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1 Balanced graphs and sign changes in the scor-
ing matrix

A balanced graph can only contain cycles where the product of all edge weights
is positive. Repeating the cycle twice or more does not change the sign, while
a repetition of an unbalanced cycle does change the sign of the path for each
repetition. While cycles are only a subset of the paths that are included in the
matrix power, the ratio of paths that switch signs is different for balanced and
unbalanced graphs as a result of their presence. Hence, we hypothesize that
this is what causes the oscillating behaviour in unbalanced, but not in balanced
graphs.

2 Directed graphs
During iterations on directed graphs, the scoring matrix can also be described as
a Petri net, where positions in the scoring matrix can be assigned a liveness value
based on their ability to affect the matrix throughout iterations. While manta
does support directed graphs, it can only cluster these when the liveness of some
matrix positions is at least L2, where the L2 liveness of positions implies that
they generate values other than zero through multiple iterations of expansion
and inflation [1]. The occasional non-zero values generated for permuted graphs
with L2 liveness could be enough to assign clusters with the subsetting strategy;
however, random selection of nodes does not enforce L2 liveness. Therefore, the
scoring matrix needs to converge to -1 and 1 during the initial cluster assignment
and no convergence to zero is permitted.

As the subsetting strategy does not enforce a degree of liveness on subsets of
directed graphs, manta cannot resolve cluster structure for flip-flopping directed
graphs. Moreover, most of the use cases for manta are unlikely to enforce a
degree of liveness on the input network. Hence, we recommend users to treat
directed networks as undirected instead.

3 Evaluation of clustering performance
Cluster assignments were evaluated with the complex-wise sensitivity (Sn), the
cluster-wise positive predictive value (PPV), geometrical accuracy (Acc) and
the separation (Sep) [2]. The complex-wise sensitivity estimates the coverage
of a true positive cluster by its best-matching assigned cluster, whereas the
cluster-wise positive predictive value measures how well an assigned cluster
covers its best-matching true positive cluster. In contrast, the separation is
calculated by taking the product of the fraction of assigned nodes in the true
positive clusters by the fraction of true-positive nodes in the assigned clusters.
Hence, the separation penalizes for cluster overlap, unlike the reported Acc, PPV
and Sn. The approach described in uses the contingency matrix rather than a
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list of true positives, effectively permitting evaluation of assignments that do not
necessarily match the true positive clusters (Supplementary Figure 1). These
measures can be skewed by cluster assignments that mostly assign all nodes
to one cluster (Supplementary Figure 1b) or assign almost every node to its
own cluster. Additionally, overlapping clusters can also inflate some measure
of performance (Supplementary Figure 1c). In the first and second cases, all or
some measures are inflated; therefore, we filtered assignments where over 80% of
the nodes were assigned to a single cluster, or over 50 clusters were identified.
While accuracy, precision and sensitivity can be high for algorithms that assign
true positive clusters to the same clusters, separation is calculated by multiplying
the proportion of true-positive nodes in the assigned cluster with the proportion
of cluster nodes in the true-positive cluster. Hence, the separation measure
punishes cluster assignments that mix up multiple true-positive clusters. Finally,
the reported sparsity is a measure of the ratio between inter- and intracluster
positive and negative edges.

4 Effect of network errors on algorithm perfor-
mance

One of the main conclusions of the work by Brohee et al. [2] was that MCL
was exceptionally robust to alterations of the network. In a similar manner,
we carried out an evaluation to test algorithms for robustness to alterations of
the abundance data. We permuted the original abundances generated with the
gLV and FABIA approaches to assess whether algorithms were able to capture
the original clusters (Supplementary Figure 9). For each algorithm, the best-
performing variant on the population model was chosen (Figure 2), i.e. the
positive-edge-only assignment for the Louvain method and signed approach for
WGCNA. Except WGCNA, all algorithms show a decrease in separation after a
large fraction of the data is permuted. Although all algorithms, including manta,
display a decrease in performance, they still recover at least part of the original
clusters despite a high degree of errors. Considering the fraction of permuted
values, it is likely that they are mostly identifying a random cluster structure.
Regardless, the Kernighan-Lin algorithm and manta both recover part of the
true positive clusters, with manta outperforming all other algorithms on data
sets with 3 clusters (Supplementary Figures 10, 12). On data with multinomial
noise, the performance of most algorithms was hardly affected (Supplementary
Figure 13).
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5 Supplementary Figures
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Figure S1: Effect of different clustering assignments on measures for
clustering performance. Overview of sensitivity, positive predictive values,
accuracy and separation as described by [2]. A toy model contains two true
positive clusters (TP1 and TP2); the effect of clustering assignments (A1 and
A2) on these measures is shown in tables. a A clustering assignment that assigns
9 out of 10 nodes correctly achieves good scores for all measures. b A clustering
assignment that assignes 9 out of 10 nodes to the same cluster achieves high
sensitivity, but lower values for all other scores. c A clustering assignment that
incorrectly assigns most nodes achieves values of approximately 0.5-0.6 for all
measures.
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Figure S2: Examples of networks generated with generalized Lotka-
Volterra or FABIA. The edge colours are mapped to the Spearman correlation,
with red being a positive and blue a negative correlation. a A network generated
with the generalized Lotka-Volterra equation from a random interaction matrix.
b A network generated with the FABIA package [3].
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Figure S3: Effect of MCL parameters on clustering performance. Sepa-
ration of MCL clustering assignments. Parameter choices for the MCL algorithm
were based on performance on datasets generated with random interaction matri-
ces and two environmentally-induced clusters. Cluster assignments that assigned
over 80% of species to one cluster are not shown. The numbers above each
setting indicate how many cluster assignments without clusters larger than 80%
of the dataset were returned. a Effect of the expansion variable on separation of
complete networks. The inflation parameter was set to 3. b Effect of expansion
variable on separation of positive-edge-only networks. The inflation parameter
was set to 2. c Effect of the inflation variable on separation of complete net-
works. The expansion variable was set to 2. d Effect of the inflation variable on
separation of positive-edge-only networks. The expansion variable was set to 2.
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Figure S4: Effect of Kernighan-Lin parameters on clustering perfor-
mance. Separation of Kernighan-Lin clustering assignments. Parameter choices
for the Kernighan-Lin algorithm were based on performance on datasets gener-
ated with random interaction matrices and two environmentally-induced clusters.
The numbers above each setting indicate how many cluster assignments without
clusters larger than 80% of the dataset were returned. a Effect of the iteration
variable on separation of complete networks. b Effect of the iteration variable
on separation of positive-edge-only networks.
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Figure S5: Effect of Louvain community detection parameters on clus-
tering performance. Separation of Louvain community assignments. Param-
eter choices for the Louvain method for community detection were based on
performance on datasets generated with random interaction matrices and two
environmentally-induced clusters. Cluster assignments that assigned over 80% of
species to one cluster are not shown. The numbers above each setting indicate
how many cluster assignments without clusters larger than 80% of the dataset
were returned. a Effect of the resolution variable on separation of complete
networks. b Effect of the resolution variable on separation of positive-edge-only
networks.
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Figure S6: Effect of manta clustering parameters on clustering perfor-
mance. Separation of manta clustering assignments. Parameter choices for the
manta algorithm were based on performance on datasets generated with random
interaction matrices and two environmentally-induced clusters. The numbers
above each setting indicate how many cluster assignments without clusters larger
than 80% of the dataset were returned. a Effect of the edgescale variable on
complete networks. b Effect of the ratio variable on complete networks. c Effect
of the minsize variable on separation of complete networks. d Effect of the subset
variable on separation of complete networks.
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Figure S7: Performance of network clustering tools on three environ-
mentally motivated clusters. Clustering performance was estimated on 50
independently generated datasets generated from scale-free interaction matrices.
Sensitivity (Sn), positive predictive values (PPV), accuracy (Acc) and separation
(Sep) were calculated as described by [2]. Sparsity of the assignment is a function
of the edge weights of intra-cluster versus inter-cluster edges (Equation 4). The
manta algorithm was run with and without weak assignments, while WGCNA
was run with signed networks and a signed topological overlap matrix and with
unsigned networks combined with the unsigned matrix. For all other algorithms,
we provided the complete network in addition to the positive edge-only network
(indicated with +).
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Figure S8: Performance of network clustering tools on three biclusters
generated with FABIA [3]. Clustering performance was estimated on 50
independently generated datasets without an underlying topology. Sensitivity
(Sn), positive predictive values (PPV), accuracy (Acc) and separation (Sep)
were calculated as described by [2]. Sparsity of the assignment is a function of
the edge weights of intra-cluster versus inter-cluster edges (Equation 4). The
manta algorithm was run with and without weak assignments, while WGCNA
was run with signed networks and a signed topological overlap matrix and with
unsigned networks combined with the unsigned matrix. For all other algorithms,
we provided the complete network in addition to the positive edge-only network
(indicated with +).
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Figure S9: Performance of clustering algorithms across a permutation
gradient. Clustering performance was estimated on 50 independently generated
data sets using the separation as described by [2]. For 9 points (range 0.1-
0.9), fractions of the original abundance matrices (generated from a random
interaction matrix with two environmentally-induced clusters) were permuted
and clustering was carried out on Pearson correlation networks inferred from
these matrices. The manta algorithm was run without weak assignments, while
WGCNA was run with signed networks and a signed topological overlap matrix.
The Louvain method and Girvan-Newman algorithm received positive-edge-only
networks (indicated with +), while MCL received the complete network.
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Figure S10: Performance of clustering algorithms across a permuta-
tion gradient on three environmentally motivated clusters. Clustering
performance was estimated on 50 independently generated datasets using the
separation as described by [2]. For 9 points (range 0.1-0.9), fractions of the
original abundance matrices (generated from a random interaction matrix with
two environmentally-induced clusters) was permuted and clustering was carried
out on Spearman correlation networks inferred from these matrices. The manta
algorithm was run without weak assignments, while WGCNA was run with
signed networks and a signed topological overlap matrix. The Louvain method
and Girvan-Newman algorithm received positive-edge-only networks (indicated
with +), while MCL received the complete network.
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Figure S11: Performance of clustering algorithms across a permuta-
tion gradient on two biclusters generated with FABIA [3]. Clustering
performance was estimated on 50 independently generated datasets using the
separation as described by [2]. For 9 points (range 0.1-0.9), fractions of the
original abundance matrices (generated from a random interaction matrix with
two environmentally-induced clusters) was permuted and clustering was carried
out on Spearman correlation networks inferred from these matrices. The manta
algorithm was run without weak assignments, while WGCNA was run with
signed networks and a signed topological overlap matrix. The Louvain method
and Girvan-Newman algorithm received positive-edge-only networks (indicated
with +), while MCL received the complete network.
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Figure S12: Performance of clustering algorithms across a permutation
gradient on three biclusters generated with FABIA [3]. Clustering
performance was estimated on 50 independently generated datasets using the
separation as described by [2]. For 9 points (range 0.1-0.9), fractions of the
original abundance matrices (generated from a random interaction matrix with
two environmentally-induced clusters) was permuted and clustering was carried
out on Spearman correlation networks inferred from these matrices. The manta
algorithm was run without weak assignments, while WGCNA was run with
signed networks and a signed topological overlap matrix. The Louvain method
and Girvan-Newman algorithm received positive-edge-only networks (indicated
with +), while MCL received the complete network.
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Figure S13: Performance of clustering algorithms on networks gener-
ated from noisy data. Sensitivity (Sn), positive predictive values (PPV),
accuracy (Acc) and separation (Sep) were calculated as described by [2]. Spar-
sity of the assignment is a function of the edge weights of intra-cluster versus
inter-cluster edges (Equation 4). Clustering performance was estimated on 50
independently generated datasets. Matrices of taxon abundances were generated
from a synthetic random interaction matrix; afterwards, taxon abundances were
scaled by a factor 1000 and multinomial noise was applied. Clustering was
carried out on Spearman correlation networks inferred from these matrices. The
numbers next to the sensitivity results indicate how many clustering assignments
met the following criteria for a particular algorithm: no cluster should exceed
80% of the total number of nodes, and there should be fewer than 50 clusters
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Figure S14: Performance of clustering algorithms on networks with
the range of edge weights shifted to 0 and 1. Sensitivity (Sn), positive
predictive values (PPV), accuracy (Acc) and separation (Sep) were calculated as
described by [2]. Sparsity of the assignment is a function of the edge weights of
intra-cluster versus inter-cluster edges (Equation 4). Clustering performance was
estimated on 50 independently generated datasets. Matrices of taxon abundances
were generated from a synthetic random interaction matrix. Clustering was
carried out on Spearman correlation networks inferred from these matrices,
with the range of correlations shifted to 0 and 1. As WGCNA constructed its
own networks, shifting the edge weights was not possible for this tool and its
performance therefore corresponds to performance on the normalized data. The
numbers next to the sensitivity results indicate how many clustering assignments
met the following criteria for a particular algorithm: no cluster should exceed
80% of the total number of nodes, and there should be fewer than 50 clusters.
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