.

Deep learning architecture for single-cell segmentation. Our pipeline for single cell segmentation is shown in Figure

S1. This pipeline uses deep learning models to rescale images and direct them to the appropriate segmentation. We

used modified RetinaMask38 models for single cell segmentation of fluorescent nuclear, fluorescent cytoplasm, and

brightfield images. RetinaMask generates instance masks in a fashion similar to Mask-RCNN but uses single shot

detection like RetinaNet44 rather than feature proposals45 to identify objects. Each model used a ResNet50

backbone pre-trained on ImageNet. For nuclear segmentation, we used the P3 and P4 feature pyramid layers for

object detection with an anchor size of 16 and 32 pixels respectively. For the fluorescent cytoplasmic and

brightfield segmentation, we used the P3, P4, P5, and P6 layers with anchor sizes of 32, 64, 128, and 256 pixels. For

all three models, we attached two semantic segmentation heads46 to predict pixelwise and deep watershed

segmentations. This encouraged the backbone and feature pyramid network to learn more general image features.

We used a weighted softmax loss for both heads that was weighted by 0.1. All three models were trained on their

respective datasets in the same fashion. We used the Adam47 optimization algorithm with a learning rate of 10-5

and clip norm of 0.001, batch size of 4, and L2 regularization strength of 10-5 for 16 epochs on a NVIDIA V100

graphics card. For the nuclear data, we ensured that our training/validation split was the same as was used for

training the cell tracking model. Our post processing consisted of removing segmentation masks that have high

overlap with >2 other masks. Masks that only overlapped with 1 other mask were resolved using a marker based

random walker segmentation step48. All masks smaller than 100 pixels were also removed during post processing.

For nuclear segmentation, we used the output of the watershed semantic segmentation mask to add cells that were

missed by the RetinaMask object detection.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 14, 2019. ; https://doi.org/10.1101/803205doi: bioRxiv preprint

https://doi.org/10.1101/803205
http://creativecommons.org/licenses/by-nc-nd/4.0/

14

Deep learning models for scale and image type detection. To develop a live-cell imaging analysis workflow that is

agnostic to imaging modality and acquisition parameters, we trained two deep learning models for detecting scale

and image type. The scale detection model sought to identify the relative scale of between an input image and our

training data; we applied affine transformations to our training data to create images of different scales. The model

consisted of a MobileNetV2 backbone connected to an average pooling layer and followed by two dense layers. The

model was trained for 20 epochs on a combined dataset (nuclear, fluorescent cytoplasmic, and brightfield images)

using a mean squared error (MSE) loss. We used the Adam optimization algorithm with a learning rate of 10-5 and

clip norm of 0.001, batch size of 64, and L2 regularization strength of 10-5 on an NVIDIA V100 graphics card. The

image type detection model consisted of a MobileNetV2 backbone connected to an average pooling layer followed

by two dense layers and a softmax layer. The model was trained for 20 epochs on a combined dataset using a

weighted categorical crossentropy loss. We used We used the Adam optimization algorithm with a learning rate of

10-5 and clip norm of 0.001, batch size of 64, and L2 regularization strength of 10-5 on an NVIDIA V100 graphics card.

The scale detection model achieved a mean absolute percentage error of 0.85% on validation data while the image

type detection achieved a classification accuracy of 98% on validation data. We found that using the MobileNetV2

backbone provided similar performance to larger networks while offering a higher inference speed and lower

memory footprint.

Figure S1 Computational pipeline for single cell segmentation. Our pipeline uses a scale detection deep learning

model to rescale input images to the same physical pixel dimensions of our training data. Another deep learning

model detects whether the rescaled images are fluorescent nuclear images, fluorescent cytoplasm images, or

brightfield images. Once the image type is determined, the images are sent to a RetinaMask based deep learning

model for single cell segmentation. The segmentation masks are then sent to the cell tracking deep learning model

to construct cell lineages.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 14, 2019. ; https://doi.org/10.1101/803205doi: bioRxiv preprint

https://doi.org/10.1101/803205
http://creativecommons.org/licenses/by-nc-nd/4.0/

15

Segmentation benchmarking. Because segmentation performance is critical to cell tracking performance, we

performed rigorous benchmarking during model optimization. In addition to pixel-based metrics, we also used an

object-based approach36 to segmentation benchmarking. This approach compares ground truth and prediction

segmentations to identify segmentation errors. Our first step is to link prediction and ground truth segmentations

based on object overlap – this can be thought of as constructing of a DeBruijn graph where we are using objects

rather than sequences. We solve this problem using a linear assignment framework in a manner akin to how we link

cells during cell tracking. We construct a cost matrix where the cost of linking two cells is 1 − 𝑖𝑜𝑢, where iou is the

intersection over union of those two cells. Leaving a ground truth cell unassigned (missed detection) or a prediction

cell unassigned (gained detection) has a cost of 0.4. This means for a ground truth and predicted cell to be linked,

they must have an iou of at least 0.6.

All the unassigned cells are then gathered for a second round of construction of graph construction to classify error

types. This is shown in Figure S2. We view each cell as a node and examine all pairs of unassigned ground truth cells

and unassigned predicted cells; we link two cells if they have an iou greater than 0.1. We then extract all the

subgraphs of this graph and categorize them into three groups. The first group consists of all subgraphs that have a

single node (i.e. the highest degree of any node is 0). If the node is a ground truth cell this corresponds to a missed

detection (i.e. a false negative); if the node is a predicted cell this corresponds to a gained detection (i.e. a false

positive). The next group consists of all subgraphs where the highest degree node has degree 1. Each subgraph in

this group has one node that corresponds to a ground truth cell and one node that corresponds to a prediction cell.

Because these cells were not assigned in the first round of graph construction, they correspond to a missed detection

and a gained detection. The third group are all subgraphs with a node that has degree > 1. This group can be further

divided into three subgroups based on the type and uniqueness of the highest degree node. If the highest degree

node is a ground truth cell and is unique, then it corresponds to a splitting error. If the highest degree node is a

predicted cell and is unique, it corresponds to a merge error. If the highest degree node is not unique, then it falls

into a third class which we call catastrophes. Catastrophe’s involve both splitting and merging mistakes, but it is not

possible to decouple the two from the subgraphs. We have found that catastrophes become increasingly common in

dense datasets, and that their inclusion was essential to accurately categorize segmentation errors. One limitation

of this approach is that it relies on accurate ground truth datasets. We found that segmentation “errors” often

reflected errors in training data.

Figure S2. Subgraph classification enables the identification of merge, split, and catastrophe errors in cell

segmentations.

The segmentation benchmarks for our segmentation model are given in Tables S1 and S2. For nuclear segmentation,

we included feature-nets that were trained in a pixel-wise and deep watershed fashion for comparison. For all

benchmarks, we removed objects smaller than 100 pixels from the ground truth and prediction masks prior to

benchmarking.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 14, 2019. ; https://doi.org/10.1101/803205doi: bioRxiv preprint

https://doi.org/10.1101/803205
http://creativecommons.org/licenses/by-nc-nd/4.0/

16

Figure S3. Segmentation benchmarks for deep learning segmentation models for fluorescent nuclear images. The

RetinaMask approach provides a mild improvement over pixel-wise and deep watershed approaches to

segmentation with feature-nets. This improvement allows for more accurate cell lineage construction.

Benchmarking of cytoplasm segmentation models was performed on brightfield images.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 14, 2019. ; https://doi.org/10.1101/803205doi: bioRxiv preprint

https://doi.org/10.1101/803205
http://creativecommons.org/licenses/by-nc-nd/4.0/

17

Model training and post processing for the cell tracking deep learning model. We used a hybrid

convolutional/recurrent deep learning model for identifying whether an existing track of cells and a candidate cell

are the same, different, or have a mother daughter relationship. The architecture is described in the main text; source

code for the model containing the full implementation is available at http://www.github.com/vanvalenlab/deepcell-

tf under the deepcell.model_zoo library. The cell tracking deep learning model was trained using stochastic gradient

descent with momentum. We used a batch size of 128, learning rate of 0.01, momentum of 0.9, and learning rate

decay of 0.99; the model was trained for 10 epochs, with each epoch consisting of ~800,000 examples. For post

processing, we examined the lineage graphs to identify and remove false division events. A false division event was

classified as divisions in a lineage with only one mother-daughter pair and within 9 frames of another division.

Grid search for hyperparameter optimization. Our cell tracking framework contains several hyperparameters

including the birth parameter (b), the death parameter (d), division threshold (div), and the number of frames (f)

extracted for each track. We performed a grid search to find the optimal values for these hyperparameters. Candidate

values for each hyperparameter (b – 0.9, 0.95, 0.99, d – 0.9, 0.95, 0.99, div – 0.9, 0.95, 0.99, f – 3, 5, 7, 9). We performed

the grid search in parallel by submitting Jupyter notebooks as Jobs in a Kubernetes cluster. The grid search revealed

the optimal values were b = 0.99, d = 0.99, div = 0.9, and f = 7.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 14, 2019. ; https://doi.org/10.1101/803205doi: bioRxiv preprint

http://www.github.com/vanvalenlab/deepcell-tf
http://www.github.com/vanvalenlab/deepcell-tf
https://doi.org/10.1101/803205
http://creativecommons.org/licenses/by-nc-nd/4.0/

18

Cell tracking benchmarking. In addition to using the ISBI executable to benchmark our cell tracker, we developed a

graph-based approach to benchmark cell divisions. This approach treats the ground truth and predicted lineages as

a graph, with each cell at each time point being a node. We use the intersection over union to link nodes in the ground

truth and predicted graphs as being the same cell. All nodes of degree > 2 were identified as cell division events;

using this information, we quantified the number of true positive, false positive, and false negative detections.

Figure S4. Optimization and benchmarking of a deep learning-based cell tracker. (a) A hyperparameter search

reveals that a track length of 7 frames provides optimal performance. The most common error type is misclassifying

two cells that are the same as having a mother-daughter relationship. (b) Recall and precision for cell division

detection on our nuclear data as well as nuclear data from the ISBI cell tracking challenge. We evaluated the

performance of a Viterbi based algorithm (KTH) as well as our deep learning approach. (c) ISBI graph metric

performance of a Viterbi based algorithm and our deep learning approach on nuclear and cytoplasmic data. The bulk

of the performance boost from deep learning is due to more accurate cell detection. Fluorescent cytoplasmic data

was not benchmarked due to poor segmentations.

Caliban implementation. A desktop version of Caliban was implemented in Python and can be run from a Docker

container. The full source code is available at https://github.com/vanvalenlab/caliban.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 14, 2019. ; https://doi.org/10.1101/803205doi: bioRxiv preprint

https://github.com/vanvalenlab/caliban
https://doi.org/10.1101/803205
http://creativecommons.org/licenses/by-nc-nd/4.0/

19

Instructions for crowdsourced dataset annotation. We performed our crowdsourced data annotation on the Figure 8

platform. The instructions given to annotators, which include common error types, are included below. The cost for

annotating each dataset was adjusted so that contributors were paid ~$4-5/hour. Ignoring the annual cost of a

Figure 8 subscription, we found that the marginal cost of annotating a single cell nucleus was ~1.5 cents while the

marginal cost of annotating a single cell cytoplasm was ~5.2 cents. Here, we provide the instructions given to the

annotators.

Nuclear Time-lapse Cell Annotation

Overview: In this task you will be asked to individually label cells in frames of a microscopy video.

Background: Our group is in the process of writing a computer program to automatically identify and track the

movement of individual cells in microscope images. To help us do this, we're asking you to help create annotated

datasets where single cells are manually identified. We can then feed this into the computer program to teach it how

to accurately identify cells by itself. The program developed using the data you are annotating will be used in other

research laboratories to study a range of topics, including viruses and cancer cells. The software we create is only as

good as the data used to create it, so accuracy in your annotations is extremely important.

In this job, each image consists of a sequence of snapshots in time, ordered from left to right, top to bottom. Every

image in this sequence needs to be annotated. An example of what the image should look like before and after your

annotation is shown below:

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 14, 2019. ; https://doi.org/10.1101/803205doi: bioRxiv preprint

https://doi.org/10.1101/803205
http://creativecommons.org/licenses/by-nc-nd/4.0/

20

Annotation Instructions:

You must stick to the following rules when labelling cells (further explanations are provided below):

One good strategy to use would be to start from a specific region and follow one cell at a time across all the frames.

After the first cell is colored the same across all the frames it is present in, go back and choose a neighboring one.

Continue doing this to build up to the entire frame, one cell at a time (never reuse colors for different cells, even if

the cell disappears before the end of the frames).

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 14, 2019. ; https://doi.org/10.1101/803205doi: bioRxiv preprint

https://doi.org/10.1101/803205
http://creativecommons.org/licenses/by-nc-nd/4.0/

21

Annotation Technique

Zoom in on a frame and use the brush tool to outline the cell and fill in the middle, changing the brush size using the

slider. Use the eraser tool to correct mistakes.

OR

Roughly color the same cell in all

panels using the paintbrush tool.

Click on the background of the

image with the magic tool.

Select the eraser tool and click on

the colored area that is outside of

the cell. This should leave only

the cells colored in. You should

now go back and correct the

coloring if need be.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 14, 2019. ; https://doi.org/10.1101/803205doi: bioRxiv preprint

https://doi.org/10.1101/803205
http://creativecommons.org/licenses/by-nc-nd/4.0/

22

Examples

Video instructions: A video explaining the described labelling process is here: https://youtu.be/tvzGl5b1NDw

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 14, 2019. ; https://doi.org/10.1101/803205doi: bioRxiv preprint

https://youtu.be/tvzGl5b1NDw
https://doi.org/10.1101/803205
http://creativecommons.org/licenses/by-nc-nd/4.0/

23

Cytoplasm Time-lapse Cell Annotation

Overview: In this task you will be asked to individually label cells in frames of a microscopy video.

Background: Our group is in the process of writing a computer program to automatically identify and track the

movement of individual cells in microscope images. To help us do this, we're asking you to help create annotated

datasets where single cells are manually identified. We can then feed this into the computer program to teach

it how to accurately identify cells by itself. The program developed using the data you are annotating will be

used in other research laboratories to study a range of topics, including viruses and cancer cells. The software

we create is only as good as the data used to create it, so accuracy in your annotations is extremely important.

In this job, each image consists of a sequence of snapshots in time, ordered from left to right. Every image in

this sequence needs to be annotated. An example of what the image should look like before and after your

annotation is shown below:

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 14, 2019. ; https://doi.org/10.1101/803205doi: bioRxiv preprint

https://doi.org/10.1101/803205
http://creativecommons.org/licenses/by-nc-nd/4.0/

24

Annotation Instructions:

You must stick to the following rules when labelling cells (further explanations are provided below):

One good strategy to use would be to start from a specific region and follow one cell at a time across all the

frames. After the first cell is colored the same across all the frames it is present in, go back and choose a

neighboring one. Continue doing this to build up to the entire frame, one cell at a time (never reuse colors,

even if the cell disappears before the end of the frames).

Annotation Technique

Zoom in on a frame and use the brush tool to outline the cell and fill in the middle, changing the brush size using

the slider. Use the eraser tool to correct mistakes. It is okay if you color in the black edges between images, but

NOT if the annotation crosses over into the next image.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 14, 2019. ; https://doi.org/10.1101/803205doi: bioRxiv preprint

https://doi.org/10.1101/803205
http://creativecommons.org/licenses/by-nc-nd/4.0/

25

Examples

Different Cell Shapes

Raw image

Correct
annotation

Description

Some cells are compact and
dark. These are still cells,
not debris, and SHOULD be
annotated.

Some cells are spread out and can
have very different shapes. If you
can clearly make out the edges of
the cell, you should annotate them.

Sometimes, the edges of a
cell are too hard to see.
Color in the part of the cell
that you can see clearly.

 Overlapping Cells

Raw image

Correct annotation

Description Sometimes, cells overlap but have clear boundaries. First, annotate the cell
that is on top. Lock the color you used to annotate the first cell. Then,
annotate both parts of the cell underneath as the same cell.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 14, 2019. ; https://doi.org/10.1101/803205doi: bioRxiv preprint

https://doi.org/10.1101/803205
http://creativecommons.org/licenses/by-nc-nd/4.0/

26

 Annotate As One Cell Annotate As Separate Cells

Raw image

Correct annotation

Description Sometimes, cells will appear to
overlap without clear boundaries, or
have bulges in them. Annotate these
as one cell.

Cells that are next to each other need to be annotated
as different cells. Look for boundaries between the
cells, such as in these examples. Cells sometimes
touch each other directly, and sometimes are nearby
without touching.

Video instructions: A video explaining the described labelling process is here: https://youtu.be/7nY90iJ1HZY

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 14, 2019. ; https://doi.org/10.1101/803205doi: bioRxiv preprint

https://youtu.be/7nY90iJ1HZY
https://doi.org/10.1101/803205
http://creativecommons.org/licenses/by-nc-nd/4.0/

