
A MULTIDIMENSIONAL ARRAY REPRESENTATION OF
STATE-TRANSITION MODEL DYNAMICS

A PREPRINT

Eline M. Krijkamp∗
Department of Epidemiology

Erasmus University Medical Center
Rotterdam, The Netherlands

Fernando Alarid-Escudero∗†
Drug Policy Program

Center for Research and Teaching in Economics
(CIDE)-CONACyT

Aguascalientes, Ags., Mexico, 20313
fernando.alarid@cide.edu

Eva A. Enns
Division of Health Policy and Management

University of Minnesota School of Public Health
Minneapolis, MN, USA 55455

Petros Pechlivanoglou
Child Health Evaluative Sciences

The Hospital for Sick Children, Toronto, ON, Canada
Institute for Health Policy Management and Evaluation

University of Toronto, ON, Canada

M.G. Myriam Hunink
Departments of Epidemiology and Radiology

Erasmus University Medical Center
Rotterdam, The Netherlands

Center of Health Decision Sciences
Harvard T.H. Chan School of Public Health

Boston, MA, USA

Hawre J. Jalal
Graduate School of Public Health

University of Pittsburgh
Pittsburgh, PA, USA

October 15, 2019

ABSTRACT

Cost-effectiveness analyses often rely on cohort state-transition models (cSTMs). The cohort trace
is the primary outcome of cSTMs, which captures the proportion of the cohort in each health state
over time (state occupancy). However, the cohort trace is an aggregated measure that does not
capture the information about the specific transitions among the health states (transition dynamics). In
practice, these transition dynamics are crucial in many applications, such as incorporating transition
rewards or computing various epidemiological outcomes that could be used for model calibration
and validation (e.g. disease incidence and lifetime risk). In this manuscript we propose modifying
the transitional cSTMs cohort trace computation to compute and store cSTMs dynamics that capture
both state occupancy and transition dynamics. This approach produces a multidimensional matrix
from which both the state occupancy and the transition dynamics can be recovered. We highlight the
advantages and potential applications of this approach with an example coded in R to facilitate the
implementation of our method.
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State transition models (STM) are decision models commonly used in cost-effectiveness analysis (CEA) to capture
economic and health outcomes of different strategies over time in discrete time cycles [1, 2]. In a cohort STM (cSTM),
the disease dynamics are captured by distributing a closed cohort among a mutually exclusive and collectively exhaustive
set of health states [2, 3, 4]. The cohort trace is the primary outcome of cSTMs, which stores the proportion of the
cohort in each health state over time (i.e., it summarizes state occupancy) [5, 1]. A limitation of the cohort trace is that
it does not keep track of the transitions among health states over time (i.e., the transition dynamics of the cohort). As a
consequence, it can only be used to capture outcomes that involve residing in a state for a full cycle to compute the
so-called state rewards and does not contain a mechanism to assign transition rewards, which are applied only when
specific transitions occur. It also limits the type of epidemiological outcomes that can be obtained from cSTMs. For
example, obtaining incidence of a disease requires knowledge of the proportion of the population transitioning from a
subset of states without disease to the state(s) representing the disease of interest.

To overcome the limitations of the cohort trace, we propose a multidimensional array-based approach that serves as a
full summary of cSTM dynamics that complements the already useful cohort trace. The proposed approach allows
modelers to efficiently calculate all measures of interest that rely on transition dynamics and at the same time to
aggregate this into a standard cohort trace.

We start by providing a formal definition of cSTMs elements and the cohort trace. We complement this standard
notation with a description of the detailed transition dynamics. Then, we introduce the multidimensional-array
structure and show how it can be easily generated. Finally, we illustrate its use to compute a measure of interest
that depends on transitions among health states. We demonstrate this approach with an illustrative example of a
cSTM programmed in R provided in the supplementary material and in GitHub https://github.com/DARTH-git/
state-transition-model-dynamics)[9, 10].

Traditional cohort trace approach

We denote the distribution of the cohort across ns health states in a cSTM at cycle t as the state vector mt of dimensions
1 × ns. That is, each element in mt represents the proportion of the cohort in health state i at time t. Thus, mt is
written as

mt =
[
m[t,1] m[t,2] · · · m[t,ns]

]
, (1)

where the initial state vector m0 contains the distribution of the cohort across all ns health states at the start of the
simulation. The cohort distribution evolves over time governed by state transition probabilities. The probability of
transitioning from health state i to health state j in cycle t is denoted as p[i,j,t]. The collection of transition probabilities
across the model states over the time horizon forms the time-dependent state transition probability matrix, Pt of
dimensions ns × ns,

Pt =


p[1,1,t] p[1,2,t] · · · p[1,ns,t]

p[2,1,t] p[2,2,t] · · · p[2,ns,t]

...
...

. . .
...

p[ns,1,t] p[ns,2,t] · · · p[ns,ns,t]

 . (2)

For any t, all rows of Pt must sum to one. Note that if Pt is equal for all t times, equation (2) becomes a time-
homogeneous transition probability matrix, where Pt = P .
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The state vector at cycle t+ 1, mt+1, is then obtained by the inner product between the state vector at cycle t, mt, and
the corresponding transition probability matrix Pt, such that

mt+1 = mtPt for t = 0, . . . , (nt − 1). (3)

Stacking the state vectors by rows for all t = 0, . . . , nt results in the full cohort trace matrix, M , of dimensions
(nt + 1)× ns, where each row is a state vector (−mt−), resulting in

M =


−m0−
−m1−

...
−mnt

−

 . (4)

Together, the state vectors mt, the transition probability matrices Pt and the cohort trace M in equations (1), (2) and
(4), respectively, represent the three main components of a cSTM.

Dynamics-array approach

The trace matrix M aggregates transitions from all the states to a specific state, thus loses details of the transition
dynamics. We propose to use a multidimensional array, A, of dimensions ns × ns × (nt + 1) to store the proportion of
the cohort that transitions between any two health states in each cycle over the time horizon. This array can be thought
of as a set of two-dimensional matrices stacked along a third dimension that represents time. Below, we illustrate how
to compute A from the three main components of cSTMs described above.

A0 represents the first "slice" of A. We compute A0 as a matrix containing the initial state vector m0 in its diagonal
and 0s in the off-diagonal, such that

A0 = diag(m0) =


m[0,1] 0 · · · 0

0 m[0,2] · · · 0
...

...
. . .

...
0 0 · · · m[0,ns]

 . (5)

Each subsequent (t+ 1)-th "slice" of A is obtained by multiplying a diagonal matrix of mt, denoted as diag(mt), by
Pt, such that

At+1 = diag(mt) · Pt for t = 1, . . . , (nt − 1). (6)

The resulting elements of the "t-th slice" of A, At for t > 0, are

At =


a[1,1,t] a[1,2,t] · · · a[1,ns,t]

a[2,1,t] a[2,2,t] · · · a[2,ns,t]

...
...

. . .
...

a[ns,1,t] a[ns,2,t] · · · a[ns,ns,t]

 , (7)

where a[i,j,t] is the proportion of the cohort that transitions from state i to state j between cycles t− 1 and t, generated
via

a[i,j,t] = m[t−1,i]p[i,j,t−1] for t = 1, . . . , (nt − 1), (8)
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where m[t−1,i] is the proportion of the cohort in state i at cycle t − 1 and p[i,j,t−1] the corresponding transition
probability at cycle t− 1 of transitioning from state i to state j. In other words, A stores the transition dynamics of a
simulated cohort in a cSTM.

Figure 1 compares graphically the computation involved in both the traditional cohort-trace approach (a) and the
dynamics-array approach (b) and shows the structures of the resulting cohort trace M and dynamics-array A (c) and
how A recovers the transition dynamics that are being aggregated in M .

Figure 1: (a) The cohort trace approach computes row vector mt+1 of the cohort trace M that describes the distribution
of the simulated cohort among the different health states at time t+ 1. mt+1 results from multiplying the state vector
mt (gray) by the transition probability matrix Pt. (b) The dynamics-array approach computes matrix At+1 containing
information regarding the transition dynamics of the simulated cohort at time t+ 1. The state vector mt is highlighted
(gray) to emphasize that the information in both approaches is identical. (c) Shows the resulting matrix M and array A

of the approaches (a) and (b), respectively.

In R, it takes only a few lines of code to generate A complementary to M (Box 1).

1 for(t in 1:n.t){ # loop through the number of cycles
2 m.M[t + 1, ] <- m.M[t, ] %*% m.P # estimate the state vector for the next cycle (t + 1)
3 a.A[, , t + 1] <- diag(m.M[t, ]) %*% m.P # estimate the transition dynamics at t + 1
4 }

Box 1: R code to iteratively generate the cohort trace M and the dynamics-array A.
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The cohort trace M can be computed from A by obtaining the t-th row of M , mt, summing each of the columns of At

as follows:

mt = 1TAt =

[
ns∑
i=1

a[i,1,t],

ns∑
i=1

a[i,2,t], . . . ,

ns∑
i=1

a[i,ns,t]

]
, (9)

where 1 is a vector of ones of dimension ns × 1. Although M can be obtained from A (avoiding computing M

altogether), we prefer to compute both M and A simultaneously.

Applying state and transition rewards

One of the main advantages of A over M is the ability to incorporate transition rewards. Here, we demonstrate how to
apply both state and transition rewards (e.g. utilities or cost) to the cSTM by using the dynamics-array, A. Let Rt be a
reward matrix of dimensions ns × ns that contains both state and transition rewards:

Rt =


r[1,1,t] r[1,2,t] · · · r[1,ns,t]

r[2,1,t] r[2,2,t] · · · r[2,ns,t]

...
...

. . .
...

r[ns,1,t] r[ns,2,t] · · · r[ns,ns,t]

 , (10)

where r[i,j,t] is the reward associated with transitioning from state i to state j at cycle t. When j = i, r[i,i,t] is the reward
associated with staying in the i-th health state at cycle t. That is, the off-diagonal entries of Rt store the transition
rewards and the diagonal of Rt stores the state rewards for cycle t. The state and transition rewards can be applied to
the model dynamics by element-wise multiplication between At and Rt, indicated by the � sign, which produces the
matrix of outputs at cycle t, Yt. Formally,

Yt = At �Rt. (11)

In R, applying these rewards required one additional line of code compared to Box 1, as shown in Box 2.
1 for(t in 1:n.t){ # loop through the number of cycles
2 m.M[t + 1, ] <- m.M[t, ] %*% m.P # estimate the state vector for the next cycle (t + 1)
3 a.A[, , t + 1] <- diag(m.M[t, ]) %*% m.P # estimate the transition dynamics at t + 1
4 # element -wise -multiplication of array A with the rewards matrices to apply both state and transition rewards
5 a.Y[, , t + 1] <- a.A[, , t + 1] * m.R
6 }

Box 2: R code to apply time-invariant state and transition rewards to the model dynamics stored in array A.

The total rewards for each health state at cycle t, rt, is obtained by summing the rewards across all j = 1, ..., ns health
states.

rt = 1TYt =

[
ns∑
i=1

Y[i,1,t],

ns∑
i=1

Y[i,2,t], . . . ,

ns∑
i=1

Y[i,ns,t]

]
. (12)

Implementation in R using an illustrative example

To facilitate the implementation of the array approach, we demonstrate its use with a stylistic healthy-sick-dead 3-state
time-homogeneous cSTM example coded in R [10]. The model is used to simulate a cohort of 70-year-old individuals to
compute their expected costs and quality-adjusted life years (QALYs) accrued over their remaining lifetime accounting
for several transition rewards. The explanation of the model and the R code can be found in the supplementary material
and more detailed on GitHub (https://github.com/DARTH-git/state-transition-model-dynamics).

Estimation of epidemiological measures

By obtaining A, it is possible to compute epidemiological outcomes that otherwise would not have been easily derived
from M . For example, obtaining incidence and lifetime risk from M would require creating additional steps, variables
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or health states. Epidemiological outcomes could be used as outputs of simulation models for calibration or validation
purposes. A full exposition of computing epidemiological measures from A is case-specific and is beyond the scope of
this brief report. However, we illustrate the potential application of our approach by calculating a simple ratio from a
generic cSTM.

Consider a cSTM with ns > 3 health states. We are interested in calculating a ratio et of those that transition from
health state 2 to health state ns at cycle t to those that make this transition from health states 1, 2 and 3. Using the
dynamics-array approach, the ratio et can be computed as

et =
a[2,ns,t]

a[1,ns,t] + a[2,ns,t] + a[3,ns,t]
for t = 1, . . . , nt. (13)

Discussion

We propose a multidimensional-array approach to overcome a limitation of the cohort trace produced by cSTM in not
being able to store transition dynamics. The practical application of our approach involves adding a simple step to the
traditional cohort trace approach that stores all transitions among health states over time in multidimensional array A.

Traditionally, researchers have dealt with this limitation of the cSTM cohort trace by creating temporary health states
that collect the state-to-state transition information. However, this solution can quickly complicate a model and result in
an explosion of the number of health states. Using an individual-based microsimulation STM is another alternative [1],
with considerable implications on computational time [11].

Another method that explicitly keeps track of state-to-state transitions is through a discretely integrated condition-event
(DICE) simulation [8, 7]. DICE is a modeling technique that can free up some of the Markov restrictions that makes it
possible to explicitly include many events occurring at various times. Although DICE simulation is a well-structured
method, and the authors of the DICE papers provided very useful supplementary files to apply the method, we see the
dynamics-array approach as a relatively simpler method to compute than DICE to overcome the limitation of the cohort
trace on applying transition rewards and generating all the epidemiological outcomes of interest.

A potential limitation of the use of A is the additional computation needed when building the model. However, for
many applications this may be a minor limitation given the matrix-based computational efficiency of current computers.
Another potential limitation is the additional storage memory required to store A, which could become a limitation
in systems with limited memory. This could be an issue for computationally complex models with multiple states.
However, the benefit of using A for large models is that all the complexity in the model dynamics is summarized into a
compact structure which makes it relatively simple to extract information or to apply new rewards without re-running
the model.

In conclusion, structuring the output of cSTMs using the dynamics-array is an efficient, simple and convenient approach
to summarize the model dynamics. This simple structure allows applying state and transition rewards and obtaining
epidemiological measures, while still being able to obtain and display the conventional cohort trace.
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1 Supplementary material: R code of the stylistic 3-state model

Model description
We follow a cohort of healthy 70-year-old individuals over their remaining lifetime, using 30 annual cycles. The
healthy individuals can transition to the sick health state, they can die or remain healthy. Sick individuals can fully
recover, transitioning back to healthy, remain sick or die. Remaining in each of these health states is associated
with some utilities and costs (the state rewards). In addition to these state rewards, transition dis-utilities and costs
apply. Getting sick is associated with a sudden decrease of quality of life of 0.1. In addition, transitioning to dead
incurs a one-time cost of $4,000. Both the state and transition rewards are constant over time. The R code to use
the dynamics-array approach for this case example is shown below. All parameters of this model are fictitious, not
based on a specific disease. On GitHub, we describe this simple 3-state example in more detail GitHub - (https:
//github.com/DARTH-git/state-transition-model-dynamics).

R code
We recommend downloading this code from GitHub to avoid errors due to copying from the manuscript.

1 ## I l l u s t r a t i v e 3− s t a t e model showing t h e dynamics−a r r a y a p p r o a c h ##
2

3 # Load t h e p a c k a g e s
4 l i b r a r y ( r e s h a p e 2 ) # l o a d r e s h a p e 2 t o t r a n s f o r m d a t a
5 l i b r a r y ( g g p l o t 2 ) # l o a d g g p l o t 2 f o r n i c e l o o k i n g p l o t s
6

7 # i n i t i a l s e t up
8 age <− 70 # age of s t a r t i n g c o h o r t
9 n . t <− 30 # t ime h o r i z o n , number o f c y c l e s

10 v . age . names <− age : ( age + n . t − 1) # v e c t o r w i th age names
11 v . n <− c ( "H" , "S" , "D" ) # v e c t o r wi th t h e 3 h e a l t h s t a t e s o f t h e model :
12 # H e a l t h y (H) , S i ck ( S ) , Dead (D)
13 n . s t a t e s <− l e n g t h ( v . n ) # number o f h e a l t h s t a t e s
14

15 #### G e n e r a t e i n i t i a l s e t o f base−c a s e e x t e r n a l p a r a m e t e r s ####
16 # C o s t s
17 c .H <− 1000 # c o s t o f r e m a i n i n g one c y c l e h e a l t h y
18 c . S <− 3000 # c o s t o f r e m a i n i n g one c y c l e s i c k
19 c .D <− 0 # c o s t o f b e i n g dead ( p e r c y c l e )
20 # S t a t e u t i l i t i e s
21 u .H <− 1 # u t i l i t y when h e a l t h y
22 u . S <− 0 . 6 0 # u t i l i t y when s i c k
23 u .D <− 0 # u t i l i t y when h e a l t h y
24 # T r a n s i t i o n p r o b a b i l i t i e s ( p e r c y c l e )
25 p . HS <− 0 . 3 0 # p r o b a b i l i t y t o become s i c k when h e a l t h y
26 p .HD <− 0 . 0 5 # p r o b a b i l i t y t o d i e when h e a l t h y
27 p . SH <− 0 . 1 5 # p r o b a b i l i t y t o become h e a l t h y when s i c k
28 p . SD <− 0 . 2 0 # p r o b a b i l i t y t o d i e when s i c k
29 # T r a n s i t i o n r e w a r d s
30 du . HS <− 0 . 1 0 # one−t ime u t i l i t y dec remen t when becoming s i c k
31 i c .D <− 4000 # one−t ime c o s t o f dy ing
32

33 #### T r a n s i t i o n p r o b a b i l i t y m a t r i x ####
34 # m a t r i x m. P a t t h e f i r s t c y c l e
35 m. P <− m a t r i x (NA, nrow = n . s t a t e s , n c o l = n . s t a t e s , dimnames = l i s t ( v . n , v . n ) )
36
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37 # F i l l i n m a t r i x
38 # From H e a l t h y
39 m. P [ "H" , "H" ] <− 1 − ( p . HS + p .HD)
40 m. P [ "H" , "S" ] <− p . HS
41 m. P [ "H" , "D" ] <− p .HD
42 # From Sick
43 m. P [ "S" , "H" ] <− p . SH
44 m. P [ "S" , "S" ] <− 1 − ( p . SH + p . SD)
45 m. P [ "S" , "D" ] <− p . SD
46 # From Death
47 m. P [ "D" , "H" ] <− 0
48 m. P [ "D" , "S" ] <− 0
49 m. P [ "D" , "D" ] <− 1
50

51 #### I n i t i a l s t a t e v e c t o r ####
52 v . m0 <− c (H = 1 , S = 0 , D = 0) # i n i t i a t e t h e v e c t o r
53

54 ## C r e a t e t h e Markov c o h o r t t r a c e m a t r i x m.M t h a t c a p t u r e s t h e p r o p o r t i o n o f t h e
55 ## c o h o r t i n each s t a t e a t each c y c l e
56 m.M <− m a t r i x ( 0 ,
57 nrow = ( n . t + 1 ) ,
58 n c o l = n . s t a t e s ,
59 dimnames = l i s t ( 0 : n . t , v . n ) ) # i n i t i a l i z e c o h o r t t r a c e m a t r i x
60 m.M[ 1 , ] <− v . m0 # s t o r e t h e i n i t i a l s t a t e v e c t o r
61

62 # I n i t i a t e t h e a r r a y
63 a .A <− a r r a y ( 0 ,
64 dim = c ( n . s t a t e s , n . s t a t e s , n . t + 1 ) ,
65 dimnames = l i s t ( v . n , v . n , 0 : n . t ) ) # i n i t i a l i z e a r r a y
66

67 d i a g ( a .A[ , , 1 ] ) <− v . m0 # s t o r e t h e i n i t i a l s t a t e v e c t o r i n t h e d i a g o n a l o f A
68

69 m. R . c o s t s <− m. R . e f f e c t s <− m a t r i x (NA,
70 nrow = n . s t a t e s , n c o l = n . s t a t e s ,
71 dimnames = l i s t ( v . n , v . n ) )
72

73 # F i l l i n m a t r i x f o r c o s t s
74 # From H e a l t h y
75 m. R . c o s t s [ "H" , "H" ] <− c .H
76 m. R . c o s t s [ "S" , "H" ] <− c .H
77 m. R . c o s t s [ "D" , "H" ] <− c .H
78 # From Sick
79 m. R . c o s t s [ "H" , "S" ] <− c . S
80 m. R . c o s t s [ "S" , "S" ] <− c . S
81 m. R . c o s t s [ "D" , "S" ] <− c . S
82 # From Death
83 m. R . c o s t s [ "H" , "D" ] <− c .D + i c .D
84 m. R . c o s t s [ "S" , "D" ] <− c .D + i c .D
85 m. R . c o s t s [ "D" , "D" ] <− c .D
86

87 # F i l l i n m a t r i x f o r e f f e c t s
88 # From H e a l t h y
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89 m. R . e f f e c t s [ "H" , "H" ] <− u .H
90 m. R . e f f e c t s [ "S" , "H" ] <− u .H
91 m. R . e f f e c t s [ "D" , "H" ] <− u .H
92 # From Sick
93 m. R . e f f e c t s [ "H" , "S" ] <− u . S − du . HS
94 m. R . e f f e c t s [ "S" , "S" ] <− u . S
95 m. R . e f f e c t s [ "D" , "S" ] <− u . S
96 # From Death
97 m. R . e f f e c t s [ "H" , "D" ] <− u .D
98 m. R . e f f e c t s [ "S" , "D" ] <− u .D
99 m. R . e f f e c t s [ "D" , "D" ] <− u .D

100

101 #### Expec ted QALYs and C o s t s p e r c y c l e f o r each s t r a t e g y ####
102 a .Y. c o s t s <− a .Y. e f f e c t s <− a r r a y ( 0 ,
103 dim = c ( n . s t a t e s , n . s t a t e s , n . t + 1 ) ,
104 dimnames = l i s t ( v . n , v . n , 0 : n . t ) )
105 # I n i t i a l i z e a r r a y s
106 a .Y. c o s t s [ , , 1 ] <− a .A[ , , 1 ] ∗ m. R . c o s t s
107 a .Y. e f f e c t s [ , , 1 ] <− a .A[ , , 1 ] ∗ m. R . e f f e c t s
108

109 ### Run t h e model
110 f o r ( t i n 1 : n . t ) { # loop t h r o u g h t h e number o f c y c l e s
111 # e s t i m a t e t h e s t a t e v e c t o r f o r t h e n e x t c y c l e ( t + 1 )
112 m.M[ t + 1 , ] <− m.M[ t , ] %∗% m. P # e s t i m a t e t h e s t a t e v e c t o r f o r t h e n e x t

c y c l e ( t + 1 )
113 a .A[ , , t + 1 ] <− d i a g (m.M[ t , ] ) %∗% m. P # e s t i m a t e t h e t r a n s i t i o n dynamics a t t + 1
114

115 # e lement−wise−m u l t i p l i c a t i o n o f a r r a y A wi th t h e r e w a r d s m a t r i c e s
116 a .Y. c o s t s [ , , t + 1 ] <− a .A[ , , t + 1 ] ∗ m. R . c o s t s
117 a .Y. e f f e c t s [ , , t + 1 ] <− a .A[ , , t + 1 ] ∗ m. R . e f f e c t s
118 }
119

120 # Per form a c o s t−e f f e c t i v e n e s s a n a l y s i s
121 v . c o s t s <− rowSums ( t ( colSums ( a .Y. c o s t s ) ) ) # c a l c u l a t e t h e e x p e c t e d c o s t s p e r c y c l e
122 v . QALYs <− rowSums ( t ( colSums ( a .Y. e f f e c t s ) ) ) # c a l c u l a t e t h e e x p e c t e d QALYs p e r c y c l e
123 TC <− sum ( v . c o s t s ) # c a l c u l a t e t h e t o t a l e x p e c t e d c o s t s
124 TE <− sum ( v . QALYs) # c a l c u l a t e t h e t o t a l e x p e c t e d QALYS
125 v . r e s u l t s <− c (TC , TE ) # combine t h e t o t a l e x p e c t e d c o s t s and

QALYs
126 names ( v . r e s u l t s ) <− c ( " C o s t s " , " E f f e c t " ) # name t h e v e c t o r
127 v . r e s u l t s # p r i n t t h e r e s u l t s
128

129 # ###############################################################################
130 ### R a t i o o f t h o s e t h a t t r a n s i t i o n e d from s i c k t o dead a t each c y c l e t o t h o s e t h a t

t r a n s i t i o n e d t o dead from bo th h e a l t h y and s i c k .
131 v . e <− numer ic ( n . t + 1 ) # c r e a t e t h e v e c t o r v . e
132 v . e [ 1 ] <− 0 # i n i t i a t e t h e v e c t o r
133

134 ### c a l c u l a t e t h e r a t i o a c r o s s a l l c y c l e s s t a r t i n g i n c y c l e 2
135 v . e [−1] <− a .A[ "S" , "D" , −1] / ( a .A[ "H" , "D" , −1] + a .A[ "S" , "D" , −1])
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