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ABSTRACT 36 

Transmission of Plasmodium falciparum depends on the presence of mature gametocytes that 37 

can be ingested by mosquitoes taking a bloodmeal when feeding on human skin. It has long 38 

been hypothesised that skin sequestration contributes to efficient transmission. Although skin 39 

sequestration would have major implications for our understanding of transmission biology 40 

and the suitability of mosquito feeding methodologies to measure the human infectious 41 

reservoir, it has never been formally tested. In two populations of naturally infected 42 

gametocyte carriers from Burkina Faso, we assessed transmission potential to mosquitoes and 43 

directly quantified male and female gametocytes and asexual parasites in: i) finger prick 44 

blood, ii) venous blood, iii) skin biopsies, and in pools of mosquitoes that fed iv) on venous 45 

blood or, v) directly on the skin. Whilst more mosquitoes became infected when feeding 46 

directly on the skin compared to venous blood, concentrations of gametocytes in the 47 

subdermal skin vasculature were identical to that in other blood compartments. Asexual 48 

parasite densities, gametocyte densities and sex ratios were identical in the mosquito blood 49 

meals taken directly from the skin of parasite carriers and their venous blood. 50 

We also observed sparse gametocytes in skin biopsies from legs and arms of gametocyte 51 

carriers by microscopy.  Taken together, we provide conclusive evidence for the absence of 52 

significant skin sequestration of P. falciparum gametocytes. Gametocyte densities in 53 

peripheral blood are thus informative for predicting onward transmission potential to 54 

mosquitoes. Quantifying this human malaria transmission potential is of pivotal importance 55 

for the deployment and monitoring of malaria elimination initiatives. 56 

 57 

IMPORTANCE 58 

Our observations settle a long-standing question in the malaria field and close a major 59 

knowledge gap in the parasite cycle. By deploying mosquito feeding experiments and stage-60 
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specific molecular and immunofluorescence parasite detection methodologies in two 61 

populations of naturally infected parasite carriers, we conclusively reject the hypothesis of 62 

gametocyte skin sequestration. Our findings provide novel insights in parasite stage 63 

composition in human blood compartments, mosquito bloodmeals and their implications for 64 

transmission potential. We demonstrate that gametocyte levels in venous or finger prick blood 65 

can be used to predict onward transmission potential to mosquitoes. Our findings thus pave 66 

the way for methodologies to quantify the human infectious reservoir based on conventional 67 

blood sampling approaches to support the deployment and monitoring of malaria elimination 68 

efforts for maximum public health impact. 69 

 70 

  71 
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INTRODUCTION 72 

Significant reductions in malaria burden in recent decades have stimulated malaria 73 

elimination initiatives (1). It is widely accepted that malaria elimination with current tools is 74 

unlikely for the majority of African settings (2). Therefore, novel interventions are needed and 75 

approaches that specifically reduce malaria transmission may be of key importance (3). 76 

Transmission of malaria depends on the presence of mature male and female gametocytes that 77 

circulate in the bloodstream and may be ingested by mosquitoes from the subdermal 78 

capillaries upon blood feeding. For P. falciparum, these circulating mature gametocytes are 79 

the product of a prolonged developmental process that starts with commitment of asexual 80 

parasites to the sexual pathway upon activation of AP2-G(4, 5). Developing gametocytes are 81 

sequestered for 10-12 days, primarily to the bone marrow and spleen (6), until their release 82 

into the blood circulation as mature gametocytes. Mosquitoes may become infected when 83 

feeding and ingesting mature male and female gametocytes, even if their densities in the 84 

peripheral blood are low (7). Interestingly, mosquito infections have been observed from 85 

gametocyte donors whose low gametocyte density appears incompatible with transmission 86 

(8). Mosquito infection rates are typically higher when mosquitoes feed directly on the skin of 87 

gametocyte carriers, as compared to feeding on venous blood through an artificial membrane 88 

(9, 10). In addition to a strategic adjustment of gametocyte sex-ratio to maximize transmission 89 

success (7, 11, 12), gametocyte aggregation and sequestration may facilitate mosquito 90 

infections from low gametocyte densities. Aggregation of gametocytes in blood meals has 91 

been observed (13) and may increase the chance that both male and female gametocytes are 92 

ingested. Gametocyte sequestration in the skin tissue may further increase transmission rates 93 

and would parallel sequestration patterns for other human parasites. The importance of skin 94 

sequestration for transmission to invertebrate vectors was recently demonstrated for skin-95 

dwelling Trypanosoma brucei (14), as was previously reported for Onchocerca volvulus, 96 
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different species of Mansonella, Leishmania infantum and L. donovani, where parasite burden 97 

in the skin is the best predictor of infectiousness (15-18). 98 

Indirect evidence for skin sequestration of mature gametocytes in the microvasculature 99 

of the skin was first described following surveys conducted in the 1940s and 1950s in DR 100 

Congo: gametocyte prevalence in a survey using skin scarification was 3-fold higher 101 

compared to a survey 5 years earlier using finger prick blood (19). In a follow up study with 102 

1243 paired samples, a more modest 13.4% increase in P. falciparum parasite prevalence and 103 

15.6% increase in gametocyte prevalence was observed when blood and dermal fluids from 104 

skin scarification were used for sample preparation instead of finger prick blood (20). The 105 

hypothesized skin sequestration of intra-erythrocytic P. falciparum gametocytes may be 106 

related to mechanical retention in cutaneous capillaries (21, 22), analogous to the reversible 107 

rigidity that likely prevents immature gametocytes from entering circulation (23, 24). 108 

Alternatively, sequestration may be related to gametocyte cytoadhesive properties (25) 109 

mediated by parasite proteins that are present on the infected red blood cell (iRBC) surface, 110 

analogous to adhesion of asexual P. falciparum parasites to receptors on human vascular 111 

endothelial cells by P. falciparum erythrocyte membrane-1 (PfEMP1)(26).  112 

Whilst sequestration of mature gametocytes in the skin of naturally infected 113 

individuals remains speculative, it may play an important role in determining Plasmodium 114 

transmission efficiency (8, 22). Here, we report on two independent studies in naturally 115 

infected gametocyte carriers from Burkina Faso where we quantified mature P. falciparum 116 

gametocytes in skin tissue, blood samples and mosquito blood meals in association with 117 

onward transmission to Anopheles mosquitoes. 118 

 119 

RESULTS 120 
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A total of 31 individuals aged 15-48 (median 29) participated in experiments with paired skin 121 

feeding  (27) and membrane feeding (28). The median number of dissected mosquitoes per 122 

experiment was 35 (interquartile range (IQR) 33-37) for direct skin feeding and 73 (IQR 69-123 

82) for membrane feeding. Of 31 paired experiments, 18 (58.1%) direct skin feeding and 22 124 

(71.0%) membrane feeding experiments resulted in at least one infected mosquito (p=0.289). 125 

Total gametocyte density,  quantified in venous blood by quantitative reverse transcriptase 126 

PCR (qRT-PCR) targeting female-specific Pfs25 mRNA and male-specific Pfmget mRNA 127 

(29), was positively associated with the proportion of mosquitoes that became infected 128 

following direct skin feeding (Spearman ρ=0.415, p=0.0204) or membrane feeding (Spearman 129 

ρ=0.596, p = 0.0004) (Figure 1A). The proportion of infected mosquitoes was higher by direct 130 

skin feeding as compared to membrane feeding assays (odds ratio 2.01; 95% CI 1.21 – 3.33, p 131 

= 0.007), in line with previous studies (9, 10, 30). The medium number of oocysts was 4 (IQR 132 

2-7.5; maximum 38) for mosquitoes that became infected after feeding directly on the skin 133 

and 2 (IQR 1-5; maximum 24) for mosquitoes that became infected after feeding on venous 134 

blood through a membrane feeder. 135 

To examine whether this higher infectivity in direct skin feeding assays was related to 136 

higher ingested gametocyte densities, or to a higher gametocyte fraction in the blood meal, we 137 

directly quantified gametocytes and asexual parasites in mosquito blood meals. The blood 138 

content of individually fed mosquitoes was released into an RNA preservative 15 minutes 139 

after starting the feeding; RNA was then extracted and quantified from pools of 4 mosquitoes. 140 

We quantified asexual parasites by skeleton-binding protein 1 sbp1 qRT-PCR (31) and 141 

gametocytes (Pfs25 and Pfmget qRT-PCR) in a median of 3 mosquito pools per participant, 142 

each containing 4 individual mosquitoes, from skin-feeding (range=2-3) and 4 pools per 143 

participant, each containing 4 individual mosquitoes, from membrane feeding (range=2-4). 144 

We observed strong correlations between parasite quantities in pools of mosquitoes that fed 145 
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on skin or venous blood through artificial membranes for asexual ring-stage parasites 146 

(r=0.921, p<0.0001), male (r=0.790, p<0.0001) and female gametocytes (r=0.655, p=0.0001) 147 

(Figure 1B). We also expressed gametocytes as a fraction of the total parasite biomass. This 148 

fraction ranged from very low (<1% gametocytes in an individual with 21,086 ring-stage 149 

asexual parasites/µL and 179 gametocytes/µL) to 100% in 3 individuals without asexual 150 

parasites detected by qRT-PCR (Figure 1C). We observed no tendency towards a higher 151 

fraction of gametocytes in skin-fed mosquitoes or capillary blood compared to venous blood 152 

(Figure 1D).  153 

In a complementary study, 9 adult gametocyte carriers participated in skin biopsy 154 

sampling. After a screening visit, participants were seen on 2 occasions spaced 4 days apart. 155 

One participant came on day 5 for the return visit instead of day 4; one other participant 156 

withdrew consent prior to the second visit. On each occasion, venous blood, finger prick 157 

blood and 4 small skin biopsy punches were taken from the leg (n=2) and arm (n=2). Half of 158 

these biopsies were used for RNA extraction; the other half for histological assessments. Male 159 

and female gametocytes and ring-stage asexual parasites were quantified by qRT-PCR to 160 

calculate the gametocyte fraction in finger prick blood (16 observations; 9 donors), venous 161 

blood (n=16; 9 donors), as well as skin tissue from the arm (n=13; 7 donors) and leg (n=12; 8 162 

donors). Gametocytes were detected in all tissue and all blood samples by qRT-PCR; asexual 163 

parasites were detected in 17/25 tissue and in 30/32 blood samples. The gametocyte fraction 164 

was highly variable between donors (and between time-points) whilst estimates from the 165 

different compartments from the same donor and time-point showed strong correlation: the 166 

gametocyte fraction in venous blood was strongly associated with that in finger prick blood 167 

(Spearman ρ  =0.947, p<0.0001), arm skin tissue (Spearman ρ = 0.928, p < 0.0001) and leg 168 

skin tissue (Spearman ρ = 0.870, p=0.0002) (Figure 2A). Parasite density estimates per 169 

microliter of blood or tissue were generally lower in the skin tissue compared to blood 170 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 14, 2019. ; https://doi.org/10.1101/803296doi: bioRxiv preprint 

https://doi.org/10.1101/803296
http://creativecommons.org/licenses/by/4.0/


9 
 

samples (Figure 2B) and not significantly different between venous or finger prick blood 171 

(p≥0.121) or between leg skin tissue or arm skin tissue (p≥=0.116). The same RNA aliquots 172 

were also processed for analysis by Nanostring expression array, a highly sensitive probe-173 

based expression platform that we have optimized for use in P. falciparum (32, 33). Using a 174 

previously defined stage-specific marker set for asexual rings and mature gametocytes  (33, 175 

34), there was no evidence for higher gametocyte transcripts in skin samples compared to 176 

blood samples (Figure 2C). The two approaches to quantify gene expression also showed a 177 

strong correlation for sbp1 and Pfs25 (Figure 2D).   178 

To directly detect gametocytes in subcutaneous tissue, skin biopsy samples that were 179 

stored in formalin were processed for imaging. Given the low densities of gametocytes 180 

predicted based on the qRT-PCR quantification (estimated median of 55.0 gametocytes in arm 181 

tissue samples (IQR 28.2-153.0) and 36.9 gametocytes in leg tissue samples (IQR 11.6-98.3); 182 

we established a protocol to image 10μm sections by confocal microscopy, hence maximizing 183 

the detectability of sparse gametocytes (Figure 3A). Skin sections were initially analysed by 184 

haematoxylin and eosin staining and labelled with the endothelial marker CD31 (Figures 3B) 185 

to confirm integrity of the tissue. Evaluation of gametocyte markers identified Pfs16 186 

antibodies (6, 35) as highly specific and sensitive using the confocal imaging protocol (Figure 187 

3C), while antibodies against Pfs48/45 and Pfs230 were unable to detect gametocytes in 188 

formalin fixed parasites and therefore not evaluated further. Screening of at least 12 sections 189 

per skin snip in arm and leg samples from each participant identified several putative 190 

gametocytes. A Pfs16 positive cell with a characteristic crescent shape, three-dimensional 191 

structure and nuclear stain is shown in close association with a vessel (Figure 3D and 192 

Supplementary movies 1 and 2). Based on these results, with low success gametocyte 193 

detection rates by this highly sensitive fluorescence microscopy protocol, no further 194 

gametocyte carriers were recruited as tissue donors.  195 
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 196 

DISCUSSION 197 

Here, we tested a long-standing hypothesis of P. falciparum gametocyte sequestration in skin 198 

tissue in two populations of naturally infected individuals in Burkina Faso. By combining 199 

mosquito feeding assays and direct quantification of parasite populations in skin tissue, 200 

mosquito blood meals and blood compartments, we conclude that there is no evidence for 201 

significant skin sequestration of mature gametocytes. 202 

Parasite sequestration in skin tissue is an intuitive explanation for how vector-borne 203 

parasites can maximize the likelihood of update by blood-feeding insects. This phenomenon, 204 

well demonstrated for a range of helminths (15-18) and protozoic trypanosomes (14), has 205 

remained speculative for Plasmodium parasites (22). Two recent studies in Cameroonian 206 

parasite carriers that used microscopy as diagnostic tool yielded conflicting results: one 207 

observed higher P. falciparum parasite prevalence in finger prick capillary blood compared to 208 

venous blood from hospital patients (36), the other found no differences for asexual parasites 209 

or gametocytes in gametocyte carriers (37). The utility of finger prick blood to estimate 210 

parasite biomass in skin tissue is uncertain. Studies published in the 1940s and 50s reported 211 

superiority of skin scarification as compared to finger prick blood samples for parasite 212 

detection (19, 20, 38). In the most extensive of these studies, in 1243 natural infections, 1 cm
2
 213 

skin of the scapular region was very slightly scarified with 4-5 light incisions, expressing a 214 

mixture of dermal fluids and capillary blood, with the first drop appearing richest in parasites 215 

(20). This study demonstrated a 10-20% increase in prevalence of asexual parasites and 216 

gametocytes of P. vivax, P. malariae and P. falciparum but not P. ovale. Also parasite 217 

density, expressed as parasites per 15,000 examined white blood cells, appeared increased 218 

(20). In the current study, we therefore not only collected venous blood and finger prick blood 219 

but we also directly quantified parasite stage composition in skin tissue of naturally infected 220 
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donors and in blood meals of mosquitoes that naturally fed on the skin of the corresponding 221 

donor. We used the absolute quantity of gametocytes and the fraction of the total parasite 222 

biomass that is gametocyte as indicators of sequestration. In skin biopsy samples, we only 223 

sporadically encountered gametocytes by histology. We chose a fluorescence imaging 224 

protocol to image thick sections by confocal microscopy. This method allowed capturing of 225 

entire parasites and three-dimensional reconstruction of parasite and surrounding tissues. 226 

Using Pfs16 labelling we classified gametocytes by crescent shape, three-dimensional 227 

structure (as opposed to non-specific speckles and autofluorescence, which is an inherent 228 

issue of this approach), nuclear stain and presence of a surrounding red blood cell. The 229 

frequency of immunofluorescence-detected gametocytes in our tissue samples was lower than 230 

that by molecular methods in a tissue sample taken during the same visit. The quality of the 231 

skin tissue, tested by analysing the tissue sections by haematoxylin and eosin staining, as well 232 

as by labelling for endothelial cells, clearly indicates they were processed and preserved well. 233 

In contrast, molecular detection of gametocytes was successful for all tissue samples 234 

by qRT-PCR and for the majority of samples by Nanostring. Because the volume of blood is 235 

unknown in tissue samples and specifically gametocytes are hypothesized to be enriched in 236 

skin tissue (19, 20, 22), we compared the gametocyte fraction between different blood 237 

compartments and found no evidence for a biased gametocyte fraction. Gametocyte 238 

quantification in mosquito blood meals corroborated this finding and allowed a direct 239 

comparison of parasite densities. Again, we observed no evidence for higher concentrations of 240 

gametocytes in mosquitoes that fed directly on the skin of gametocyte donors compared to 241 

venous blood and observed a very strong association between gametocyte fractions from the 242 

different blood compartments. There must therefore be an alternative explanation for the 243 

higher infection rates that we, in line with other studies (9, 10), observed in direct skin feeding 244 

experiments compared to membrane feeding experiments using venous blood. Gametocyte 245 
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activation may occur following phlebotomy and may reduce infection rates observed 246 

following membrane feeding. In addition, anticoagulants used in phlebotomy can have a 247 

pronounced effect on mosquito infection rates (39). Although heparin is the preferred 248 

anticoagulant (39), it may still have a disadvantageous impact on sporogonic development. In 249 

malaria-naïve individuals in whom P. falciparum gametocytes were induced during controlled 250 

human malaria infection studies, replacement of heparin plasma by serum resulted in 251 

increased mosquito infection rates (10). Since human immune responses are unlikely to be of 252 

relevance in these gametocytaemic volunteers, this observation provides additional indirect 253 

evidence for a transmission modulatory effect of heparin. 254 

We conclude that there is no evidence for gametocyte sequestration in skin tissue. Our 255 

findings argue against a long-standing hypothesis that never had a solid evidence base or 256 

proposed mechanism. Since the deformability of erythrocytes infected with mature 257 

gametocytes is similar to that of uninfected erythrocytes (23, 40) and there is no evidence for 258 

antigens on the surface of mature gametocyte-infected erythrocytes (41, 42), it is perhaps 259 

unsurprising that gametocyte concentrations are similar in the different blood compartments. 260 

While direct skin-feeding assays tend to result in higher infectivity compared that observed in 261 

indirect feeding procedures using venous blood, our data demonstrate that any differences 262 

observed are based on technical rather than biological differences in the feeding procedure. 263 

Our findings also indicate that gametocyte levels in venous or finger prick blood can be used 264 

to predict onward transmission potential to mosquitoes. Our findings thus pave the way for 265 

methodologies to quantify the human infectious reservoir based on conventional blood 266 

sampling approaches to support the deployment and monitoring of malaria elimination efforts 267 

for maximum public health impact. 268 

 269 

MATERIALS AND METHODS 270 
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Ethics statement 271 

Ethical approval for the studies was granted by the Ethical Review Committee of the Ministry 272 

of Health of Burkina Faso (Deliberation numbers 2016-03-033 and 2017-02-018) and the 273 

Ethics Committee of the London School of Hygiene and Tropical Medicine (#10489 and 274 

#11962). Individual written informed consent was obtained from each participant prior to 275 

enrolment. Malaria cases were treated according to the National guidelines in Burkina Faso 276 

(43). 277 

 278 

Study site and population 279 

Study participants were recruited in the village of Balonghin, located in Saponé district, in 280 

Burkina Faso. Malaria transmission is seasonal and intense. The main malaria vectors are 281 

Anophele gambiae s.s, An. coluzzii, An. arabiensis and An. funestus. P. falciparum parasite 282 

carriage and gametocyte carriage by molecular methods in the study area are 51-84% and 49-283 

75%, respectively (44).  284 

 285 

Study design 286 

Paired skin feeding and membrane feeding study 287 

This study was conducted in October-December 2017. Individuals from the eligible age range 288 

(15-50 years) in the study area were invited to study information meetings based on a village 289 

census list and, if expressing an interest to participate, invited for screening at Balonghin 290 

health facility. Eligible participants had P. falciparum gametocyte densities ≥1 291 

gametocyte/500 leucocytes by microscopy (≥16 gametocytes/μL when assuming 8000 292 

leucocytes/ μL). Exclusion criteria were: signs of acute or chronic disease that required 293 

immediate clinical care; haemoglobin concentration <8 g/dL; current or previous participation 294 

in malaria vaccine trials; recent blood transfusion or administration of blood products; use of 295 
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antimalarials in the last 2 weeks; co-infection with P. malariae or P. ovale. Eligible 296 

participants were provided transport to the Centre National de Recherche et de Formation sur 297 

le Paludisme (CNRFP) in Ouagadougou for membrane feeding and skin feeding. Immediately 298 

after venipuncture in lithium heparin and EDTA tubes (BD Vacutainer™), 400-500µL of 299 

heparinized blood in duplicate (for infectivity) and 400-500µL EDTA blood (for gametocyte 300 

quantification in blood meals) was offered to 60 starved 4–5-day-old female An. coluzzii 301 

mosquitoes via an artificial membrane attached to a water-jacketed glass feeder maintained at 302 

37°C (28). After exactly 15 minutes of feeding in the dark, fully fed mosquitoes from heparin 303 

blood were transferred to storage cups by aspiration and maintained with glucose solution at 304 

27-29°C for 6-8 days before dissection with 1% mercurochrome staining and examination for 305 

oocysts by two independent microscopists. From mosquitoes that fed on EDTA blood, 16 306 

fully fed mosquitoes were sacrificed after feeding for exactly 15 minutes by sharp needle 307 

puncture of their midguts to release the blood contents into 50µl of RNAprotect cell reagent; 308 

blood meal material was stored for individual mosquitoes at -80°C. Immediately following 309 

membrane feeding, direct skin feeding took place. The participant’s calves were exposed to 310 

60 mosquitoes distributed over 2 paper cups that were allowed to feed for exactly 15 minutes. 311 

From this group, 12 fully fed mosquitoes were immediately sacrificed and their midguts 312 

punctured as described above. Remaining mosquitoes were maintained on glucose solution 313 

before dissections for oocyst presence, as above. In addition to the membrane and direct skin 314 

feeding assays, K2EDTA blood was collected by venipuncture (BD Vacutainer™) and finger 315 

prick (BD Microtainer®).  316 

 317 

Skin biopsy study 318 

In the period September 2016-March 2017, adults (aged 18-50 years) were invited for study 319 

participation as described above. Participants were eligible if they had P. falciparum 320 
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gametocyte densities ≥1 gametocyte/500 leucocytes by microscopy (≥16 gametocytes/μL). 321 

For skin biopsy sampling, exclusion criteria were signs of acute or chronic disease that 322 

requires immediate clinical care; haemoglobin concentration <11 g/dL; skin infections or 323 

conditions; history of vasovagal responses to blood sampling or biopsies; allergy to lidocaine/ 324 

prilocaine. Eligible individuals were invited to the CNRFP central lab in Ouagadougou on 325 

two occasions, 4 days apart for sample collection. At each occasion, skin biopsy samples 326 

including the dermis and hypodermis were taken from under the arm (n=2) and leg (n=2) 327 

using single use punchers (4mm Biopsy Punch; Miltex Inc. York, US). This procedure was 328 

performed 1 hour after applying local anaesthetic by means of a xylocaine-adrenaline by a 329 

qualified dermatologist. Half of the biopsy samples (one each from arm and leg) were 330 

immediately immersed in 2 mL of 10% formalin and placed at 4°C overnight; following 331 

washing, samples were stored in 2 mL of 70% ethanol and stored at 4°C until further 332 

processing.  Other biopsy samples were transferred to 1000 µL RNALater stabilization 333 

reagent (Qiagen), incubated overnight at 2-8°C and then transferred to -80°C. Finger prick 334 

and venous blood samples were collected in EDTA-coated tubes, as above.  335 

 336 

Molecular analysis 337 

Mosquito homogenates were pooled (4 mosquitoes in a total of 200µl of RNAprotect per 338 

pool) with 4 pools (16 mosquitoes) for membrane feeding experiments and 3 pools per skin 339 

feeding experiment (12 mosquitoes). Mosquitoes where no blood was released into 340 

RNAprotect (upon visual expectation upon thawing) were not used for extraction and, as a 341 

result, fewer pools of mosquitoes were extracted. Nucleic acids from these 200μL mosquito 342 

pools and from 100μL venous and finger prick whole blood samples in RNAprotect Cell 343 

Reagent were isolated using the bead-based MagNAPure LC automatic extractor (Total 344 

Nucleic Acid Isolation Kit—High Performance, Roche Applied Science) and eluted in 50μL 345 
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of water.  In these samples, ring-stage asexual parasites, female gametocytes and male 346 

gametocytes were quantified by individual quantitative reverse-transcription PCR (qRT-PCR) 347 

assays targeting sbp1 (31); Pfs25 (45) and PfMGET (29), respectively. Skin biopsy samples 348 

were immediately stored in RNAlater solution after collection. RNA extraction from skin 349 

tissue was performed using the Qiagen RNeasy Plus Mini kit (Qiagen). First, the tissue 350 

samples were removed from RNAlater solution and then homogenized in RLT lysis buffer 351 

(Qiagen) using Polytron Homogenizer (Kinematica). The homogenized lysate was passed 352 

through genomic DNA eliminator columns (Qiagen) and subsequently applied to RNeasy spin 353 

columns. Following several washes, RNA was eluted in nuclease-free water according to the 354 

manufacturer’s instructions.  355 

The NanoString nCounter custom code set included differentially expressed genes to 356 

distinguish specific P. falciparum parasite stages as defined from our previous study (34). A 357 

total of 456 parasite genes were included in the custom probe set including housekeeping 358 

genes. 161 genes representing asexual circulating stages, 147 genes representing asexual 359 

sequestering stages, 26 genes representing gametocyte rings, 27 immature gametocytes and 29 360 

mature gametocyte genes. The remaining set was not annotated for any of these parasite 361 

stages. For NanoString analysis, 5 l of purified total RNA was used for initial hybridization 362 

reaction. RNA from each sample was allowed to hybridize with reporter and capture probes at 363 

65°C for 20 hours according to the nCounter gene expression assay protocol (NanoString 364 

Technologies). RNA-probe complexes were immobilized to nCounter cartridge followed by 365 

scanning in the nCounter Digital Analyzer. Data was first normalized by applying background 366 

subtraction and then normalized to expression of housekeeping genes using the R package 367 

”NanoStringNorm”. The dataset was then quantile normalized using the R package 368 

”aroma.light” and rank scaled. Mature gametocyte and asexual marker genes, as defined in
33

, 369 

were then averaged per patient, per tissue and per visit. 370 
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 371 

Histological analysis of skin samples 372 

Skin biopsies were processed by passing through an increasing alcohol gradient and xylene 373 

before embedded in paraffin wax. 10m sections of biopsy samples were cut on a microtome 374 

and placed on adhesion slides (SuperFrost® Plus Gold, VWR). Slides were dried at room 375 

temperature for at least one hour then baked overnight at 42C. The slides were allowed to 376 

reach room temperature before proceeding with the staining protocol. Slides were incubated at 377 

60C to melt the wax around the section; sections were cleared with xylene and rehydrated by 378 

passing through a decreasing alcohol gradient (xylene: 5 minutes twice; 100% ethanol: 3 379 

minutes, twice; 90% ethanol: 3 minutes, twice; 70% ethanol: 3 minutes, twice). After 380 

incubation in distilled water for 3 minutes, heat induced antigen retrieval was performed using 381 

citrate buffer pH 6.0 (TCS Biosciences) in a table top autoclave. Slides were immersed in 382 

buffer using a metal rack in an empty tip box (without lid) and autoclave initiated until it 383 

reached 126C, at which point the autoclave was unplugged and slides allowed to incubate in 384 

the autoclave for a further 10 minutes. Subsequently, the slides were removed and cooled in 385 

their buffer in a running water bath. Once at room temperature, slides were transferred to 386 

distilled water and then TBST (Tris Buffered Saline with 0.05% Tween 20) for 3 minutes 387 

each. Slides were then blocked with goat block containing 2.5% normal goat serum (Vector 388 

Laboratories) complemented with 2.5% normal human serum (ThermoFisher Scientific). All 389 

blocking and staining were performed in a humidified chamber. All staining solutions were 390 

removed by tapping the side of the slide gently on tissue paper. Excess liquid was removed by 391 

wicking away with tissue paper, being careful not to touch the sections. This was done to 392 

maintain intact, well-formed skin sections which are particularly delicate. After 30-60 minutes 393 

blocking at room temperature, the slides were incubated in primary antibodies diluted in goat 394 

block. Sections were stained with 1:20 (1.12g/ml) mouse anti-CD31 (Cell Marque: clone 395 
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JC70) at 4C overnight or 1:1250 (1.04g/ml) rabbit anti-Pfs16 (6) at room temperature for 396 

one hour. The slides were then washed with TBST for 3 minutes thrice before adding 1:100 397 

goat anti-mouse IgG-AlexaFluor488 (ThermoFisher, A-11029) or 1:250 goat anti-rabbit IgG-398 

AlexaFluor647 (ThermoFisher, A-21245) secondary antibody diluted in goat block and 399 

incubated at room temperature for 30 minutes. Following secondary antibody staining, the 400 

sections were washed twice with TBST and then once with TBS for 3 minutes each, before 401 

incubation with 2.5nM final concentration of DAPI diluted in TBS for 10 mins at room 402 

temperature. Sections were washed twice more in TBS for 3 minutes, before addition of 403 

TrueView autofluorescence quenching reagent (Vector Laboratories) and incubation for 3 404 

minutes at room temperature. Sections were washed once more in TBS for 5 minutes before 405 

mounting with Vectashield Vibrance mountant (Vector Laboratories). Slides were viewed on 406 

a Nikon A1R inverted confocal microscope with Piezo Z-drive to acquire z-stacks. In addition 407 

to skin biopsies, clots of cultured P. falciparum parasites (strains Pf2004, 3D7 and NF54) 408 

were generated to act as positive and negative controls. Asexual and mixed asexual-immature 409 

gametocyte clots and mature gametocyte clots were generated as described previously (6). 410 

Sections of formalin fixed paraffin embedded blocks were used to optimise Pfs16 antibody 411 

and DAPI staining and determine the staining of mature gametocytes. Using these controls 412 

gametocytes in the skin were determined by their circumferential staining with Pfs16 and 413 

obvious outline of a red blood cell. Red blood cells were determined by their bright 414 

autofluorescence under 488nm laser light. Images and movies were generated using Image J 415 

software. 416 

 417 

Sample size justification 418 

For the paired skin feeding-membrane feeding study, we assumed an average of 15% infected 419 

mosquitoes in patent gametocyte carriers with a standard deviation of 20% and a within 420 
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subject correlation of the outcome of 0.5 (9, 46, 47). If we then expected two-fold higher 421 

mosquito infection rates in direct skin feeding, 17 paired membrane feeding and skin-feeding 422 

experiments on patent gametocyte carriers would give 80% power to detect this difference at 423 

an alpha of 0.05. Sample size justification for skin-biopsy sampling was based on a paired 424 

comparison of the proportion of the total parasite population that is mature gametocyte. We 425 

expected that 73% of the skin snip biopsy samples had higher gametocyte concentrations, 426 

based on a meta-analysis that demonstrated enhanced infectivity following skin feeding 427 

compared to venous blood membrane-feeding (9). When assuming that 70% of infected adults 428 

have detectable malaria parasites in skin tissue and allow quantification of the proportion of 429 

parasites that is gametocyte, and a lower limit of the 95%-CI >50%, 45 paired skin snip 430 

samples and venous/finger prick blood samples would give 83% power with an alpha of 0.05 431 

to detect a different in parasite stage composition. A go/no-go criterion was defined where an 432 

initial 10 gametocyte carriers were recruited for biopsy samples and additional participants 433 

would only be recruited if gametocytes were detected in ≥50% of all samples. 434 

 435 

Statistical analysis 436 

All statistical analyses were performed in STATA version 15.0 (Statacorp; College Station, 437 

TX, US). The proportion of infectious gametocyte carriers was compared between paired 438 

feeding experiments using McNemar’s test; the proportion of infected mosquitoes was 439 

compared between direct skin feeding and membrane feeding using logistic regression 440 

controlling for study participant as a fixed effect. Spearman non-parametric correlation 441 

coefficients were calculated to assess associations between continuous variables; the paired 442 

Wilcoxon rank-sum test was used to compare parasite densities between blood or tissue 443 

samples from the same participants. The gametocyte fraction was calculated as the sum of 444 
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male and female gametocytes, expressed as a proportion of the total parasite biomass of 445 

asexual ring-stage parasites and gametocytes. 446 

 447 

Supplemental data 448 

Supplementary movie 1 (3D movie): 449 

3D projection of Z-stack of mature gametocyte in skin snip. This movie shows the 3D 450 

reconstruction of the z-stack (step-size 0.2 micron) to illustrate the localisation of a mature 451 

gametocyte. The gametocyte is stained with Pfs16 (magenta), denoted by DAPI staining 452 

(cyan), and within an RBC (yellow. It is in close proximity to skin vasculature. Movie was 453 

generated using Image J software. 454 

 455 

Supplementary Movie  2 (Z stack): 456 

Z-stack of mature gametocyte in skin snip. Confocal z-stack of mature gametocyte taken 457 

across the whole thickness of the section (step-size 0.2 micron). Gametocyte stained with 458 

Pfs16 (magenta), with DAPI (cyan) nuclear staining. Movie generated using Image J 459 

software. 460 

 461 

Data availability 462 

Data underlying this manuscript are available through  463 

https://datadryad.org/stash/share/_Di1z3S3jl2ahewKXHAXHfAtl7slSBGNAZmgueslqbI. 464 
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 656 

FIGURE LEGENDS 657 

Figure 1. The density and infectivity of gametocytes in different blood compartments. A. 658 

Gametocyte density in venous blood in association with the proportion of mosquitoes that 659 

become infected when feeding directly on the skin of the blood donor (blue) or on venous 660 

blood offered through an artificial membrane feeder (red). Size indicates the number of 661 

examined mosquitoes; error bars indicate the 95% confidence interval around the proportion 662 

of infected mosquitoes. B. The density of ring stage asexual parasites (green), male 663 

gametocytes (blue) and female gametocytes (red) in mosquito blood meals when feeding 664 

directly on the skin (X-axis) versus venous blood offered through an artificial membrane 665 
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feeder (Y-axis). Error bars indicate the standard error of density estimates in pools of 666 

mosquitoes fed directly on the skin (median 3 pools) or venous blood (median 4 pools). C. 667 

The fraction of the total parasite biomass that is gametocyte in finger prick capillary blood 668 

(red), mosquitoes that fed directly on the skin (green), mosquitoes that fed on venous blood 669 

(blue) or venous blood (purple). The box plot indicates median, interquartile range and range; 670 

dots indicate individual samples.  D.   The gametocyte fraction in venous blood (X-axis) 671 

versus on the Y-axis finger prick capillary blood (red; Spearman ρ=0.970; p<0.0001), 672 

mosquitoes that fed directly on the skin (green; Spearman ρ= 0.916; p<0.0001), mosquitoes 673 

that fed on venous blood (green; Spearman ρ=0.912; p<0.0001). 674 

 675 

Figure 2. qRT-PCR and Nanostring comparison of parasite densities in skin biopsy 676 

samples and blood samples. A. Gametocyte fractions (the proportion of gametocytes in the 677 

total parasite biomass assessed by sbp1, Pfs25 and PfMGET qRT-PCR) across compartments. 678 

B-D. Relative numbers of asexual parasites and gametocytes in skin tissue from the arm, skin 679 

tissue from the leg, finger prick and venous blood based on qRT-PCR (B) and Nanostring (C). 680 

Nanostring data were normalized on the basis of background subtraction and expression of 681 

housekeeping genes. D. Correlation between estimates of ring-stage asexual parasites by sbp1 682 

and female gametocytes by Pfs25 for qRT-PCR (X-axis) and Nanostring (Y-axis) showing 683 

good agreement but higher sensitivity of qRT-PCR.  684 

 685 

Figure 3. Histological analysis of skin samples. A. 10m cross section of a skin snip from 686 

leg with dimensions indicated. Sample was stained with CD31 and DAPI and a maximum 687 

projection across the depth of the section is shown. The insert represents a small section 688 

including several vessels stained with CD31. Scale bar = 500μm, insert = 10m.   B. 3m 689 

section of a skin snip from arm stained with haematoxylin and eosin. Sections in A and B 690 
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show the different layers of the epidermis on top, followed by the dermis with multiple 691 

vessels. C. Samples were stained with DAPI (cyan) and Pfs16 (magenta) for gametocytes. 692 

Representative images of asexual parasite (left), an immature (middle) and mature (right) 693 

gametocyte images from control blood clots. Scale bar = 10m. D. Representative image of a 694 

gametocyte in skin samples from arm. DAPI staining indicates several vessels in the vicinity 695 

of a gametocyte stained with Pfs16. XZ and YZ orientations are included to demonstrate the 696 

three-dimensional nature of the tissue section and the gametocyte. Scale bar = 10m. 697 

 698 
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