
SUPPLEMENTARY MATERIAL

Methods

Experimental Methods

Quantification and Analysis

Supplementary Figures

Supplementary Figure 1: Additional quantification of editing in ES cells

Supplementary Figure 2: Comparison of CARLIN analysis pipeline with NW alignment and
fragment analysis

Supplementary Figure 3: Mutations in different tissues, and additional details of the allele bank

Supplementary Figure 4: Additional details of lineage tree reconstruction simulations

Supplementary Figure 5: FACS plots and extended data for embryonic induction experiment

Supplementary Figure 6: Extended data for 5-FU experiment

Supplementary Tables

Supplementary Table 1: Related to CARLIN construct design (annotated 5’ to 3’)

Supplementary Table 2: Penalties (/) used in alignment algorithm (Supplementary Figure
2 & Methods)

Supplementary Table 3: Metrics for single cell data (Figures 5 & 6)

Supplementary Table 4: Statistical significance (p-value) of differences in average HSC-rooted
clone size (Figure 6)

Supplementary Table 5: Differential gene expression between parent HSCs and childless HSCs
(Figure 6)

Supplementary Table 6: Differential gene expression between parent and childless HSC cluster
(Figure 6)

EXPERIMENTAL METHODS

Contact for Reagent and Resource Sharing

Further information and requests for resources and reagents should be directed to and will be
fulfilled by the Lead Contact, Fernando Camargo (fernando.camargo@childrens.harvard.edu).

Experimental Model and Subject Details

8-week-old mice (Mus musculus) were used in all the experiments unless noted in the text or
figure legends. Both male and female mice were used indistinctly as we have not observed any
difference associated with sex in the biological processes studied; mice were randomly assigned
to the different experimental groups in the experiments shown. CARLIN and Cas9 mice were
derived from the KH2 mouse embryonic stem cell (ESC) line, with a mixed C57BL/6 x 129 genetic
background. Experimental mice used in this study were from F2/F3 generations resulting from the
breeding of F1-C57BL/6 x 129 with the TetO-Cas9 mice (also mixed C57BL/6 x 129 genetic
background). All mice were maintained in standard conditions of housing and husbandry at
Boston Children’s Hospital, and all the procedures involving animals were approved by the Boston
Children’s Hospital Institutional Animal Care and Use Committee.

The CARLIN mouse embryonic stem cell (ESC) line used in some experiments was derived from
a male embryo from the F3 generation. Karyotype analysis was performed on the cells to ensure
proper genome stability. ESCs were maintained in KO-DMEM, supplemented with 15% ES-FBS,
10 ng/mL LIF and non-essential amino-acids, and grown over a mono-layer of mitomycin C-
inactivated mouse embryonic fibroblasts (MEFs), for the time points indicated in the results and
figure legend sections. All cultures were maintained in standard tissue culture conditions of 37°C
and 5% CO2.

Design and Assembly of CARLIN Array

The CARLIN reference sequence was designed as an array of ten sense-oriented CRISPR/Cas9
target sites, each with a length of 20 bp and separated from each other by a 3 bp protospacer
adjacent motif (PAM) sequence and 4 bp linker. In order to design a mouse-optimized array
containing 10 CRISPR/SpCas9 target sites, we started from the set of guides previously tested
for the zebrafish GESTALT system development (McKenna et al., 2016; v6 and v7 arrays). From
that set, we first excluded all target sites showing any homology with the mouse genome.
Secondly, we used CRISPR design tool (crispr.mit.edu) to select guides with the strongest score
factor (highest efficiency and lowest off-target) possible. Based on these criteria we preserved 6
guides from the GESTALT system and designed from the scratch the other 4 using the same
criteria described. To test each guide, we cloned each one of the 10 sgRNAs individually under
the control of the U6 promoter and transduced along with a plasmid containing the Carlin array
into 293T cells. 48 hours after transduction we lysed cells and PCR amplified the array for
fragment analysis. All guides selected for the final design showed a similar activity in this assay,
assessing the further steps performed with the array.

For array synthesis, the final sequence was synthesized as a gBlock (IDT) and is provided in
Supplementary Table 1. The CARLIN reference sequence was cloned into the 3’-UTR region of
a GFP open reading frame in an intermediate cloning vector, upstream of the bGH-polyA
sequence, and under the control of the CAG promoter to ensure robust expression.

Design and Cloning of the CARLIN sgRNA Multiplexes

10 sgRNAs perfectly matching the target sites of the CARLIN reference sequence were
expressed as a multiplex, in which each sgRNA is driven by its own promoter. We assembled two
different multiplexes, one with Dox-inducible sgRNAs (iCARLIN; see Supplementary Figure 1B),
and one with constitutive sgRNAs (constitutive CARLIN, used for all data in the paper with the
exception of Supplementary Figure 3F), using the same Golden Gate assembly strategy. In the
inducible multiplex, we used the FgH1tUTG donor plasmid (Addgene plasmid #70183) (Aubrey
et al., 2015) to clone each one of the sgRNAs using the BsmBI restriction sites, whereas in the
constitutive multiplex, we used the pU6-(BbsI)_CBh-Cas9-T2A-mCherry plasmid (Addgene
plasmid #64324) (Chu et al., 2015). Then, the 10 blocks containing the promoter and the sgRNA
were PCR-amplified using specific primers with overhangs for the Golden Gate assembly method.
The Golden Gate assembly protocol was adapted from the Addgene protocol
(https://media.addgene.org/cms/files/GoldenGateTALAssembly2011.pdf) (Cermak et al., 2011).
All primer sequences are provided in Supplementary Table 1.

Targeting ESCs with the CARLIN Transgene

Both the CARLIN reference sequence and the sgRNA multiplex were cloned adjacently into the
pBS31 targeting vector (Beard et al., 2006) to target the ESCs in the Col1a1 locus. For an efficient
targeting of the transgene in this locus we used the KH2 ESC line, containing a donor FRT site in
the Col1a1 locus, as well as the M2-rtTA transgene introduced in the Rosa26 locus to allow
expression of Dox-inducible systems. Approximately 1.5x107 KH2 ESCs were electroporated
using 50 g of the pBS31-CARLIN vector and 25 g of pCAGGS-FLPe-puro (Buchholz et al.,

1998) at 240 V and 500 F using a Gene PulserII (Bio- Rad, Hercules, CA). Hygromycin selection

(140 g/ml) was started 24h after electroporation. The genomic DNAs from the selected clones
were screened by PCR using the Col1a1 genotyping primers (listed in Supplementary Table 1).
The same protocol was independently performed for the inducible and constitutive CARLIN
systems.

Mice Generation

Two targeted ESCs clones were selected from each of the inducible and constitutive CARLIN
systems and injected into BL/6 embryos to form mouse chimeras. At least two chimeras with
>90% of chimerism from each ESC clone were used as founders of our experimental mouse
cohort. The ESCs were injected at the Mouse Gene Manipulation Core at Boston Children’s
Hospital. To generate experimental mice, descendants from the F1 of the injected ESCs were
bred with Col1a1-TetO-SpCas9, generated at Stuart H. Orkin’s laboratory. Primers for genotyping
the Col1a1 and Rosa26 loci are listed in Supplementary Table 1.

Animal Procedures

Unless noted elsewhere, Dox was administered to 8-week-old mice via drinking water (2 mg/mL

supplemented with 10 mg/mL sucrose) and three intraperitoneal injections (50g/g) every other
day. For the embryonic labeling, Dox was administered to pregnant females via retro-orbital (RO)
injection with 25 g/g of a 10mg/mL solution of Dox at E9.5. 5-fluorouracil (5-FU) was
intraperitoneally injected (150 mg/kg) into 8-week-old mice. To prepare 10 mL of the 15 mg/mL
5-FU injectable solution, the chemical was first suspended in 500 L NaOH 1N and then dissolved
in 9.5 mL of phosphate-buffered saline (PBS). For peripheral blood extraction (used to assess
fraction of CARLIN sequences edited before performing the single-cell experiments), mice were
anesthetized using isoflurane and 2-3 capillaries were collected from the RO sinus. For bone
marrow preparation, mice were euthanized and bones from the four limbs were immediately
dissected and flushed with 2% fetal bovine serum in PBS. Erythrocytes were removed by osmotic
lysis before antibody staining and fluorescence-activated cell sorting.

Fluorescence-Activated Cell Sorting

Unless noted, lineage depletion was performed in the whole bone marrow samples using
magnetic-assisted cell sorting (Miltenyi Biotec) using the biotin-conjugated lineage markers
CD3e, CD19, Gr1, Mac1, and Ter119. Cell populations were purified using FACSAria (Becton
Dickinson) and the flow cytometry data was analyzed using FlowJo (Tree Star). The following
combinations of cell surface markers were used to define the analyzed populations: LT-HSC: Lin-

Kit+Sca1+CD150-CD48-; MPP3/4: Lin-Kit+Sca1+CD150-CD48+; ST-HSC: Lin-Kit+Sca1+CD150-

CD48-; MPP2: Lin-Kit+Sca1+CD150+CD48+; MyP: Lin-Kit+Sca1-CD150-CD41-; MkP: Lin-Kit+Sca1-

CD150+CD41+; granulocytes: Ly6G+Mac1+B220-Ter119-; monocytes: Ly6G-Mac1+B220-Ter119-;
pro-pre-B cells: Ly6G-Mac1-B220+Ter119-; erythroblasts: Ly6G+Mac1+B220-Ter119+CD71+.
Representative examples of sorted populations can be found in Supplementary Figure 5A,B. The
following antibodies were used in this study at a 1:100 dilution: biotin anti-mouse CD3e [145-
2C11] (eBioscience), biotin anti-mouse CD19 [MB19-1] (eBioscience), biotin anti-mouse Gr1
[RB6-685] (eBioscience), biotin anti-mouse CD11b (Mac1) [M1/70] (eBioscience), biotin anti-
mouse Ter119 [TER119] (eBioscience), anti-biotin microbeads (Miltenyi Biotec), APC anti-mouse
CD117 (c-kit) [2B8] (BioLegend), PE-Cy7 anti-mouse Ly-6A/E (Sca-1) [D7] (eBioscience), APC-
Cy7 anti-mouse CD48 [HM48-1] (BD Pharmingen), PE-Cy5 anti-mouse CD150 [TC15-12F12.2]
(BioLegend), BV605 anti-mouse CD41 [MWReg30] (BioLegend), eFluor450 anti-streptavidin
(eBioscience), APC/Cy7 anti-mouse/human CD45R/B220 [RA3-6B2] (BioLegend), PE anti-
mouse Ly-6G [1A8] (BioLegend), APC-Cy7 ant-mouse CD11b (Mac1) [ICRF44] (BioLegend),
eFluor 450 anti-mouse CD3 [17A2] (eBioscience), PE-Cyanine5 anti-mouse Ter-119 [TER-119]
(eBioscience), BV510 anti-mouse CD71 [C2] (BD Pharmingen).

CARLIN Amplification and Bulk Sequencing Protocols

The sequences of all primers listed here are shown in Supplementary Table 1. For all applications,
the PCR amplification of the CARLIN array was performed using primers flanking the 5’ and 3’
external regions of the array (primers CARLIN_fwd1, CARLIN_fwd2 and CARLIN_rev). Illumina

adaptor regions, unique motif identifiers (UMI), biotin and fluorescent tags are added to these
primers according to the experiment needs. For fragment analysis, the CARLIN_fwd2 was
conjugated with 6-carboxyfluorescein (6-FAM) in the 5’ position (FAM_CARLIN_fwd), and PCR
products were separated by capillary electrophoresis.

For sequencing the CARLIN array from the genomic DNA (gDNA) of pooled cellular populations,
up to 250 ng of input gDNA were used per library. We first performed a UMI-tagging reaction
using the CARLIN_fwd2 primer attached to the Illumina sequencing adapter and a 10 bp region
of fully degenerate DNA sequence (primer NGS_UIM_D_F). This reaction was performed as a
single extension step, in which temperature ramped between annealing and extension for five
cycles without a denaturalization step to prevent re-sampling of gDNA CARLIN sequences
(McKenna et al., 2016). The DNA product was then purified using AMPure XP beads (Beckman
Coulter) and the whole volume was loaded into a PCR reaction to amplify UMI-tagged CARLIN
sequences (primers NGS2_F, NGS1_R; 35 cycles). Finally, an indexing PCR was performed
(primers P5, NGS2R_I#; 10 cycles) before sequencing.

For preparing libraries from RNA of pooled cellular populations, up to 1g of total RNA was retro-
transcribed using a gene specific primer that contains a 10 bp region of fully degenerated
sequence (RT_Bulk_CARLIN) and SuperScript III (Invitrogen). For all in vitro applications, this
cDNA product was then purified using AMPure XP beads (1X; Beckman Coulter) and loaded into
a PCR reaction for CARLIN amplification (primers NGS2_F, NGS1_Bulk_R; 35 cycles; Platinum
Taq enzyme (Invitrogen)). Following AMPure XP bead purification (0.8X), the indexing PCR was
performed (primers P5, NGS2R_I#; 10 cycles). For all in vivo applications, the protocol was
optimized for a nested PCR approach. The purified cDNA product was loaded into a first PCR
reaction (primer NGS1_F, NGS1_Bulk_R; 15 cycles; Q5 High Fidelity Polymerase (M0491, New
England Biosciences)). Following AMPure XP beads purification (0.8X), half the product was
loaded into a second PCR reaction (primer NGS2_F, NGS1_Bulk_R; 15 cycles; Q5 High Fidelity
Polymerase). Finally, after AMPure XP bead purification (0.8X) the indexing PCR was performed
(primers P5, NGS2R_I#; 9 cycles). The final indexed libraries were purified with AMPure XP bead
purification (0.8X). Libraries were sequenced on Illumina MiSeq using paired-end 500 cycles v2
kits (Read 1: 250 cycles; Index Read: 6 cycles; Read 2: 250 cycles) with 10% PhiX sequencing
control v3 (Illumina).

Single-Cell RNA Sequencing Protocols

10X Chromium single cell 3’ (10X) protocols were performed following the manufacturer’s
instructions and step-by-step protocols can be found at the companies’ websites. For the 10X
Chromium Single Cell 3’ libraries, whole-transcriptome libraries were prepared following the 10X
v2 (Figure 5; https://bit.ly/2OUeaUj) and v3 protocol (Figure 6; https://bit.ly/2YP9Lol). Whole-
transcriptome libraries were sequenced on Illumina NextSeq500 using paired-end 150 cycles v3
kits (Read 1: 28 cycles; Index Read 1 (i7): 8 cycles; Read 2: 91 cycles).

For targeted CARLIN amplification, 3-5 ng of the amplified cDNA (Step 2.3) was loaded into an
initial PCR reaction (10X-CARLIN_1-bio, P5-PR1; 15 cycles). Following cleanup with 0.8X

SPRIselect (Beckman Coulter), biotin-tagged products were purified using Dynabeads
kilobaseBINDER Kit (Invitrogen) following the manufacturer’s instructions. In short, Dynabeads
were incubated with the PCR product on a roller for 3h at room temperature before supernatant
removal using magnet separation and washing. Half of the CARLIN-tagged Dynabeads were then
loaded into a second PCR reaction (10X-CARLIN_2, P5-PR1; 15 cycles). Following Dynabead
removal by magnet, libraries were purified with 0.8X SPRIselect and the indexing step was
performed using one tenth of the PCR product (SI primer, Chromium i7 sample primer; 8 cycles).
For all 10X PCR reactions, the polymerase supplied with the 10X v3 kit was used. 10X CARLIN
single-cell libraries were sequenced on Illumina MiSeq using paired-end 500 cycles v2 kits (Read
1: 28 cycles; Index Read (i7): 8 cycles; Read 2: 350 cycles) with 10% PhiX sequencing control v3
(Illumina).

References

Aubrey, B.J., Kelly, G.L., Kueh, A.J., Brennan, M.S., O'Connor, L., Milla, L., Wilcox, S., Tai, L.,
Strasser, A., and Herold, M.J. (2015). An inducible lentiviral guide RNA platform enables the
identification of tumor-essential genes and tumor-promoting mutations in vivo. Cell Rep 10,
1422-1432.

Beard, C., Hochedlinger, K., Plath, K., Wutz, A., and Jaenisch, R. (2006). Efficient method to
generate single-copy transgenic mice by site-specific integration in embryonic stem cells.
Genesis 44, 23-28.

Buchholz, F., Angrand, P.O., and Stewart, A.F. (1998). Improved properties of FLP recombinase
evolved by cycling mutagenesis. Nat Biotechnol 16, 657-662.

Cermak, T., Doyle, E.L., Christian, M., Wang, L., Zhang, Y., Schmidt, C., Baller, J.A., Somia, N.V.,
Bogdanove, A.J., and Voytas, D.F. (2011). Efficient design and assembly of custom TALEN
and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39, e82.

Chu, V.T., Weber, T., Wefers, B., Wurst, W., Sander, S., Rajewsky, K., and Kuhn, R. (2015).
Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise
gene editing in mammalian cells. Nat Biotechnol 33, 543-548.

McKenna, A., Findlay, G.M., Gagnon, J.A., Horwitz, M.S., Schier, A.F., and Shendure, J. (2016).
Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science
353, aaf7907.

Zilionis, R., Nainys, J., Veres, A., Savova, V., Zemmour, D., Klein, A.M., and Mazutis, L. (2017).
Single-cell barcoding and sequencing using droplet microfluidics. Nat Protoc 12, 44-73.

QUANTIFICATION AND ANALYSIS

Preprocessing

For bulk experiments, raw Illumina paired-end reads of the CARLIN amplicon were merged using
PEAR v0.9.11 (Zhang 2013) with parameters --min-overlap=1, --min-assembly-length=1, --min-
trim-length=1, and --quality-threshold=30. Amplicon and transcriptome libraries prepared with
10X were preprocessed using CellRanger v2.2.0 (for 10X V2 libraries) and v3.0.2 (for 10X V3
libraries) according to the standardized workflow with default parameters. Transcriptome libraries
were aligned against the mm10 reference genome provided by CellRanger.

Although no data presented in the paper was generated with InDrops (Zilionis 2017), it is a
supported platform, though a modified version of the InDrops pipeline should be used (available
at https://gitlab.com/hormozlab/indrops). The InDrops pipeline should be run with the parameters
(LEADING=10, SLIDINGWINDOW=4:5, MINLEN=16) for Trimmomatic and (m=200, n=1, l=15,
e=500) for Bowtie. Additionally, amplicon libraries prepared with InDrops should be processed
with the ‘--no_clean_barcodes’ flag, which preserves the uncleaned version of the Cell Barcode
(CB) and logs QC information for the CB and UMI in the header (see Filtering Reads and CB and
UMI Error Correction below).

Cells were additionally filtered by removing CBs in which the number of detected UMIs was below
a threshold that was determined programmatically using MATLAB’s findpeaks function based on
the distribution of UMI counts (thresholds are listed in Supplementary Table 3). CBs where the
percentage of UMIs corresponding to mitochondrial genes exceeded 15% were also discarded.
The remaining CBs constitute a reference list against which CBs found in CARLIN amplicon
sequencing can be collapsed (see CB and UMI Error Correction).

CARLIN Pipeline

Custom software was developed in MATLAB to perform alignment and allele calling, which can
handle both bulk and single-cell amplicon sequencing of the CARLIN array. The software is trivial
to install, simple to run, and produces data diagnostics useful for an experimentalist. The CARLIN
software package is available at https://gitlab.com/hormozlab/carlin.

Filtering Reads

For bulk sequencing runs of genomic DNA, reads were filtered on possessing an exact match to
the 20 bp CARLIN_fwd2 primer starting at the 11th bp of the read, since the UMI-tagging reaction
adds a 10 bp randomer upstream of the CARLIN_fwd2 primer (Supplementary Table 1; Methods).
To ensure that the entire CARLIN sequence was read, we retained reads that had good alignment
to the 31 bp pre-polyA UTR sequence (hereafter referred to as the secondary sequence;
Supplementary Table 1) located downstream of the 10th CARLIN target site – specifically, we
require MATLAB’s nwalign function with glocal=true (hereafter referred to as just nwalign) to
return a score >=30.

For bulk sequencing runs of RNA, reads were reverse-complemented as the read is anti-sense.
Because the UMI tagging protocol results in a 10 bp randomer being appended to the 20 bp
CARLIN_rev primer (Supplementary Table 1; Methods), we retained reads that had an exact
match to the primer, starting at 30 bp upstream of the end of the read. Additionally, to ensure that
the whole CARLIN sequence was read and to simplify subsequent alignment, we only retained
reads that had good alignment to the CARLIN_fwd2 primer and secondary sequence (nwalign
scores >=15 and 30 respectively).

For all bulk reads, there is additional filtering to only retain reads with UMIs that have a QC of at
least 30 at all 10 bps.

For sequencing runs of 10X CARLIN amplicon libraries, to ensure the whole CARLIN construct is
sequenced, reads were filtered on possessing an exact match to the CARLIN_fwd2 primer
starting at the 1st base pair, and a good alignment (nwalign scores >= 30) to the secondary
sequence. Additionally, reads in which the CB or UMI are of the incorrect length, have uncalled
base pairs, or in which the QC of any base pair is < 20, were discarded.

For all reads which pass the above filters, the CARLIN sequence was extracted by trimming the
flanking primers and secondary sequence. If the resulting sequence has any uncalled base pair
or was shorter than 26 bps (the combined length of the prefix, first conserved site and postfix –
see Figure 1B), it was discarded.

Alignment

Here, we will describe the procedure used to determine how a CARLIN read has been altered
with respect to the unmodified CARLIN sequence (referred to hereafter as the reference; see
CARLIN reference sequence in Supplementary Table 1). As Cas9 modifications are expected to
predominantly be indels, to identify alterations, we first aligned the CARLIN sequences against
the reference. We found that existing alignment algorithms do not account for where Cas9
alterations are expected to appear along the reference (3 bp upstream of the PAM sequence, in
a region referred to here as the cutsite). For example, NeedleAll (Rice 2000), a software package
that implements the standard Needleman-Wunsch (NW) algorithm, was used in GESTALT
(McKenna 2016), but yielded mixed results when aligning 75 modified CARLIN sequences read
out using bulk Sanger sequencing. First, the NW algorithm did not preferentially select indel
locations to coincide with the expected activity of Cas9 when multiple indel locations were equally
plausible. Second, the default parameters used in the NW algorithm (NUC44 scoring matrix, gap
opening penalty of 10, gap extension penalty of 0.5), precludes insertions and deletions from
occurring consecutively, which is unrealistic given that the activity of Cas9 can result in such
alterations. Third, the default value of the gap extension penalty parameter penalizes insertions
and deletions according to length. Finally, customizing these parameters cannot cluster the
alterations into expected regions of Cas9 activity.

To overcome these limitations, we developed our own alignment algorithm. Our algorithm is a
modified version of the NW algorithm that performs alignment while accounting for where along

the sequence alterations are expected with respect to the reference. We introduced a site-
dependent cost function that penalizes alterations outside the expected regions of Cas9 activity.
The cost function was minimized using a dynamic programming approach. Although the
parameters used are specific to CARLIN, they can be modified to accommodate other systems
that rely on Cas9 editing. Next, we describe our algorithm in full detail.

Let = { , , , } be the set of nucleotides, denote a gap, and = ∪ . Let ⃑ =… … ∈ × , ≥ 1, be the nucleotide string of length to align and denote the reference

of length by ⃑ = [… …] ∈ × , ≥ 1. Let ⃑ ∈ × , 0 ≤ ≤ , and ⃑ ∈ × , 0 ≤ ≤
, be prefix strings of ⃑ and ⃑ ending with and respectively (or empty strings if = 0 or =

0). Denote by : × → × , ≥ ′, the operator which removes gaps from the input string.

Define ⃑ , = ⃑⃑ ∈ × , with max(,) ≤ ≤ + , as an alignment of ⃑ against ⃑ with ⃑ =
(⃑) and ⃑ = (⃑), and let : × → ℝ be a scoring function, that yields higher values for

better alignments. We do not enumerate all alignments and rank them according to any explicit
evaluation of this scoring function. Instead, we use a recursive formulation where we determine
the maximum possible score for ⃑ , . This requires us to distinguish between three kinds of

alignment: neither of the terminal characters are gaps, or the two cases where one terminal

character is a gap but not the other. Using our notation, the three cases are (i) ⃑ , = ⃑⃑ ∈
× in which , ∈ and , ∈ , (ii) ⃑ , = ⃑

⃑ ∈ × in which , = and , ∈ ,

and (iii) ⃑ , = ⃑⃑ ∈ × in which , ∈ and , = . Denote by ℳ , = ⃑ , , , = ⃑ , ,
ℐ , = ⃑ , the set of all such alignments.

We can then note the following recursive relationships, which simply state that an alignment of
two strings can be decomposed into an alignment of two substrings, comprised of the first
characters through to the penultimate characters, and an alignment of the terminal characters.
We write down this recursive relationship for the three kinds of alignments defined above, using ⊎ to denote string concatenation.

ℳ , = ⃑ , ⊎ , ⃑ , ∈ ℳ ,
∪= ⃑ , ⊎ , ⃑ , ∈ ,
∪= ⃑ , ⊎ , ⃑ , ∈ ℐ ,
, = ⃑ , ⊎ , ⃑ , ∈ ℳ ,
∪= ⃑ , ⊎ , ⃑ , ∈ ,
∪= ⃑ , ⊎ , ⃑ , ∈ ℐ ,

ℐ , = ⃑ , ⊎ , , ∈ ℳ ,
∪= ⃑ , ⊎ , ⃑ , ∈ ,
∪= ⃑ , ⊎ , ⃑ , ∈ ℐ ,

The base cases are the empty sets ℳ , =ℳ , = , = ℐ , = ∅, and the singleton sets

, = ⃑ , for 1 ≤ ≤ and ℐ , = ⃑ , for 1 ≤ ≤ .

We now elucidate the score to rank the alignments in these sets. Briefly, we penalize deletions
that do not begin and finish near the expected cutsites, and insertions that do not occur near the
expected cutsites. We do not favor insertions over deletions, discriminate based on the length of
the alteration, or penalize consecutive deletions or insertions.

Let : × → ℝ, be a scoring function for aligning different nucleotides (we use the same
NUC44 scoring matrix used in the default NW algorithm). Define , () ≥ 0 and , () ≥ 0, 1 ≤≤ to be site-dependent penalties for beginning and ending a deletion at from alignments
which end or begin in paired nucleotides respectively. Similarly, define , () ≥ 0, and , () ≥0 for 1 ≤ ≤ to be the site-dependent penalty for beginning an insertion after and ending an
insertion before respectively. Let , , , , , be the highest scores of the alignments in ℳ , ,

, and ℐ , respectively.

, = max⃑ , ∈ℳ , ⃑ ,
, = max⃑ , ∈ ,

⃑ ,
, = max⃑ , ∈ℐ , ⃑ ,

Using the set recurrences above and the introduced scoring scheme, we arrive at a new set of
scalar recurrences for the highest scores, so that we don’t have to compute these quantities
explicitly by exhaustively searching over a full enumeration of alignments.

, = max{ , , , − , (− 1), , − , ()} + ,
, = max{ , − , (), , , , }
, = max{ , − , (), , , , }

As evident in the last two equations, there is no incremental cost in extending an insertion or
deletion along either one of the two strings. Since insertions and deletions are penalized equally,
we make the following simplifying assumption, which in turn also reduces the number of
parameters: , () = , () ≡ () and , () = , () ≡ (). We abuse notation to let (0) be the penalty for starting insertions prior to the first character of the reference. Consistent
with the previously defined base cases, the initialization is , = , = , = , = −∞,

, = (1), , = (0), , = 0.

There is no guarantee that a single alignment ⃑ , achieves the highest score (max{ , , , , , }).
Multiple alignments can achieve the maximum score within each of ℳ , , , and ℐ , , and also

across the three. To select the optimal alignment amongst the alignments that share the maximum
score, we need to retain which argument in the recurrence relationships for ℳ , , , and ℐ , (see

above) realize the maximum score. Let ∶ × → ×(), > 0, be the operator which strips

the terminal character from the aligned sequence and reference. Given , ∈ {ℳ, , ℐ}, let ,(,),
0 ≤ ≤ , 0 ≤ ≤ , be an indicator function such that

,(,) = 1, if ∃ ⃑ , ∈ argmax⃑ , ∈ ,
⃑ , such that ⃑ , ∈

0, otherwise
For example, if both the first and third terms realize the maximum in the recurrence for , , then

we set ,(ℳ,) = ,(ℐ,) = 1 and ,(,) = 0. We will use this indicator function to select the optimal

alignment as described below. In accordance with the previous base cases, the initialization is

,(∙,ℳ) = ,(∙,ℳ) = ,(∙,) = ,(∙,ℐ) = 0, ,(,) = ,(ℐ,ℐ) = 1.

The alignment algorithm is implemented in two stages, a forward stage in which we tabulate the
maximum score, and a reverse stage in which we construct the optimal alignment. In the forward
stage, the maximum scores are first initialized as outlined above. Next, we solve the recurrences
using a dynamic programming approach in () time by sweeping across all nucleotides in the
sequence from = 1 to , and for each value of , iterating over all the nucleotides in the reference, = 1 to . At each (,) ordered pair, we compute and store , , , and , in three two-

dimensional arrays of size (+ 1) × (+ 1), and update a 3 × 3 × (+ 1) × (+ 1) Boolean

array for ,(,), which retains the alignment type (gap in the reference, gap in the sequence, or

no gap) that achieves the maximum scores.

In the reverse stage, we incrementally build the optimal alignment ⃑ by backtracking from the last
aligned pair of nucleotides (,) using the following rules, picking the first lettered rule that applies
within each numbered rule. These rules were formulated to ensure continuity among mutation
types, which allows us to group distinct mutations more easily (see Mutation Calling) and attribute
them to a single Cas9 cutting event.

1. Let = , = , ⃑ ∈ × .
a. If , ≥ max{ , , , }, let =ℳ.

b. If , ≥ max{ , , , }, let = .

c. If , ≥ max{ , , , }, let = ℐ.
2. Repeat rules 3-5 until = 0 and = 0.

3. If =ℳ:

a. If ,(ℳ,ℳ) = 1, let =ℳ.

b. If ,(,ℳ) = 1, let = .

c. If ,(ℐ,ℳ) = 1, let = ℐ.
Let ⃑ ← ⊎ ⃑, ← − 1, ← − 1.

4. If = :

a. If ,(,) = 1, let = .

b. If ,(ℳ,) = 1, let =ℳ.

c. If ,(ℐ,) = 1, let = ℐ.
Let ⃑ ← ⊎ ⃑, ← − 1.

5. If = ℐ:
a. If ,(ℐ,ℐ) = 1, let = ℐ.
b. If ,(ℳ,ℐ) = 1, let =ℳ.

c. If ,(,ℐ) = 1, let = .

Let ⃑ ← ⊎ ⃑, ← − 1.

The result is a unique alignment ⃑ such that (⃑) = max{ , , , , , }.The algorithm above can

be used to generate improved alignments for any CRISPR-Cas9 system for suitably chosen
penalties () and ().
Lastly, we turn our attention to the values chosen for the penalty functions, for CARLIN
specifically. Because we expect the alterations to be localized to the cutsites, the minimum value
of the penalty was set to occur within 3 bp upstream of the PAM sequences with the penalty
increasing linearly moving away from this location. We used the same penalty function for all the
target sites. We manually selected the parameters of the penalty function, i.e. the minimum value
and the slopes, to promote alignments comprised of insertions and deletions in the cutsites for
the 75 CARLIN sequences characterized using bulk Sanger sequencing. The same parameters
also resulted in desired alignment properties when applied to the bulk RNA sequencing data used
to make the allele bank (Supplementary Figure 2A-C). For the numerical values of the penalty
functions, refer to Supplementary Table 2.

Motif Classification

We partitioned the reference into 31 consecutive regions (called motifs), according to the locations
of the reference prefix sequence, conserved sites, cutsites, PAM+linkers, and postfix sequence
(Figure 1B). After aligning a sequence to the reference, we identified the same motifs in the
aligned sequence according to the nucleotide boundaries of the motif in the reference. Each

aligned motif was then assigned a classification: (1) ‘N’: all the nucleotides of the sequence match
that of the reference exactly and there are no gaps in the sequence or reference. (2) ‘E’: motif is
completely absent in the aligned sequence. (3) ‘D’: any (but not all) bps of the motif are deleted
in the sequence, and there are no gaps in the reference. (4) ‘M’: there are no insertions or
deletions relative to the reference, only substitutions. (5) ‘I’ otherwise. These motifs were used to
correct potential sequencing errors and establish a consensus sequence across multiple reads
(as described below).

Sequence Error Correction

Sequencing and amplification (technical) errors can, in addition to Cas9 activity, also introduce
alterations in the CARLIN sequence. We assumed that any individual SNP that occurs outside of
a 3 bp window around the cutsite is a technical error. To remove these technical errors, we took
the aligned CARLIN sequences and reverted the SNPs in these regions (classified as ‘M’ in non-
cutsite motifs) to the corresponding base pair in the reference. We also trimmed nucleotides in
the aligned sequence that extended beyond the reference in either direction.

CB and UMI Error Correction

CBs and UMIs are also subject to the same technical errors as the CARLIN sequence. Denoising
of CBs and UMIs is performed according to the directional adjacency method developed in
UMI-tools (Smith 2017). In short, the method starts by making a list of tags (either CBs or UMIs)
sorted in descending order by the number of reads corresponding to each tag. Next, a directed
graph is constructed with nodes representing tags. The objective is to connect the nodes whose
tags are different only due to technical errors.

To do so, first, the top-ranked node is selected as the current node. An edge is drawn from the
current node to all candidate nodes that satisfy the following criteria: the candidate node does not
already have an incident edge, the tag of the candidate node is different by only one base pair
from the tag of the current node, and the number of reads of the candidate node’s tag is less than
half of the current node’s tag. The current node is then updated to be the next most common
node. The process is repeated until the entire sorted list has been traversed, resulting in disjoint
sets of connected nodes (connected components). In each connected component, the reads of
all the tags are merged under the tag of the top-ranked node in that connected component.

For bulk samples where no CB exists, we do not apply this algorithm directly to all of the detected
UMIs. Instead, we first group the UMIs by their consensus CARLIN sequence with no read
threshold (see Consensus Calling and Read Thresholds for Denoised CBs and UMIs below for
definition of consensus sequence and use of read thresholds respectively). Next, the directional
adjacency method (describe in the previous paragraph) is applied across all UMIs with the same
consensus sequence. This extra step prevents accidental merging of UMIs that differ by only 1
bp when the number of detected UMIs is large with respect to the possible UMI diversity.

For single-cell data, directional adjacency denoising is also used but with CBs for tags. If there is
a reference CB list (for e.g. obtained after preprocessing of the transcriptome library, see
Preprocessing), then we include two additional requirements: (i) top-ranked nodes in each
connected component need to belong to the reference CB list (or else the whole connected
component is discarded), and (ii) candidate nodes cannot belong to the reference CB list. Next,
for each denoised CB (which is now guaranteed to be in the reference list, if supplied), directional
adjacency denoising is performed on its constituent UMIs. The result of this procedure is a
denoised list of CBs and/or UMIs.

Read Thresholds for Denoised CBs and UMIs

Since we do not necessarily have a ground truth list of tags which we expect to detect in the data,
tags with few reads may be spurious, even if they have been denoised. Additionally, to call a
consensus sequence for each tag, we need to be able to find a common sequence among a
sufficiently large number of reads; repeat occurrences of a CARLIN sequence over many reads
gives us confidence that the sequence is the correct one. Averaging over many reads also allows
us a secondary mechanism of correcting for technical errors (especially at cutsites, which we left
untouched in the Sequence Error Correction section). Here we describe how we determine a
threshold on what is a sufficient number of reads.

Let be a sorted list of the number of reads associated with each of denoised tags (UMIs/CBs)
with ≥ … ≥ . We only attempt to call a consensus sequence for tag if meets a minimum
threshold, , for the number of reads, and discard tags which fail to achieve this threshold.

= max{ [.]10 , , ∑ , ⌈ (1−) ⌉, 10}
is the expected number of tags in the experiment (or ∞ if unknown or > , so

that = 0), is the 95th percentile value of the transformed QC scores (error probability) across
all tag bps for all filtered reads, and is the number of base pairs in the tag.

Our threshold function is a heuristic and was empirically optimized by comparing the length
distribution of the consensus alignments called from the consensus sequence (see Consensus
Calling) to fragment length analysis of the same libraries (Supplementary Figure 2D). We
observed that the log-log plot of the rank-ordered number of reads across the tags, , exhibited
a plateau (roughly constant number of reads) after the first percentile with a sharp fall off (a knee)
when the number of reads decreased to one tenth of that of the plateau. Similar empirical criteria
are used to select single-cell barcodes by other single-cell analysis tools such as CellRanger. The
next two terms of the threshold function ensure that the number of tags does not exceed the
expected number of molecules. The fourth term sets a conservative estimate on the number of
reads expected from a single sequencing error across a tag of length L. Finally, we also required
that any tag is observed in at least 10 reads. This last condition reflects the minimum number of
sequences we would like to have for consensus calling (see below). The choices for the threshold
function were made conservatively to minimize false-positives.

For SC data for which a reference CB list is not available, first is tabulated as the number of
reads for a given CB. A CB read threshold, , is computed using as described above. Next,
the number of reads is also tabulated for each CB-UMI pair, to compute . Only cell barcodes
which have at least reads, and within each CB, UMIs which have at least reads are
retained.

For SC data for which a reference CB list is available, only CBs found in the reference CB list
survive the denoising procedure. Since the reference CB list is separately subject to quality control
in the software generating the list (for e.g. CellRanger), we trust all denoised CBs, so that the
threshold is only required to ensure there are sufficient reads for consensus calling. To that end,
we only use the last term in our heuristic function, effectively setting = = 10. The mean
number of reads, , among CBs that pass this threshold criterion is typically one or two orders
of magnitude larger than (see Supplementary Table 3).

Consensus Calling

Next, we describe the procedure used to call the consensus sequence for tags that pass the
threshold criterion. First, we selected the tags for which greater than 50% of the reads are of the
same length and possess the same 31-character motif classification string (see Motif
Classification above). Next, for the selected tags, we retained the reads that comprised this
majority. The consensus sequence was constructed bp-by-bp by selecting the most commonly
occurring nucleotide across all the retained reads (i.e. taking a per bp mode of the retained reads).

For single-cell data, this procedure is performed on each UMI of a CB separately. Next, we
collected the consensus sequence across different UMIs that passed the threshold and selection
criteria. If more than 50% of the consensus sequences are of the same length and possess the
same 31-character motif classification string, we proceeded as follows. We retained the
consensus sequences that comprised this majority. The CB consensus sequence was
constructed bp-by-bp, selecting the most commonly occurring nucleotide across the retained UMI
consensus sequences.

To construct the consensus alignment, we removed the gaps from the consensus sequence and
realigned to the reference. To define CARLIN alleles, we pooled all consensus alignments, and
removed all repeated instances, so that each consensus alignment is represented only once. We
define an allele to be an element of the resulting set, so that alleles are unique by definition. An
allele is defined to be edited if its consensus alignment does not match the reference exactly. In
the text, edited transcript/cell refers to a UMI/CB which has a corresponding CARLIN allele that
is edited. The frequency of an allele in a sample is the number of tags whose consensus alignment
matches that allele.

Mutation Calling

To explicitly associate mutations with the alterations harbored by an allele, we first tabulated the
starting and ending locations of the deletions, insertions, and substitutions in the consensus

alignment. Next, to account for a single Cas9 cutting event that could result in multiple alterations,
we combined two mutations if they were adjacent – the ending location of one mutation was one
bp upstream of the starting location of the other— or if the ending location of one was co-localized
to the same cutsite as the starting location of the other. We iterated the process of combining
mutations until no further combinations were possible. The combined mutations were always
designated as indels. For example, a typical allele can harbor a single bp deletion, and a 5 bp
insertion at the cutsite of target site 3, two mutations which are merged into a single indel event
using this procedure.

For the purpose of preparing figures, we considered all substitutions as indels (1 bp deletion of
the reference nucleotide, and 1 bp insertion of the mismatched sequence nucleotide). In figures
where only insertions and deletions are shown (e.g. Figure 1C,D,F), indels are represented twice,
once as an insertion corresponding to the length of the new sequence, and once as a deletion for
the length of the deleted portion of the reference.

CARLIN Potential

To quantify the extent to which a CARLIN allele is altered with respect to the reference, we define
the CARLIN potential of an allele as the number of target sites whose sequence and the sequence
of the adjacent PAM+linker domain exactly matches that of the reference. Alterations in the prefix
and postfix are considered to be alterations of the first and last target site respectively. The
CARLIN potential is a whole number between 0 and 10.

Quantifying Diversity

Effective Alleles

Since independent Cas9 activity across different cells may lead to the same altered sequences,
the number of alleles detected will generally be less than the number of cells, even if all cells are
edited. Furthermore, not all alleles are equally likely. Some occur more frequently than others.

Ideally, we want detection of a particular allele to restrict the cell in which the allele is observed to
the smallest possible subset of the original population. For a given number of alleles, this occurs
if all alleles are equally likely (i.e. the observation carries maximal information in the language of
information theory). For the case where the allele frequencies are not equal, the observation of a
particular allele is, on average, not as informative for constraining the subpopulation of cells from
which the allele came. How many equally likely alleles are required to carry the same amount of
information in this case?

To answer this question, we devised a metric, the effective number of alleles, calculated as 2 ,
where is the Shannon entropy of the normalized allele frequency distribution across the edited
cells. In the limit that each edited allele appears in an equal number of cells, the effective number
of alleles is simply the number of edited alleles. Conversely, in the limit where a single allele
appears in all edited cells, the number of effective alleles is 1. The effective allele measure seeks

to discount the effect of over-represented alleles, which are less informative. The effective number
of alleles in the bank of 44000 alleles is 14700.

Diversity Index

The diversity index is computed by dividing the effective number of alleles (see above) by the
number of cells in the population. (Alternatively, dividing by the number of edited cells can be
used to compute diversity index across only the edited cells, independent of the fraction of cells
edited). The diversity index is 0 when only the reference is present in the sample, and 1 when the
reference is entirely absent and each cell has its own allele. The diversity index is when the
cutting efficiency is , and each edited cell has a distinct allele, and is less than if some cells
share the same allele. The reciprocal of the diversity index is the average number of cells labeled
by each effective allele.

Allele Bank

To estimate the total number of alleles which can be generated by the CARLIN system, we pooled
the edited transcripts collected from granulocytes harvested from 3 mice, to create a bank of
~233K transcripts resulting in ~32K alleles. As granulocytes are not expected to proliferate
appreciably in the 3 days between induction and collection, shared alleles across multiple cells
are coincidental and not due to shared ancestry of the cells.

Estimating Number of Unseen Alleles

The total number of alleles that CARLIN can generate is the sum of the number of alleles observed
in the bank and the number of alleles that have gone undetected because only a finite number of
cells were measured. To extrapolate the total number of alleles, we need to estimate the number
of unobserved alleles. To intuitively understand the extrapolation, we consider two extreme cases.
If most alleles are only observed once, then we expect many new alleles would turn up under
more exhaustive sampling. (In the limit that all alleles are observed only once, the total number
of alleles is indeterminate). Conversely, if most alleles are observed many times, the system has
been sufficiently sampled and few unobserved alleles are expected. To estimate the number of
unobserved alleles, we use tools developed in the field of ecology, where the problem is referred
to as the unseen species problem. See (J. A. Bunge 2014) for example, for a review of techniques
in the field.

Non-Parametric Diversity Estimation

We use the Smoothed Goodman-Toulmin estimator (SGT) proposed by (Orlitsky 2016) to
estimate the expected number of alleles, , in observations given that alleles were detected
in observations (<). This estimator is near-optimal in the sense of mean-squared error
and works for of the order of (log), the theoretical extrapolation limit (Orlitsky 2016). To
check the consistency of the estimator, we subsample the data to have ≤ observations
(colored dots in Figure 3G), and compute the expected number of alleles for an extrapolated

number of observations in the interval ≤ ≤ log (dotted lines in Figure 3G colored to
correspond to the subsample size).

Parametric Diversity Estimation

To validate the non-parametric method, and obtain an analytic expression for occurrence
frequency of the alleles for subsequent calculations, we tabulate the frequency of allele as
and generate a histogram of frequency counts, ℎ() = ∑ , , representing the number of alleles

that are detected times. Note that ∑ ℎ() = , the number of edited alleles observed, and ∑ ℎ() = ∑ = , the number of observations of edited alleles.

Conceptually, sampling of an allele can be approximated as a Poisson process. The number of
observations of a particular allele, , given a total number of observations, , is drawn from a
Poisson distribution with a rate parameter, , that is proportional to the prevalence of that allele
in the bank. The Poisson approximation allows for an elegant analytical solution for estimating
the occurrence frequency of an allele:

(= ; ,) = ()!
To model the variability in the prevalence of different alleles, we need to associate a Poisson rate
parameter with each allele. Although in general, each allele can have a unique Poisson rate
parameter, for simplicity, we assume that the rate parameters are drawn from a distribution that
can be succinctly described using a few parameters.

We use CatchAll (v4.0), a software package described in (J. L. Bunge 2012), to fit a distribution
of intensive Poisson rate parameters for alleles, (), to our observed data. If all alleles are

equally prevalent with = , () = (−), and ℎ(), when normalized, would converge to a
Poisson distribution. CatchAll determined that for our data, ℎ() mostly closely resembles a
mixture geometric distribution so that () is a 4-component exponential mixture model.

The probability that an allele remains unobserved after observations is then given by

= (= 0;) = ∫ (= 0| ;) () = ∫ ()
The number of unseen alleles is therefore /(1−) and the total number of alleles is given
by = /(1−). For our bank, ≈ 233000, ≈ 32000 and ≈ 0.28 so that the number of
unseen alleles is estimated to be ≈ 12000 and consequently, the total number of alleles is
estimated to be ≈ 44000. The curves in Figure 3H are obtained by using this estimate for ,
and the endpoints of the 95% CI of , in the estimators for interpolation and extrapolation provided
in equations (6) and (12) respectively of (Colwell 2012).

Prevalence of Unseen Alleles

Given our analytical model, we can now determine the distribution of the Poisson rate parameters
for the unobserved alleles. It is a conditional distribution given by Bayes’ rule:

(| = 0;) = (= 0| ;) ()
(= 0;)

For simplicity, we assign all alleles unobserved in the bank the mean Poisson rate under this
conditional distribution.

= (| ;)[]
Usage of Allele Rates

For subsequent experiments, we query the alleles observed in the experiment against the alleles
in the bank. If an observed allele matches an allele in the bank, that allele is assigned the rate

parameter = based on its empirical prevalence in the bank, where is the frequency of the

allele in the bank and is the total number of observations constituting the bank. Otherwise, we
assign it the rate .

Statistical Analysis

Limitations of a Finite Number of Alleles for Uniquely Marking Clones

Here, we consider the implications of having a finite set of alleles with which we can mark a
(possibly infinite) number of cells. How useful are the alleles in uniquely marking clones if multiple
cells can be marked with the same allele? To answer this question, the following factors need to
be considered: the frequency of the allele in the bank, the number of cells marked initially,
potential proliferation of the cells after they are marked, and the number of cells sampled at the
final timepoint.

Suppose that at induction, ≥ 1 cells are randomly assigned one of alleles, according to a
distribution of allele probabilities. Let ∈ {1… . } be the allele label of the induced cell and

let = ∑ , be the number of cells marked with allele . Then (= ;) =
(1−) and the conditional probability given that allele is present in at least one cell is

(= | > 0;) = (= ;)1− (= 0;)
We define the singleton probability and duplication probabilities as

(;) = (= 1| > 0;)

(;) = (> 1| > 0;) = 1− (;)
See Supplementary Figure 3B for an illustration of how , the probability that an allele

uniquely marks a cell, depends on and in the case that is uniform.

In practice, we do not know how the cells are labeled initially but instead observe alleles from an
unbiased sampling of ≥ 1 cells at some later time. Subsequent to induction, assume that cell
expands such that at the sampling time, the probability that cell is a progenitor of a sampled cell
is given by (;), where is a parameter, which will be defined later.

Our goal is to label each progenitor uniquely but it could be that some progenitors were
coincidentally marked with the same allele. At the time of sampling, if we observe the same allele
across multiple cells, we would like to know the probability that all the cells came from a single
progenitor.

If we assume that the proliferation rates are not dependent on the allele label, we will be able to
develop a useful bound on the above probability. Let be the number of cells in the observed
sample marked with allele . If progenitor proliferation rates are uncorrelated with progenitor allele
labels, it follows that the distribution of allele frequencies in the sample is equal to that of the
induced pool

(= ;) = (;) 1− (;)
= (1−)
= (= ;)

Let be the number of progenitors of the sampled cells marked with allele (note the distinction
from , the number of progenitors marked with allele). We know that generally (= ;)
depends on the induction itself (since (> ;) = 0, for example, when the realization of
corresponds to the same experiment as). But what can we say about (= ;) when we
don’t know for the same experiment, only (= ;)?

First note that the conditional probability of the number of progenitors given that allele is
observed at least once is

(= | > 0;) = (= ;)1− (= 0;)
= ∑ (= | =) (= ;)

1 − (= 0;)
= ∑ (= | =) (= ;)1 − (= 0;)

The specific form of (= | =) depends on the proliferation model. For an observed allele
, let us consider the ratio of the probability that more than one progenitor gave rise to the cells

labeled with allele at the sampling timepoint, to the probability that more than one cell was
labeled with allele at the initial timepoint:

= = (> 1| > 0;)(> 1| > 0;)
We note that we calculate these probabilities independently because in general we might not
know the number of cells that were initially labeled with allele . We show that (1) ≤ 1, so that
the probability of more than one progenitor giving rise to cells labeled with allele is smaller than
the probability of labeling more than one cell with allele at the initial timepoint, given that the
number of cells sampled is less than or equal to the initial number of cells:

(1) = (> 1| > 0;)(> 1| > 0;)
= (> 0;)(> 0;) (> 1, > 0;)(> 1, > 0;)
= (> 1;)(> 1;)
= ∑ (= ′;)
∑ (= ′;)

= ∑ ∑ (= ′| =) (= ;)
∑ (= ′;)

= ∑ (= ;)∑ (= ′| =)
∑ (= ′;)

= ∑ (= ;) [1− (= 1| =)]
∑ (= ;)

≤ ∑ (= ;)
∑ (= ;)

= 1
This result can be generalized to bound any number of progenitor cells:

(> | > 0;)(> | > 0;) ≤ 1, ≤
How close is (1) to 1 for a given choice of parameters? Intuitively, the more heterogeneous the
proliferation rates, the less likely we are to observe cells that share the same allele but not the
same progenitor, since the clone that proliferates faster will tend to dominate the sample.

To show this mathematically we note (1) is maximized when (= 1| =) is minimized for
each 1 < ≤ . To determine when (= 1| =) is minimized, we turn our attention to the
parameter of (;). Let be any parameterization of such that

(; 0) = , () → 1 as → ∞, and
() > 0. Note that

(= 1| =) = (;)∑ (;),,

This is minimized for ∀ (for example, by Lagrange multipliers) when each of its constituent terms

is , so that (;) = i.e. = 0.

To consider the effect of sampling, we resort to numerical simulations and consider a specific

proliferation model given by (;) = () 1− , which results in (;) ≥
(+ 1;) without loss of generality. () = ∑ (;) is a normalizing

constant. We simulate induction of an initial pool with = 2000 alleles (the results are insensitive
to) drawn from a uniform , subsequent expansion using this proliferation model, followed by
sampling of a different number of cells at the final timepoint (resulting in different instances of).
Supplementary Figure 3B shows () ≤ 1 for different values of and where each data point
is the mean of a 1000 simulations. The more uneven the proliferation rates (larger values of),
the less likely it is to observe the same allele shared across multiple cells that arise from different
progenitors. However, as the number of observed cells increases (larger values of), even
progeny from slowly-proliferating progenitors that were redundantly marked are more likely to be
observed.

In summary, if we assume that proliferation rates are not dependent on allele marking then:

1. The probability that cells that share a given allele at the final timepoint came from more
than one progenitor is less than the probability that more than one cell would have been
labeled with the same allele in the initial population, if the number of cells sampled is less

than the initial population size. This means that (;) underestimates the

probability that observed cells share a unique progenitor and conversely (;) overestimates the probability that the observed cells arise from

multiple progenitors. Therefore, in practice, if the initial population size is not known,

computing (;) using the number of sampled cells (in place of the unknown

initial population size) is a conservative bound on the probability that allele is marking a
unique clone, as long as < . In the case where > , the estimate is by definition
more conservative because it assumes more cells were initially labeled than was actually
the case.

2. The more non-uniform the proliferation rates of progenitor cells, the more conservative we

are in using (;) and (;) as bounds.

3. The fewer cells sampled at the final timepoint, the more conservative we are in using (;) and (;) as bounds, achieving equality only in the limit

of perfect sampling, where ≫ .

Statistical Significance of Alleles

Previous barcoding systems fail to account for the natural ubiquity of alleles, mistakenly attributing
kinship to cells coincidentally marked by the same allele. Since common alleles by definition occur
in many cells, the number of cells implicated in these false-positive conclusions can be high. We
circumvent this issue by assigning a p-value to each allele, which quantifies statistical significance
of the allele according to the biological application, so that standard statistical best practices can
be used.

Case 1: p-value for marking clones when is known or <
Consider the case where , the number of cells initially labeled, is known (or there is an estimate
on the upper bound ≤ , the number of cells observed at the sampling timepoint). If at the
sampling timepoint, we observe at least one cell harboring allele , > 0, we would like to
quantify the probability that the cells arose from more than one progenitor (> 1)
coincidentally marked with the same allele at the initial induction. If this probability is < , we can
be confident at significance level , that all cells marked with allele , originated from a single
progenitor. This probability is just introduced above, where we now use the

approximation that the occurrence frequency of a given allele follows a Poisson distribution.

(;) = P(> 1 | > 0; ,) = P(> 1 | > 0; ,) = 1− − ()
1−

Note that conditional on allele being observed, does not depend on the number of cells

observed (). Given the number of alleles and the distribution of their Poisson rates in the
CARLIN system, for sufficiently large , will always be larger than a preset significance

level for some of the alleles. For example, at = 5000, 72% of alleles are significant at = 0.05,
representing a cumulative allele frequency probability of 20% so that a fifth of cells will be marked
uniquely at this significance level (Figure 3I).

Case 2: p-value for marking clones when < or is unknown

In this case, we still seek to quantify the probability that cells arose from multiple progenitors,
but without knowing the size of the initial pool. We assume that the s form an unbiased sampling.
The probability of observing more than one cell independently labeled with allele conditioned on
having observed the allele is given by,

(;) = (> 1 | > 0; ,) = 1 − − ()
1 −

Note that is just evaluated at = , according to our earlier justification (see

Limitations of a Finite Number of Alleles for Uniquely Marking Clones) and constitutes an upper
bound on the probability (a conservative p-value). We separately annotate this as instead
of to make clear that in this case, we have no knowledge of or .

As grows, we are more likely to sample redundantly marked cells. Once ≥ 35,000, even the
most rare allele is expected to mark multiple progenitors at significance level = 0.05. The upper
limit on is determined by the smallest Poisson rate in our bank, the mean rate assigned to the
unobserved alleles. Although there is actually a distribution of rates for unobserved alleles, we
still cannot theoretically go beyond the limit imposed by the mean (as we cannot actually associate
an unobserved allele to a particular rate in this distribution). This regime is indicated in grey in
Figure 3I. We use this p-value for all our SC analysis where < 1500.

Case 3: p-value for allele frequency

Lastly, we define a p-value that quantifies the probability of observing allele expressed in cells
or more, under the null model that the allele has Poisson rate parameter .

(;) = (≥ | > 0; ,) = 1 −∑ () !1 −
If (;) < , this means that cells marked with allele are significantly over-represented

in a library of cells (at significance level). This does not necessarily indicate that all cells
expressing the allele are related. However, it does indicate that at least one progenitor marked
with the allele expanded more compared to progenitors marked with other alleles. The more
skewed the proliferation rates (→ ∞ according to notation introduced in Limitations of a Finite
Number of Alleles for Uniquely Marking Clones), the more likely the over-representation is due to
a single progenitor.

Statistically Significant Clones for SC Analysis

An allele was determined to be statistically significant if it had a that survived multiple
hypothesis testing using the Benjamini-Hochberg procedure at a false discovery rate (FDR) of
0.05. A clone (a group of cells marked with the same allele) was said to be statistically significant,
if its allele was statistically significant. For the 5-FU experiments, the number of observed cells
() was set separately for each sample to equal the number of cells with an edited CARLIN allele
in that sample (Supplementary Table 3). For the embryonic induction experiment, the number of
observed cells () was the total number of cells with an edited CARLIN allele across the four
bones (Supplementary Table 3).

Comparing Progeny Origin in Development and Adult Hematopoiesis

To quantify what fraction of statistically significant clones included both HSCs and non-HSCs, we
computed the proportion of statistically significant alleles that marked cells belonging to both the
HSC and non-HSC clusters. We also computed this proportion over the three controls as an
average of the three proportions, weighted by the number of statistically significant alleles in each
control. We performed a two-proportion z-test for the alternative hypothesis that the proportion is
smaller in the control, rejecting at significance level = 0.05.

To quantify what fraction of the observed non-HSCs share an allele with an observed HSC (i.e.
belong to an HSC-rooted clone) in the embryonic induction and 5-FU experiments, we computed
the proportion of cells in non-HSC clusters that had a statistically significant allele which also
appeared in a cell found in the HSC cluster. We also computed this proportion over the three
controls as an average of the three proportions, weighted by the number of non-HSCs marked
with statistically significant alleles in each control. We performed a two-proportion z-test for the
alternative hypothesis that the proportion is larger in development/adult hematopoiesis than in the
control, rejecting at significance level = 0.05.

Comparing Number of Clones and Clone Size Distributions in Adult Hematopoiesis

To determine if there were significantly fewer statistically significant clones in the 5-FU treated
mouse, relative to the negative control, we first selected cells belonging to statistically significant
clones. Let ′ be the minimum of the number of selected cells across the two treatments. We
sampled ′ cells with replacement from each pool of selected cells, and counted the number of
observed alleles. We repeated this procedure 10,000 times to get a distribution of the number of
observed alleles in the two treatments. We performed a t-test for the alternative hypothesis that
the mean of the number of observed alleles is less in the 5-FU treated sample at a significance
level of = 0.05.

To determine if there are significant differences in the average HSC-rooted clone size between
the 5-FU treated mouse and the negative control mouse, we selected cells marked by statistically
significant alleles that also appear in at least one cell belonging to the HSC cluster. Let ′ be the
minimum of the number of selected cells across the two treatments. We sample ′ cells with

replacement from each pool of selected cells, letting be the allele labels of the sampled

cells, and = ∑ , the number of cells labeled with the same allele as cell (the size of the

clone to which a cell belongs). We performed a one-sided Mann-Whitney test using for the
alternative hypothesis that the clone sizes in the negative control are smaller at a significance
level of = 0.05. We repeat this procedure 10,000 times to get a distribution of p-values, and
report the 99th percentile value (see Supplementary Table 4).

To determine if the distribution of HSC-rooted clone sizes was significantly non-uniform, we
selected cells marked by statistically significant alleles that also appear in at least one cell
belonging to the HSC cluster. Suppose ′ cells are selected in a particular sample in this fashion,

yielding ≤ ′ alleles. Let ∈ {1… }, 1 ≤ ≤ , be the allele label of cell . We sample ′
cells with replacement from this selected set of cells, and construct a CDF over the occurrence

frequency of sampled allele labels = ∑ , . We also sample allele labels times from a

discrete uniform distribution with bins, and again construct a CDF over the occurrence
frequency of allele labels. We compute the p-value associated with the KS-statistic derived from
comparing these two CDFs. We repeat this procedure 10,000 times, and report the 99th percentile
for the p-value distribution.

Statistical Significance of Bone/Fate Bias

To quantify whether an allele displays significant fate bias, we consider the deviation of the
observed number of cells marked with allele , (, , … ,), across possible bins (representing

bones or phenotypes), against a multinomial null distribution given by (= ∑ , , , … ,).
For the embryonic induction dataset, we tested fate bias over different bones (= 4). We also
tested for bias over phenotypes, annotated from the Louvain clusters as defined in Figure 5B (=5; the lymphoid cluster which only had a few dozen cells was omitted), for each bone separately
and pooling across bones.

The bin probabilities are the maximum likelihood estimators found by normalizing frequency

counts after pooling all edited alleles, so that = ∑ ,∑ ∑ , . The fate bias p-value that is reported

is the probability under the null model of the range (the difference between the largest and
smallest frequency across the bins for each allele) being greater or equal to the range observed.
We compute this probability exactly according to the method described in (Corrado 2011). We
note that while this method does not require that all bins have equal probability, using this
measure to test bias is prone to false negatives when there is a large skew in bin probabilities,
since the range does not take into account whether the maximum frequency occurred at a bin
with low probability; in our data, all the bins (whether they are bones or coarse-grained
phenotypes), have roughly the same probability. We only report fate bias p-values for statistically
significant alleles (as defined in Statistically Significant Clones for SC Analysis) and reject at
significance level = 0.05 (Bonferroni-corrected on the number of statistically significant alleles).

Equivalence Testing for SC Amplicon Protocol Reproducibility

To quantify the reproducibility of our single-cell CARLIN amplicon protocol, we prepared libraries
in duplicate starting from the same single-cell transcriptome library for the samples in the 5-FU
experiment. We performed equivalence testing on the frequency distribution of alleles (edited and
unedited) called by the CARLIN pipeline, when applied independently on these replicates
(Supplementary Figure 6A). We used the KS-statistic at a test value of 0.05 to determine whether
two replicates are equivalent. We performed 10,000 bootstrapping trials, and computed the
KS-statistic for each trial, to obtain a distribution over all trials. For all samples, the one-sided (1-) confidence interval excluded the test value of 0.05, so replicates are said to be equivalent
at significance level = 0.05. The results presented in the main text and Figure 6, were generated

by pooling the sequencing data from the replicates, and running the CARLIN pipeline on the
combined data.

Lineage Reconstruction

We pool together all cells/transcripts across all libraries/tissues, so that the reconstruction is
agnostic to the origin of the alleles in the data. We use the specific details of mutations called in
the alleles (see Mutation Calling) to establish a hierarchy across the alleles and thereby obtain a
simplified phylogeny tree.

Filtering Alleles

For the in vivo data, we discarded alleles whose did not satisfy an FDR threshold of

0.05 under the Benjamini-Hochberg procedure. The number of observations, , used in
computing , was the total number of edited transcripts after pooling the data. We used

as opposed to because even if we are not confident that all cells that share a

given allele came from the same progenitor, the relative expansion of one allele compared with
another contains important information about clonal expansion across different tissues.

Tree Reconstruction Algorithm

Here, we describe a simple tree reconstruction algorithm used as a proof of concept for lineage
tracing in the CARLIN system. Since a primary contribution of this paper is not in the domain of
tree reconstruction, we defer investigation of how more sophisticated schemes like those newly
developed in (Feng 2019) may improve the analysis.

For this algorithm, we make two assumptions, both of which are justified empirically by the data
(see Figure 2D):

1) Both leaf and internal nodes of the tree can only be occupied by alleles observed in the
sample. Since the efficiency of Cas9 is not 100%, we expect that every allele found after
editing round will also be present after editing round + 1, because not every cell
marked with a particular allele is further modified. The task of tree reconstruction is
therefore simplified from inference of a novel set of mutations harbored by internal nodes,
to identification of alleles which could likely be the internal nodes. In this scheme, we note
that an allele must appear as a leaf node exactly once. Some leaf nodes may additionally
appear once as an internal node with the same allele. In such cases, the internal node will
always appear as a parent to the leaf node.

2) A child allele may only differ from its parent allele by either having additional mutations to
those harbored by its parent, and/or possessing a subsuming deletion, whose endpoints
are located at pristine target sites in the parent. The subsuming deletion would remove
any history of parental mutations between deletion endpoints. This assumption therefore

requires that there are no repair mechanisms, precluding the possibility of mutations that
are observed in the parent at sites that are unmodified in the child.

Assumption (2) allows us to determine whether any pair of alleles fall along the same lineage, in
which one allele could be an ancestor of the other. Given a list of alleles (including the
unmodified reference), we construct an x Boolean matrix where , = 1 if allele can be a

descendent of allele . We subsequently set to zero some of the non-zero entries using the
following rules:

1) Frequency Criteria: We set , = 0 if the number of cells with allele is larger than the

number of cells with allele . We impose this criteria, consistent with Assumption (1),
because we expect the number of cells with the parent allele to exceed the number of
cells with the child allele for two reasons: (i) the cutting efficiency is typically <<100% so
that the parent allele remains substantially represented among cells and (ii) multiple
distinct outcomes can result from additional modifications to a starting allele, so that a
single child allele is unlikely to become more prevalent than the parent, its prevalence
being diluted by its siblings.

2) Maximum Mutation Preservation: For each child allele that can potentially be descended
from multiple parent alleles, only the candidate parent alleles that share the maximum
number of mutations with the child allele are retained as the potential parents, and the
other entries are set to zero. This entails that the number of mutations required to
transform from parent to child allele is the minimum among possible parents, based on
the reasoning that multiple editing events leading to a child allele are more unlikely than a
single editing event. This criterion ensures that a given allele is most likely to be connected
to its nearest ancestor so that matrix can be interpreted as the set of parent-child
relationships.

3) Alleles that have no parent allele after this pruning procedure are linked to the reference
allele at the root of the tree.

A limitation of CARLIN is that alleles exhibiting large deletions could potentially be descended
from almost any parent allele. In these cases, we have no choice but to connect the allele to the
root of the tree as the lineage information in the allele is lost. However, such alleles are generally
common in the bank and are therefore likely to be filtered out using our statistical significance
tests (Figure 4B; Filtering Alleles).

Even after the pruning procedure, a given allele can still have multiple parent alleles. To construct
a consensus tree from these potentially contradictory lineage relationships, we generate an
ensemble of trees, by running simulations in which we probabilistically sample the parent edges
of children with multiple candidate parents.

The tree is reconstructed recursively as follows: given a partially reconstructed tree and the
current node, we randomly select one of the remaining unplaced alleles that is a child of the

current node according to the matrix. We attach the selected allele to the current node as its
child. The added node then becomes the current node. When none of the remaining unplaced
alleles is a valid child of the current node, we backtrack by setting the current node to be the
parent node. We initialize the algorithm by starting with the reference allele as the current node
(defined as the root of the tree). Lastly, we include a leaf node for each internal node.

Consensus Tree

To determine lineage relationships that are conserved across our simulated trees, we focused on
nodes that occur closer to the root, reasoning that they are less variable across different
reconstructions and carry more information because they have more cells associated with their
alleles (due to the frequency criteria).

The depth of a given node is one less than the number of nodes on the path from the root to the
node. Define a depth- rooted path for a given internal node at depth- , to be a sequence of
alleles occurring on the path from the root of the tree (depth-0) to the internal node. We tabulate
the number of times we observe a particular depth- rooted path over the ensemble of trees. In
addition, for each simulation in which the depth- rooted path occurs, we tabulate the sum of the
frequency of the alleles (referred to as the clade population) of all the leaves that descend from
the terminating node of the path. Over the ensemble of trees, we obtain a distribution of clade
populations for each depth- rooted path.

We consider a depth- rooted path to be stable if it appears in fraction of the simulated trees.
For the reconstructions presented in the paper, we used = 1, and constructed a consensus tree
by aggregating all stable depth- rooted paths, for ≤ 3. We chose = 1 by rank-ordering the
occurrence frequency of the rooted paths of a given depth across all simulated trees
(Supplementary Figure 4) and observing that (i) the top-ranked paths occurred across all
simulations, (ii) the occurrence frequency decayed rapidly for paths that don’t appear in all
simulations, and (iii) the clade populations associated with the paths that did not occur in all
simulations were not substantial.

Given our choice of = 1, the same consensus tree could have been reconstructed by simply
removing child alleles that had multiple potential parents in the matrix. In general, other choices
of permit reconstruction of trees with contradictory lineage information.

Since there is no contradictory lineage information for = 1, the consensus tree can be visualized
unambiguously. For aesthetic reasons, in Figure 2D and 4D we omitted display of depth-1 rooted
paths whose terminal nodes are leaves with a minimum clade population across simulations less
than 100.

Tissue Distance

We use the same tissue distance metric outlined in (Feng 2019). In short, for the consensus tree,
we compute the distance between tissues and by first identifying all leaves corresponding to

alleles found in tissue . For each allele, we compute the distance to its closet ancestor which has
a progeny allele that was found in tissue (one less than the number of nodes along the path
connecting the leaf to the internal node). Next, we average this distance over all alleles for tissue
. We weight each term in the average by the product of the number of cells found in tissue

marked by the leaf allele and the number of cells found in tissue marked by progeny alleles of
the closest ancestor. In Figure 4H we show the matrix obtained from this procedure after
symmetrization.

Transcriptomic Analysis and Visualization

After discarding cells with few UMIs and high expression of mitochondrial genes (see
Preprocessing), the resulting gene expression matrices were processed using Seurat (v3.0.2 with
default parameters except where indicated) as follows. First, cell cycle scores were assigned to
each cell using the CellCycleScoring function. Next, UMI counts were normalized according to a
regularized negative binomial regression model while regressing out the effect of cell cycle and
mitochondrial genes (using the SCTransform function with vars.to.regress = c("percent.mt",
"S.Score", "G2M.Score")).

The 4 bones of the embryonic induction dataset were aligned (and similarly the 5-FU and control
samples), by finding 2000 common features using the FindIntegrationAnchors function, and
specifying these, together with marker genes (Supplementary Figure 5E,6D), as landmarks to the
IntegrateData function (Supplementary Figure 5C,6B). Joint dimensionality reduction was
performed on the aligned datasets using RunPCA. Points in this embedding were used to
construct UMAP plots (RunUMAP), and find neighbors for clustering (FindNeighbors). For all
relevant functions, 20 principal components were used.

FindClusters (algorithm=2, resolution=1.0) was used to run the Louvain clustering algorithm with
multilevel refinement (Supplementary Figures 5D, 6C). The dot plots in Supplementary Figures
5E and 6D were generated using data from Seurat’s DotPlot function. Subclustering was
performed on the 5-FU dataset by re-rerunning FindClusters with resolution=1.1 (Supplementary
Figure 6E). Differential gene expression was performed using the FindMarkers function, whose
output when applied to our data is shown in Supplementary Tables 5 and 6. Visualization of
differentially expressed genes was handled using Seurat’s VlnPlot function for Figure 6G and
Supplementary Figure 6F,G, and DoHeatMap function for Figure 6H.

Data and Code Availability

All data used in this paper will be made available on the NCBI GEO upon publication. The CARLIN
software package, together with the allele bank, is available at https://gitlab.com/hormozlab/carlin.
All code and instructions to reproduce numerics and figures in the manuscript will be made
available upon publication.

References

Bunge, John, Amy Willis, and Fiona Walsh. 2014. "Estimating the number of species in microbial
diversity studies." Annual Review of Statistics and Its Application 1: 427-445.

Bunge, John, Linda Woodard, Dankmar Böhning, James A. Foster, Sean Connolly, and Heather
K. Allen. 2012. "Estimating population diversity with CatchAll." Bioinformatics 28 (7): 1045-
1047.

Colwell, R.K., Chao, A., Gotelli, N.J., Lin, S.Y., Mao, C.X., Chazdon, R.L. and Longino, J.T. 2012.
"Models and estimators linking individual-based and sample-based rarefaction,
extrapolation and comparison of assemblages." Journal of plant ecology 5 (1): 3-21.

Corrado, C.J. 2011. "The exact distribution of the maximum, minimum and the range of
Multinomial/Dirichlet and Multivariate Hypergeometric frequencies." Statistics and
computing 21 (3): 349-359.

Feng, J., DeWitt III, W.S., McKenna, A., Simon, N., Willis, A., Matsen, I.V. and Frederick, A., .
preprint arXiv:. 2019. "Estimation of cell lineage trees by maximum-likelihood
phylogenetics." arXiv. doi:arXiV:1904.00117.

McKenna, Aaron, Gregory M. Findlay, James A. Gagnon, Marshall S. Horwitz, Alexander F.
Schier, and Jay Shendure. 2016. "Whole-organism lineage tracing by combinatorial and
cumulative genome editing." Science 353 (6298).

Orlitsky, Alon, Ananda Theertha Suresh, and Yihong Wu. 2016. "Optimal prediction of the number
of unseen species." Proceedings of the National Academy of Sciences 113 (47): 13283-
13288.

Rice, Peter, Longden, Ian, and Bleasby, Alan. 2000. "EMBOSS: The European Molecular Biology
Open Software Suite." Trends Genet. 16: 276–277.

Smith, Tom Sean, Andreas Heger, and Ian Sudbery. 2017. "UMI-tools: Modelling sequencing
errors in Unique Molecular Identifiers to improve quantification accuracy." Genome
research gr-209601.

Zhang, Jiajie, Kassian Kobert, Tomáš Flouri, and Alexandros Stamatakis. 2013. "PEAR: a fast
and accurate Illumina Paired-End reAd mergeR." Bioinformatics 30 (5): 614-620.

Zilionis, R., Nainys, J., Veres, A., Savova, V., Zemmour, D., Klein, A.M., and Mazutis, L. 2017.
"Single-cell barcoding and sequencing using droplet microfluidics." Nat Protoc 12: 44-73.

SUPPLEMENTARY FIGURES

C

D

E

F

G

sgRNA1 sgRNA2 sgRNA3 sgRNA4 sgRNA5

sgRNA6 sgRNA7 sgRNA8 sgRNA9 sgRNA10

A B

Supplementary Figure 1: Additional quantification of editing in ES cells
A. Fragment analysis results indicating cutting efficiency of individual sgRNAs.
B. Schematic of inducible CARLIN system.
C. Chord plots of CARLIN alleles at 24h, 48h, and 72h (left to right) in the absence of doxycycline (Dox),
as in Figure 1F.
D. Chord plots of CARLIN alleles at 12h, 24h, and 48h (left to right) after induction with 0.20g/mL (medium)
of Dox, as in Figure 1F.

E. Chord plots of CARLIN alleles at 12h, 24h, and 48h (left to right) after induction with 1.00g/mL (high) of
Dox, as in Figure 1F.
F. From left to right, fraction of cells edited, diversity index (see Methods), and average base pairs deleted
from CARLIN alleles across edited cells, for chronic induction experiments shown in Figure 1F-H. Legend
as in Figure 1G-H
G. Fraction of cells edited (top left), CARLIN potential (top right), diversity metrics (middle row), average
base pairs deleted in CARLIN allele across edited cells (bottom left), and frequency distribution of mutation
counts (bottom right) for the pulsed induction experiment shown in Figure 2A.

A B

C

D

Supplementary Figure 2: Comparison of CARLIN analysis pipeline with NW alignment and fragment
analysis
A. Frequency of indels, deletions and insertions called using the standard Needleman-Wunsch (NW) and
the CARLIN algorithm, when applied to the CARLIN sequences of alleles in the bank. For the series labelled
‘Unmerged’ we refrained from merging mutations (Methods).
B. Frequency of indels, deletions and insertions called as a function of their location along different motifs
on the CARLIN array. Repetitions of the same motif are overlaid. Relative to the NW algorithm, the CARLIN
algorithm tends to cluster mutations more frequently at the expected cutsites. Shading as in Figure 1B.
C. CDF of the difference between the NW score of the optimal alignment produced by the NW algorithm
and the optimal alignment produced by the CARLIN algorithm. About half the alleles in the bank have
alignments that match the NW algorithm. The remainder would have been discarded as suboptimal by the
NW algorithm.
D. Comparison of fragment lengths as measured by fragment analysis (Methods), and the frequency-
weighted distribution of allele lengths called by the CARLIN pipeline applied to NGS data. The data
correspond to four timepoints from the three +Dox concentrations used in the chronic induction experiment
shown in Figure 1F-H.

A C

E

B
E

D

F

Supplementary Figure 3: Mutations in different tissues, and additional details of the allele bank
A. Site decomposition plot as in Figure 3D for the tissues shown in Figure 3B, under doxycycline (Dox)
induction. Figure legend same as in Figure 3D, which shows results for granulocytes comprising the bank.
B. (Top) Lower bound on the probability of observing an allele marking cells belonging to a unique
progenitor (, see Methods) for different numbers of observed cells, in the case of equally likely

alleles. As the number of cells observed increases, the chance of observing cells that coincidentally share
the same allele increases. This effect is counteracted by increasing the number of alleles available (different
colored traces). (Bottom) When multiple progenitors are marked with the same allele, the more uneven the
proliferation rates (larger values of the parameter in the proliferation model, see Methods), the less likely
it is to observe the same allele shared across multiple cells that arise from different progenitors (see
Methods for definition of ()). However, as the number of observed cells increases (increasing , see
Methods), even progeny from slowly-proliferating progenitors that were redundantly marked are more likely
to be observed, so that the fraction of alleles that ambiguously mark the ancestry of observed cells
increases.
C. Distribution of observed allele frequencies for the bank. The top-ranked allele is the unedited reference.
D. (Top) Distribution of allele frequencies as in (C) and (bottom) the 50 most common edited alleles for a –
Dox control obtained by harvesting ∼310K granulocytes from each of two uninduced mice.
E. (Top) Distribution of allele frequencies as in (C) and the 50 most common edited alleles (bottom) for a –
Cas9 control obtained by harvesting ∼125K granulocytes from a single mouse.
F. Distribution of allele frequencies (top), the 50 most common edited alleles (middle), site decomposition
plot as in Figure 3D (bottom left), and histogram of mutation frequencies (bottom right), obtained from
harvesting granulocytes from two Dox-induced iCARLIN mice (Methods).

Supplementary Figure 4: Additional details of lineage tree reconstruction simulations
A. Number of instances (blue) of rooted paths (Methods) of depth 1-3 (left to right), found across 10,000
simulations for the in vitro tree reconstruction shown in Figure 2D. We deem a rooted path stable, if it is
found in all 10,000 simulations. In orange, we show the median clade population (across all simulations in
which it appears) for each rooted path (Methods). Error bars (shaded) are min/max across the simulations.
B. Same as in (A) but for the in vivo tree reconstruction shown in Figure 4D.

A

B

Supplementary Figure 5: FACS plots and extended data for embryonic induction experiment
A. FACS strategy used for sorting cells for encapsulation from bone marrow (BM) in the embryonic induction
experiment (Figure 5) and control 5-FU experiment (Figure 6).
B. FACS strategy used for sorting cells for encapsulation from BM in the 5-FU experiment (Figure 6).
C. Overlay of transcriptome data from the 4 separate bones following batch correction.
D. Unsupervised Louvain clustering on the aligned transcriptomes from the 4 bones used in the embryonic
induction experiment, generated 28 distinct clusters.
E. Dot plots of canonical blood cell-type specific markers used for fine-grain cell annotations of each
Louvain cluster (HSC, hematopoietic stem cell; MPP, multipotent progenitor cell; MyP, myeloid progenitor;
Neu, neutrophil; Mono, monocyte; DC, dendritic cell; Ba, basophil; Eos, eosinophil; Mk, megakaryocyte;
Ery, erythrocyte; Ly, lymphoid cell). MyP, Neu, Mono, DC, Ba and Eos were further grouped to form the
coarse-grained clusters shown in Figure 5B.

Sca1

cK
it

CD150
C

D
48

CD150

C
D

41
Sca1

cK
it

A

B C

D E

CD150

C
D

48

LSK:

Prog:LSK:

A B

C D

E

F G

Supplementary Figure 6: Extended data for 5-FU experiment
A. The libraries for the 5-FU experiment (Figure 6) were prepared in replicate to analyze reproducibility.
Each point corresponds to the proportion of cells in each replicate in which a given allele is found. For
visualization purposes, the point corresponding to the unedited reference allele has been omitted and jitter
has been added to distinguish stacked points.
B. Overlay of three control and one 5-FU treated single cell experiments following batch correction
(Methods).
C. Unsupervised Louvain clustering after aligning the transcriptomes of the 5FU and control samples
generated 21 distinct clusters.
D. Dot plots of canonical blood cell-type specific markers used for cluster annotation in 5-FU and control
mice, using the same two-tier scheme described in Supplementary Figure 5E.
E. Louvain clustering after increasing the resolution parameter of the Louvain clustering algorithm
(Methods). The HSC cluster 0 obtained at resolution 1.0 (see C), resolved into two clusters, 0 and 3, at
resolution 1.1. We designated cluster 0 as the ‘Parent Cluster’, and cluster 3 as the ‘Childless Cluster’. The
other clusters did not change substantially.
F. Violin plots of the genes most differentially overexpressed in the HSC Parent cluster relative to the HSC
Childless cluster, not shown in Figure 6G.
G. Violin plots of the genes most differentially underexpressed in the HSC Parent cluster relative to the
HSC Childless cluster, not shown in Figure 6G.

SUPPLEMENTARY TABLES

Supplementary Table 1: Related to CARLIN construct design (annotated 5’ to 3’)
inducible sgRNAs

isgRNA1_F tcccgactgcacgacagtcgacga

isgRNA1_R aaactcgtcgactgtcgtgcagtc

isgRNA2_F tcccgacacgactcgcgcatacga

isgRNA2_R aaactcgtatgcgcgagtcgtgtc

isgRNA3_F tcccgactacagtcgctacgacga

isgRNA3_R aaactcgtcgtagcgactgtagtc

isgRNA4_F tcccgcgagcgctatgagcgacta

isgRNA4_R aaactagtcgctcatagcgctcgc

isgRNA5_F tcccgatacgatacgcgcacgcta

isgRNA5_R aaactagcgtgcgcgtatcgtatc

isgRNA6_F tcccgagagcgcgctcgtcgacta

isgRNA6_R aaactagtcgacgagcgcgctctc

isgRNA7_F tcccgcgactgtacgcacacgcga

isgRNA7_R aaactcgcgtgtgcgtacagtcgc

isgRNA8_F tcccgatagtatgcgtacacgcga

isgRNA8_R aaactcgcgtgtacgcatactatc

isgRNA9_F tcccgagtcgagacgctgacgata

isgRNA9_R aaactatcgtcagcgtctcgactc

isgRNA10_F tcccgatacgtagcacgcagacga

isgRNA10_R aaactcgtctgcgtgctacgtatc

constitutive sgRNAs

csgRNA1_F caccgactgcacgacagtcgacga

csgRNA1_R aaactcgtcgactgtcgtgcagtc

csgRNA2_F caccgacacgactcgcgcatacga

csgRNA2_R aaactcgtatgcgcgagtcgtgtc

csgRNA3_F caccgactacagtcgctacgacga

csgRNA3_R aaactcgtcgtagcgactgtagtc

csgRNA4_F caccgcgagcgctatgagcgacta

csgRNA4_R aaactagtcgctcatagcgctcgc

csgRNA5_F caccgatacgatacgcgcacgcta

csgRNA5_R aaactagcgtgcgcgtatcgtatc

csgRNA6_F caccgagagcgcgctcgtcgacta

csgRNA6_R aaactagtcgacgagcgcgctctc

csgRNA7_F caccgcgactgtacgcacacgcga

csgRNA7_R aaactcgcgtgtgcgtacagtcgc

csgRNA8_F caccgatagtatgcgtacacgcga

csgRNA8_R aaactcgcgtgtacgcatactatc

csgRNA9_F caccgagtcgagacgctgacgata

csgRNA9_R aaactatcgtcagcgtctcgactc

csgRNA10_F caccgatacgtagcacgcagacga

csgRNA10_R aaactcgtctgcgtgctacgtatc

Assembly Golden Gate isgRNA multiplex

isgRNA1_F atatGgtctcagagaggtaccgcatgagattatcaaaaagg

isgRNA1_R atatggtctctgtacgtacgtacaaaaaagcaccgactcggtg

isgRNA2_F atatGgtctcagtacgcatgagattatcaaaaagg

isgRNA2_R atatggtctctcaggcaggcaggaaaaaagcaccgactcggtg

isgRNA3_F atatGgtctcacctggcatgagattatcaaaaagg

isgRNA3_R atatggtctctgaccgaccgaccaaaaaagcaccgactcggtg

isgRNA4_F atatGgtctcaggtcgcatgagattatcaaaaagg

isgRNA4_R atatggtctctttgtttgtttgtaaaaaagcaccgactcggtg

isgRNA5_F atatGgtctcaacaagcatgagattatcaaaaagg

isgRNA5_R atatggtctctacgtacgtacgtaaaaaagcaccgactcggtg

isgRNA6_F atatGgtctcaacgtgcatgagattatcaaaaagg

isgRNA6_R atatggtctcttggctggctggcaaaaaagcaccgactcggtg

isgRNA7_F atatGgtctcagccagcatgagattatcaaaaagg

isgRNA7_R atatggtctctaaagaaagaaagaaaaaagcaccgactcggtg

isgRNA8_F atatGgtctcactttgcatgagattatcaaaaagg

isgRNA8_R atatggtctctagctagctagctaaaaaagcaccgactcggtg

isgRNA9_F atatGgtctcaagctgcatgagattatcaaaaagg

isgRNA9_R atatggtctctctcgctcgctcgaaaaaagcaccgactcggtg

isgRNA10_F atatGgtctcacgaggcatgagattatcaaaaagg

isgRNA10_R atatggtctctgcggttaattaaataaaaaagcaccgactcggtg

Assembly Golden Gate csgRNA multiplex

csgRNA1_F atatGgtctcagagaggtaccTTTCCCATGATTCCTTCATA

csgRNA1_R atatggtctctgtacgtacgtacAACGGGTACCTCTAGAGCCA

csgRNA2_F atatGgtctcagtacTTTCCCATGATTCCTTCATA

csgRNA2_R atatggtctctcaggcaggcaggAACGGGTACCTCTAGAGCCA

csgRNA3_F atatGgtctcacctgTTTCCCATGATTCCTTCATA

csgRNA3_R atatggtctctgaccgaccgaccAACGGGTACCTCTAGAGCCA

csgRNA4_F atatGgtctcaggtcTTTCCCATGATTCCTTCATA

csgRNA4_R atatggtctctttgtttgtttgtAACGGGTACCTCTAGAGCCA

csgRNA5_F atatGgtctcaacaaTTTCCCATGATTCCTTCATA

csgRNA5_R atatggtctctacgtacgtacgtAACGGGTACCTCTAGAGCCA

csgRNA6_F atatGgtctcaacgtTTTCCCATGATTCCTTCATA

csgRNA6_R atatggtctcttggctggctggcAACGGGTACCTCTAGAGCCA

csgRNA7_F atatGgtctcagccaTTTCCCATGATTCCTTCATA

csgRNA7_R atatggtctctaaagaaagaaagAACGGGTACCTCTAGAGCCA

csgRNA8_F atatGgtctcactttTTTCCCATGATTCCTTCATA

csgRNA8_R atatggtctctagctagctagctAACGGGTACCTCTAGAGCCA

csgRNA9_F atatGgtctcaagctTTTCCCATGATTCCTTCATA

csgRNA9_R atatggtctctctcgctcgctcgAACGGGTACCTCTAGAGCCA

csgRNA10_F atatGgtctcacgagTTTCCCATGATTCCTTCATA

csgRNA10_R atatggtctctgcggttaattaaatAACGGGTACCTCTAGAGCCA

CARLIN reference sequence

cgccggactgcacgacagtcgacgatggagtcgacacgactcgcgcatacgatggagtcgactacagtcgctacgacgatggagtcgcgag
cgctatgagcgactatggagtcgatacgatacgcgcacgctatggagtcgagagcgcgctcgtcgactatggagtcgcgactgtacgcacacg
cgatggagtcgatagtatgcgtacacgcgatggagtcgagtcgagacgctgacgatatggagtcgatacgtagcacgcagacgatgggagct

Pre-polyA UTR sequence

agaattctaactagagctcgctgatcagcct

pBS31-inducible CARLIN plasmid

https://benchling.com/s/lZx1S0ul

pBS31-constitutive CARLIN plasmid

https://benchling.com/s/zs5pUinp

CARLIN amplification

CARLIN_fwd1 gtcctgctggagttcgtgac

CARLIN_fwd2 gagctgtacaagtaagcggc

CARLIN_rev gcaactagaaggcacagtcg

Fragment analysis

FAM_CARLIN_fwd /56-FAM/gagctgtacaagtaagcggc

Bulk DNA

NGS_UIM_D_F CTACACGACGCTCTTCCGATCTNNNNNNNNNNgagctgtacaagtaagcggc

NGS2_F
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCT
TCCGATCT

NGS1_R GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTgcaactagaaggcacagtcg

P5 AATGATACGGCGACCACCGA

NG2R_I#
CAAGCAGAAGACGGCATACGAGATXXXXXXGTGACTGGAGTTC

XXXXXX = TruSeq Illumina indices

Bulk RNA

RT_Bulk_CARLIN
CTACACGACGCTCTTCCGATCTNNNNNNNNNNGCAACTAGAAGGCACAG
TCG

NGS1_F gtcctgctggagttcgtgac

NGS2_F
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCT
TCCGATCT

NGS1_Bulk_R GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTgagctgtacaagtaagcggc

P5 AATGATACGGCGACCACCGA

NG2R_I#
CAAGCAGAAGACGGCATACGAGATXXXXXXGTGACTGGAGTTC

XXXXXX = TruSeq Illumina indices

InDrop v3

R1-N6 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNN

R1-CARLIN TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGgagctgtacaagtaagcggc

R2 CAAGCAGAAGACGGCATACGAGATGGGTGTCGGGTGCAG

P7 CAAGCAGAAGACGGCATACGAGAT

R1_I#

AATGATACGGCGACCACCGAGATCTACACXXXXXXXXTCGTCGGCAGCGT
C

XXXXXXXX = InDrop v3 indices

10X Chromium

10X-CARLIN_1-bio bio-gtcctgctggagttcgtgac

10X-CARLIN_2 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTgagctgtacaagtaagcggc

P5-PR1 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTC

P5 AATGATACGGCGACCACCGA

Genotyping Col1a1 locus

Col1a1_reverse ccctccatgtgtgaccaagg

Col1a1_fwd_WT gcacagcattgcggacatgc

Col1a1_fwd_mut gcagaagcgcggccgtctgg

Genotyping Rosa26 locus

Rosa26_fwd aaagtcgctctgagttgttat

Rosa26_rev_WT ggagcgggagaaatggatatg

Rosa26_rev_mut gcgaagagtttgtcctcaacc

Supplementary Table 2: Penalties (/) used in alignment algorithm (Supplementary
Figure 2 & Methods)

Motif
Base Pair

1 2 3 4 5 6 7 8 9 10 11 12 13
Opening Insertion 10

Prefix 10 10 10 10 10

Conserved Site 10 9.875 9.75 9.625 9.5 9.375 9.25 9.125 9 8.875 8.75 8.625 8.5

Cutsite 8.0 7.5 7.0 6.5
6.0/
6.5

6.0/
6.5

6.0/
6.5

PAM+Linker 8.6 8.8 9.0 9.2 9.4 9.6 9.8

Postfix 8.6 8.8 9.0 9.2 9.4 9.6 9.8 10

Supplementary Table 3: Metrics for single cell data (Figures 5 & 6)

Sample System

Transcriptome CARLIN Amplicon

Cells
Loaded

Minimum
UMI Count

Filtered
CBs

Median
Genes in

Filtered CBs

Filtered
CBs

Mean Reads in
Filtered CBs

Alleles
% CBs
Edited

Ctrl 1 10X v3 8000 1632 5960 2938 3765 330 532 19

Ctrl 2 10X v3 8000 2113 6025 2813 3039 363 395 17

Ctrl 3 10X v3 8000 2012 4832 3305 1539 1329 693 74

5-FU 1 10X v3 8000 1539 4073 3330 2000 621 89 16

5-FU 2 10X v2 8000 3267 4148 2518 519 2471 33 18

5-FU 3 10X v2 8000 4067 3125 3103 441 2598 51 18

LF 10X v2 8000 2383 4938 2541 864 118 39

60

40

RF 10X v2 8000 2697 5102 2622 848 123 37 48

LH 10X v2 8000 2122 3755 2711 598 183 28 40

RH 10X v2 8000 1095 5261 2354 789 138 35 40

Supplementary Table 4: Statistical significance (p-value) of differences in average HSC-
rooted clone size (Figure 6)

… has Larger
Clones than…

Sample 2?

5FU Mouse 1 Control 1 Control 2 Control 3

S
am

p
le

 1

5FU Mouse 1 1.0e+00 1.7e-04 1.1e-07 7.2e-11

Control 1 1.0e+00 1.0e+00 9.5e-01 3.7e-01

Control 2 1.0e+00 1.0e+00 1.0e+00 5.1e-01

Control 3 1.0e+00 1.0e+00 1.0e+00 1.0e+00

Supplementary Table 5: Differential gene expression between parent HSCs and childless
HSCs (Figure 6)

Gene p_val avg_logFC pct.1 pct.2 p_val_adj

Plac8 1.11E-05 0.443686 1 1 0.022181
Cdk6 0.000146 0.30155 0.971 0.988 0.292948
Nkg7 0.000342 0.455855 0.829 0.554 0.683012
Phgdh 0.0005 0.28048 1 0.926 1
Emb 0.000648 0.335612 0.943 0.678 1
Smarca2 0.002105 -0.29964 0.629 0.769 1
Ablim1 0.003223 0.26776 0.714 0.459 1
Adssl1 0.003399 0.2906 0.857 0.649 1
Pnisr 0.004244 -0.30633 0.971 0.988 1
Serpinb1a 0.004474 0.282037 0.914 0.793 1
Cd81 0.005061 -0.28216 0.943 0.971 1
Muc13 0.005277 0.255475 0.886 0.583 1
Stat1 0.005635 0.30276 0.771 0.541 1
Cd24a 0.011899 -0.31708 0.8 0.781 1
Mpo 0.017957 0.322474 1 0.992 1
Taok3 0.027004 0.285475 0.8 0.674 1
Glul 0.04018 -0.33248 0.857 0.793 1
Cd48 0.063211 0.435107 0.6 0.488 1
Cpne2 0.09082 0.265093 0.829 0.665 1
Tbxas1 0.098405 -0.2673 0.771 0.711 1
Plxnc1 0.099949 -0.29844 0.6 0.574 1
Slc22a3 0.118351 0.257604 0.571 0.421 1
Bex4 0.119088 -0.29402 0.6 0.579 1
Shisa5 0.130016 -0.27373 1 0.893 1
Pf4 0.314527 -0.26528 0.629 0.612 1
Meg3 0.329864 -0.31519 0.886 0.74 1
Adgrg3 0.395805 0.264516 0.686 0.583 1
Mllt3 0.399855 -0.27227 0.8 0.657 1
Ltb 0.41547 -0.27331 0.857 0.781 1
Mycn 0.964807 -0.26505 0.686 0.537 1

Supplementary Table 6: Differential gene expression between parent and childless HSC
cluster (Figure 6)

Gene p_val avg_logFC pct.1 pct.2 p_val_adj

Plac8 2.71E-175 0.546865 0.998 0.988 5.42E-172
Cd34 1.37E-124 0.412811 0.957 0.896 2.74E-121
Cdk6 7.55E-103 0.409562 0.979 0.965 1.51E-99
H2afy 3.52E-137 0.374018 1 0.998 7.04E-134
Serpinb1a 1.80E-84 0.369092 0.859 0.786 3.60E-81
Mpo 4.50E-56 0.36604 0.971 0.939 9.01E-53
Nkg7 6.63E-55 0.34021 0.64 0.51 1.33E-51
Fam117a 1.91E-39 0.278728 0.673 0.582 3.82E-36
Sox4 4.64E-47 0.252392 0.996 0.992 9.28E-44
Mecom 3.53E-34 -0.25409 0.596 0.751 7.07E-31
Jund 9.00E-35 -0.25649 0.878 0.948 1.80E-31
Fos 9.94E-18 -0.259 0.609 0.73 1.99E-14
Mmrn1 2.55E-32 -0.26561 0.557 0.669 5.09E-29
Jun 6.71E-29 -0.2684 0.894 0.965 1.34E-25
Rgs1 3.31E-15 -0.27309 0.648 0.728 6.62E-12
Junb 2.32E-35 -0.2844 0.59 0.754 4.64E-32
Ltb 3.87E-30 -0.28618 0.758 0.845 7.74E-27
Ier2 1.75E-45 -0.30564 0.786 0.904 3.50E-42
Egr1 1.20E-29 -0.31212 0.495 0.676 2.39E-26
Pdzk1ip1 3.38E-58 -0.3234 0.641 0.808 6.75E-55
Tbxas1 2.06E-77 -0.33632 0.596 0.809 4.13E-74
Hacd4 8.54E-65 -0.3538 0.628 0.799 1.71E-61
Neat1 1.04E-56 -0.36253 0.818 0.926 2.07E-53
Apoe 5.11E-63 -0.42971 0.582 0.782 1.02E-59
Mllt3 9.18E-67 -0.44728 0.514 0.717 1.84E-63
Meg3 1.08E-130 -0.55864 0.486 0.728 2.16E-127
Jchain 1.08E-10 -0.64067 0.503 0.624 2.17E-07
Ighm 0.000106 -0.82665 0.517 0.575 0.211726

