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Abstract 11 

Neural activity exhibits dynamics that in addition to a behavior of interest also relate to other brain functions or 12 

internal states. Understanding how neural dynamics explain behavior requires dissociating behaviorally relevant 13 

and irrelevant dynamics, which is not achieved with current neural dynamic models as they are learned without 14 

considering behavior. We develop a novel preferential subspace identification (PSID) algorithm that models 15 

neural activity while dissociating and prioritizing its behaviorally relevant dynamics. Applying PSID to large-scale 16 

neural activity in two monkeys performing naturalistic 3D reach-and-grasps uncovered new features for neural 17 

dynamics. First, PSID revealed the behaviorally relevant dynamics to be markedly lower-dimensional than 18 

otherwise implied. Second, PSID discovered distinct rotational dynamics that were more predictive of behavior. 19 

Finally, PSID more accurately learned the behaviorally relevant dynamics for each joint and recording channel. 20 

PSID provides a general new tool to reveal behaviorally relevant neural dynamics that can otherwise go unnoticed. 21 

Introduction 22 

Modeling of how behavior is encoded in the dynamics of neural activity over time is a central challenge in 23 

neuroscience. This modeling is essential for investigating or decoding behaviorally measurable brain functions 24 

such as movement planning, initiation and execution1---3, speech and language4, mood5, decision making6, or 25 

neurological dysfunctions such as movement tremor7. However, building such models is challenging for two main 26 

reasons. First, in addition to the behavior being studied, recorded neural activity also encodes other brain 27 

functions, inputs from thousands of other neurons, as well as internal motivational states with brain-wide 28 
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representations such as thirst3,8---15. These together constitute behaviorally irrelevant neural dynamics.  Second, 29 

many natural behaviors such as unconstrained movements or speech are temporally structured. Thus 30 

understanding their neural representation is best achieved by learning a dynamic model, which explicitly 31 

characterizes the temporal evolution of neural population activity3,16---18. Given these two challenges, answering 32 

increasingly sought-after and fundamental questions about neural dynamics such as their dimensionality3,13,19 and 33 

important temporal features such as rotations14,20---22 requires a novel dynamic modeling framework that can 34 

prioritize extracting those neural dynamics that are related to a specific behavior of interest. This would ensure 35 

that behaviorally relevant neural dynamics are not masked or confounded by behaviorally irrelevant ones and will 36 

broadly impact the study of diverse brain functions. Developing such a dynamic modeling framework has 37 

remained elusive to date.  38 

Currently, dynamic modeling of neural activity is largely performed according to two alternative conceptual 39 

frameworks. In the first framework, often termed representational modeling (RM), behavioral measurements such 40 

as movement kinematics, choices or tremor intensity at each time are assumed to be directly represented in the 41 

neural activity at that time2,7,23,24. By making this assumption, RM implicitly assumes that the dynamics of neural 42 

activity are the same as those in the behavior of interest; the RM framework thus takes behavior to represent the 43 

brain state in the model and learns its dynamics without considering the neural activity (Fig. 1a; Methods). This 44 

assumption, however, may not hold since neural activity in many cortical regions including the prefrontal6,25, 45 

motor20,26---28 and visual13 cortices and other brain structures such as amygdala8,9 is often simultaneously responsive 46 

to multiple behavioral and task parameters6,8,9,25 and thus is not fully explained by the RM framework3,17,18,20. 47 

Motivated by this complex neural response, recently a second framework known as neural dynamic modeling 48 

(NDM) has received growing attention3,5,16,18,20---22,29---32 and has led to recent findings for example about movement 49 

generation3,20 and mood5. In NDM, the dynamics of neural activity are modeled in terms of a latent variable that 50 

constitutes the brain state in the model and is extracted purely using the recorded neural activity and agnostic to 51 
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the behavior (Fig. 1a). Once extracted, this latent brain state is then assumed to encode the behavior of interest, 52 

such as movement kinematics21,29,30 or mood5. Because NDM does not guide the extraction of neural dynamics by 53 

behavior, it may miss or less accurately learn some of the behaviorally relevant neural dynamics, which are masked 54 

or confounded by behaviorally irrelevant ones. Uncovering these behaviorally relevant neural dynamics requires a 55 

new modeling framework to extract the dynamics that are shared between the recorded neural activity and 56 

behavior of interest, rather than extracting the prominent dynamics present in one or the other as done by current 57 

dynamic models (Fig. 1a)-----present in behavior in the case of RM and in neural activity in the case of NDM.  58 

In this Technical Report, we develop a novel general modeling and learning algorithm, termed preferential 59 

subspace identification (PSID), for extracting and modeling behaviorally relevant dynamics in high-dimensional 60 

neural activity. PSID uses both neural activity and behavior together to learn (i.e. identify) a dynamic model that 61 

describes neural activity in terms of latent states while prioritizing the characterization of behaviorally relevant 62 

neural dynamics. The key insight in PSID is to identify the subspace shared between high-dimensional neural 63 

activity and behavior, and then extract the latent states within this subspace and model their temporal structure 64 

and dynamics (Methods).  65 

We first show with extensive numerical simulations that PSID learns the behaviorally relevant neural dynamics 66 

significantly more accurately, with markedly lower-dimensional latent states, and orders of magnitude fewer 67 

training samples compared with standard methods. We then demonstrate the new functionalities that PSID 68 

enables by applying it to large-scale motor cortical activity recorded in two non-human primates (NHP) 69 

performing an unconstrained naturalistic 3D reach, grasp, and return task. We show that PSID uniquely uncovers 70 

several new features of neural dynamics underlying motor behavior. First, PSID reveals that the dimension of 71 

behaviorally relevant neural dynamics is markedly lower than what standard methods conclude. Second, while 72 

both NDM and PSID find rotational neural dynamics during our unconstrained 3D task, PSID uncovers rotations 73 

that are in the opposite directions in reach vs return epochs and are significantly more predictive of behavior 74 
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compared with NDM, which in contrast finds rotations in the same direction. Third, compared with NDM and 75 

RM, PSID more accurately learns behaviorally relevant neural dynamics for almost all of the 27 arm and finger 76 

joint angles and for 3D end-point kinematics. Finally, PSID reveals that almost all individual channels across the 77 

large-scale recordings have behaviorally relevant dynamics that are learned more accurately using PSID.  78 

Results 79 

Overview of PSID 80 

We consider the state of the brain at each point in time as a high-dimensional latent variable of which some 81 

dimensions may drive the recorded neural activity, some may drive the observed behavior, and some may drive 82 

both (Fig. 1a). We thus model the recorded neural activity (𝑦𝑦𝑘𝑘 ∈ ℝ𝑛𝑛𝑦𝑦) and behavior (𝑧𝑧𝑘𝑘 ∈ ℝ𝑛𝑛𝑧𝑧) using the 83 

following general dynamic linear state-space model (SSM) formulation  84 

 �
𝑥𝑥𝑘𝑘+1 =  𝐴𝐴  𝑥𝑥𝑘𝑘 + 𝑤𝑤𝑘𝑘
   𝑦𝑦𝑘𝑘 = 𝐶𝐶𝑦𝑦 𝑥𝑥𝑘𝑘 + 𝑣𝑣𝑘𝑘
   𝑧𝑧𝑘𝑘 = 𝐶𝐶𝑧𝑧 𝑥𝑥𝑘𝑘 + 𝜖𝜖𝑘𝑘

,   𝑥𝑥𝑘𝑘 = �
𝑥𝑥𝑘𝑘

(1)

𝑥𝑥𝑘𝑘
(2)�,   𝐶𝐶𝑧𝑧 = [𝐶𝐶𝑧𝑧1 0] (1) 

where 𝑥𝑥𝑘𝑘 ∈ ℝ𝑛𝑛𝑥𝑥 is the latent brain state that drives the recorded neural activity, and 𝑥𝑥𝑘𝑘
(1) ∈ ℝ𝑛𝑛1 and 𝑥𝑥𝑘𝑘

(2) ∈ ℝ𝑛𝑛2 85 

(with 𝑛𝑛2 = 𝑛𝑛𝑥𝑥 − 𝑛𝑛1) are its behaviorally relevant and behaviorally irrelevant components, respectively. The matrix 86 

𝐶𝐶𝑧𝑧 is non-zero only in its first 𝑛𝑛1 columns (i.e. 𝐶𝐶𝑧𝑧1) indicating that 𝑥𝑥𝑘𝑘
(1) ∈ ℝ𝑛𝑛1 drives the behavior but 𝑥𝑥𝑘𝑘

(2) does 87 

not. Finally, 𝜖𝜖𝑘𝑘 represents the behavior dynamics that are not present in the recorded neural activity, and 𝑤𝑤𝑘𝑘 and 88 

𝑣𝑣𝑘𝑘 are noises. 𝐴𝐴, 𝐶𝐶𝑦𝑦, and 𝐶𝐶𝑧𝑧 and noise statistics are model parameters to be learned using PSID given training 89 

samples from neural activity and behavior (Methods). This provides a general formulation whose special cases also 90 

include standard NDM (when 𝑛𝑛2 = 0 and 𝐶𝐶𝑧𝑧 is a general matrix to be learned) and RM (when 𝐶𝐶𝑧𝑧 is identity and 91 

𝜖𝜖𝑘𝑘 = 0, Methods). 92 

The goal of PSID is to build a model for how high-dimensional neural activity evolves in time while prioritizing 93 

the behaviorally relevant neural dynamics, which are the ones driven by the behaviorally relevant latent states (i.e. 94 
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𝑥𝑥𝑘𝑘
(1), Methods). The key idea for achieving this goal is the demonstration that the behaviorally relevant latent 95 

states lie in the intersection of the space spanned by the past neural activity and the space spanned by the future 96 

behavior (Methods). Using this idea, we can extract the behaviorally relevant latent states via an orthogonal 97 

projection of future behavior onto the past neural activity (Fig. 1b, Methods). The remaining neural dynamics 98 

correspond to the latent states that do not directly drive behavior (i.e. 𝑥𝑥𝑘𝑘
(2)). These remaining latent states can then 99 

be extracted by an additional orthogonal projection from the residual neural activity (i.e. the part not predicted by 100 

the extracted behaviorally relevant latent states) onto past neural activity (Methods). Finally, model parameters 101 

that describe the temporal evolution can be learned based on the extracted latent states. Thus, PSID solves two 102 

challenges. It builds a dynamic model of how high-dimensional neural activity evolves in time (temporal 103 

structure) and at the same time dissociates behaviorally relevant and irrelevant dynamics.  104 

We compare PSID with standard NDM and RM. Standard NDM describes neural activity using a latent SSM 105 

that is a special case of that in PSID (equation (1)), but in terms of a latent state that is learned agnostic (i.e., 106 

unsupervised) with respect to behavior5,21,29,30; it then regresses the latent states onto the behavior5,21,29. Since 107 

standard NDM methods extract the latent states and learn their dynamics without using the observed behavior, 108 

unlike PSID, they do not prioritize the behaviorally relevant neural dynamics. While there are various methods to 109 

learn the latent SSM from neural data in the case of NDM, we use the standard subspace identification (SID) 110 

algorithm33, which has been used for NDM before5,32,34 and like PSID has a closed-form solution33 and is thus 111 

computationally efficient. SID identifies the latent states by projecting future neural activity onto past neural 112 

activity (Fig. 1b) in contrast to PSID that projects future behavior onto past neural activity (Fig. 1b). As control 113 

analyses, we also repeat some key NDM analyses with Expectation Maximization (EM) that can also be used to 114 

learn the model in NDM but is iterative and thus computationally complex. To implement RM2,23, we use the 115 

commonly-used RM method (sometimes termed Kinematic-state Kalman Filter (KKF)21), which builds an auto-116 

regressive model for the behavior and directly relates the behavior to the neural activity using linear regression2,23. 117 
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RM learns the state and its dynamics agnostic to the observed neural activity (Fig. 2b) and thus, as we will show, 118 

may learn state dynamics that are not encoded in the observed neural activity.  119 

Importantly, all three methods (RM, NDM, PSID) describe the neural activity using the same model structure, 120 

which is a linear SSM (Methods). The critical difference is how states and their dynamics are learned from neural 121 

data (NDM), from behavior data (RM) or from both (PSID), and thus which brain states are extracted (Fig. 1a). 122 

After SSM model parameters are learned in each of these three methods, in all of them, the estimation of the state 123 

from neural activity and the decoding of behavior are done using a Kalman filter and linear regression, 124 

respectively (Fig. 1c).  125 

Neural Recordings 126 

We first validated PSID using extensive numerical simulations and then used PSID to uncover the behaviorally 127 

relevant neural dynamics in large-scale cortical recordings of two adult Rhesus macaques performing 128 

unconstrained naturalistic 3D reach, grasp, and return movements (Methods). In each trial, this task requires the 129 

monkey to reach for an object, grasp it, and then release the object and return the hand to the resting position. The 130 

angle of 27 (monkey J) or 25 (monkey C) joints on the right shoulder, elbow, wrist, and fingers at each point in 131 

time is tracked via reflective markers and is taken as the behavior of interest (Methods). In addition to joint angles, 132 

we also study the 3D end-point position of hand and elbow as the behavioral measurements. Large-scale neural 133 

activity was recorded from primary motor cortex (M1), dorsal premotor cortex (PMd), ventral premotor cortex 134 

(PMv), and prefrontal cortex (PFC) and for monkey C also included ipsilateral coverage (Methods). We used the 135 

local field potential (LFP) power in 7 frequency bands as the neural features to be modeled (Methods, Discussion). 136 

We use the cross-validated correlation coefficient (CC) of decoding behavior using neural activity as the main 137 

measure for how accurately the behaviorally relevant neural dynamics are learned.  138 
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Figure 1. PSID enables learning of dynamics shared between recorded neural activity and measured behavior. 
(a) Schematic view of how the state of the brain can be thought of as a high-dimensional time varying variable of which some 
dimensions (𝑥𝑥𝑘𝑘

(1) and 𝑥𝑥𝑘𝑘
(2)) drive the recorded neural activity (𝑦𝑦𝑘𝑘), some dimensions (𝑥𝑥𝑘𝑘

(1) and 𝜖𝜖𝑘𝑘) drive the measured 
behavior (𝑧𝑧𝑘𝑘), and some dimensions (𝑥𝑥𝑘𝑘

(1)) drive both and are thus shared between them. The choice of a learning method 
affects the brain states that are extracted from neural activity. NDM extracts states regardless of their relevance to behavior 
and RM extracts states regardless of their relevance to recorded neural activity. PSID enables extraction of brain states that are 
related to both the recorded neural activity and a specific behavior. (b) Schematics of how PSID achieves its goal in 
comparison with a representative NDM method (i.e. SID) and an RM method (i.e. KKF). 𝐴𝐴/𝐵𝐵 denotes projecting 𝐴𝐴 onto 𝐵𝐵 
(Methods). The key idea in PSID is to project future behavior 𝑧𝑧𝑘𝑘  (denoted by 𝑍𝑍𝑓𝑓) onto past neural activity 𝑦𝑦𝑘𝑘  (denoted by 𝑌𝑌𝑝𝑝). 
This is unlike NDM using SID, which instead projects future neural activity (denoted by 𝑌𝑌𝑓𝑓) onto the past neural activity 𝑌𝑌𝑝𝑝 
(Methods). It is also unlike RM using KKF, which projects future behavior onto past behavior (denoted by 𝑍𝑍𝑝𝑝). (c) For all 
three methods, after the model parameters are learned, the procedures for state estimation and neural decoding of behavior 
are the same. A Kalman filter operating on the neural activity estimates the brain states, and behavior is decoded by applying 
a linear regression to these estimated brain states (Methods). 
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 139 

PSID correctly learns all the model parameters 140 

We first performed simulations and found that the PSID algorithm can correctly identify all the true model 141 

parameters from data. We generated 100 validation models with random parameters and simulated sample data 142 

from each model (Methods). We then performed model identification with the PSID algorithm and evaluated the 143 

error in identification of all model parameters (Supplementary Fig. 1). We found that all model parameters were 144 

identified with less than 1% error (Supplementary Fig. 1a). Also, the identification error consistently decreased as 145 

the number of training samples increased, suggesting that even smaller errors can be achieved using more training 146 

samples (Supplementary Figure 1b). Also, compared with standard SID, PSID showed a similar error and rate of 147 

convergence (Supplementary Fig. 1c, d), indicating that even when learning of all latent states is of interest rather 148 

than just the behaviorally relevant ones, PSID performs as well as SID. Finally, we found that given a fixed training 149 

sample size, the identification error of both PSID and SID for different random models was significantly 150 

correlated with a mathematical measure of how inherently difficult it was to extract the latent states in these 151 

models from data (Supplementary Fig. 2); this indicates that with sufficient training data, even models that are 152 

inherently more difficult to learn can eventually be identified accurately. Together, these results show that PSID 153 

can correctly identify both the behaviorally relevant and irrelevant latent states.  154 

In the above analysis, for each true validation model, we used PSID to fit a model with the same model structure 155 

parameters 𝑛𝑛𝑥𝑥 and 𝑛𝑛1 as the true model (Methods). We next found that using a cross-validation procedure 156 

(Methods), we could accurately estimate both model structure parameters from training data (Supplementary Fig. 157 

3). 𝑛𝑛𝑥𝑥 and 𝑛𝑛1 were estimated with no error in 98% and 94% of the models, respectively; also, their average 158 

estimation errors were 0.040 ± 0.028 (mean ± s.e.m.) and 0.050 ± 0.021, respectively (Supplementary Fig. 3a, c). 159 

The error in estimating 𝑛𝑛𝑥𝑥 was similar to that achieved when using the same cross-validation procedure for the 160 

standard SID (0.08 ± 0.039), which also has the parameter 𝑛𝑛𝑥𝑥 (Supplementary Fig. 3b).  161 
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PSID prioritizes identification of behaviorally relevant dynamics 162 

We found that, unlike standard methods, PSID correctly prioritizes identification of behaviorally relevant 163 

dynamics even when performing dimensionality reduction, i.e., even when identifying models with fewer latent 164 

states than the total number of latent states in the true model. We applied PSID to simulated data from 100 165 

random validation models with 16 latent states (𝑛𝑛𝑥𝑥 = 16) out of which 4 were behaviorally relevant (𝑛𝑛1 = 4). We 166 

used PSID to identify models with different latent state dimensions and evaluated how closely the identified latent 167 

state dynamics matched the true behaviorally relevant latent state dynamics. As the main performance measure, 168 

we computed the identification error for learning the eigenvalues of the behaviorally relevant component of the 169 

state transition matrix 𝐴𝐴 (Methods). These eigenvalues specify the frequency and decay rate of the response of the 170 

latent states to excitations (i.e. 𝑤𝑤𝑘𝑘) and thus determine their dynamical characteristics (Methods). The location of 171 

eigenvalues in the true and identified models is illustrated in Fig. 3a for one of the validation models. We found 172 

that PSID accurately identifies the behaviorally relevant latent states while standard methods can identify latent 173 

states that are unrelated to behavior (NDM), or latent states that are not encoded in the observed neural activity 174 

(RM). Overall, using a total latent state dimension of 4, PSID learned all 4 behaviorally relevant eigenvalues while 175 

the standard methods could not (Fig. 2a); further, PSID achieved higher accuracy compared with standard 176 

methods even when they used higher dimensional latent states (Fig. 2b).  177 
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Figure 2. PSID correctly learns the behaviorally relevant dynamics even when using fewer latent states and performing 
dimensionality reduction in contrast to standard methods. 
(a) For one simulated model, the identified behaviorally relevant eigenvalues are shown for PSID, NDM, and RM and for 
different latent state dimensions. For RM, the state dimension can only be equal to the behavior dimension (here 𝑛𝑛𝑧𝑧 = 5). 
Eigenvalues are shown on the complex plane, i.e. real part on the horizontal axis and imaginary part on the vertical axis. The 
unit circle is shown in gray. True model eigenvalues are shown as lightly colored circles, with colors indicating their relevance 
to neural activity, behavior, or both. Crosses show the identified behaviorally relevant eigenvalues. Lines indicate the identified 
eigenvalue error whose normalized value-----average line length normalized by the average true eigenvalue magnitude-----is noted 
below each plot (Methods). (b) Normalized eigenvalue error given 106 training samples is shown when using PSID, NDM and 
RM, averaged over 100 random models. For all random models, the total number of latent states (𝑛𝑛𝑥𝑥 = 16), the number of 
behaviorally relevant states (𝑛𝑛1 = 4), and the number of behavior dimensions not encoded in neural activity (i.e. 4) is as in (a). 
Solid lines show the average error and shaded areas show the s.e.m. For NDM and PSID, total state dimension is changed from 
1 to 16 (for PSID 𝑛𝑛1 = 4). Since for RM the state dimension can only be equal to the behavior dimension (𝑛𝑛𝑧𝑧 = 5), for easier 
comparison, the RM s.e.m is shown as error bars and also a horizontal shaded area. 
 178 

PSID requires fewer training samples  179 

The previous results show that given the same training data, unlike NDM, PSID can identify the behaviorally 180 

relevant dynamics when used in the dimensionality reduction regime (i.e. with fewer latent states than the total 181 
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number of latent states in the actual model, Fig. 2b for 𝑛𝑛𝑥𝑥 < 16); and that even when the latent state dimension is 182 

as high as the actual model, PSID is more accurate than NDM in learning behaviorally relevant dynamics (Fig. 2b 183 

for 𝑛𝑛𝑥𝑥 = 16). To further investigate how this PSID advantage depends on the training sample size, we evaluated 184 

each method when using different number of training samples. We found that RM and NDM in the 185 

dimensionality reduction regime could not learn behaviorally relevant dynamics even when training samples 186 

converged toward being unlimited (Supplementary Fig. 4a, b). Also importantly, even compared with NDM with a 187 

latent state dimension as high as the actual model, PSID achieved several orders of magnitude reduction in the 188 

number of training samples required to identify these dynamics because PSID prioritized them. In terms of both 189 

identifying behaviorally relevant eigenvalues and decoding behavior from neural activity, PSID required only 190 

about 0.2% of the training samples that NDM needed to achieve a similar accuracy (i.e. 500 times fewer; 191 

Supplementary Fig. 4). As training data in experiments is limited, this is another advantage of PSID, which aims to 192 

prevent the behaviorally relevant dynamics from being masked or confounded by the behaviorally irrelevant ones.   193 

PSID reveals a markedly lower dimensionality for behaviorally relevant neural dynamics in motor 194 

cortex  195 

Given that PSID can prioritize learning of behaviorally relevant neural dynamics and dissociate them from 196 

behaviorally irrelevant ones, we used it to investigate the behaviorally relevant neural dynamics and their true 197 

dimensionality in large-scale motor cortical recordings during reach, grasp and return movements (Fig. 3, 198 

Methods). We found that PSID reveals the behaviorally relevant neural dynamics to be much lower-dimensional 199 

than would otherwise be concluded using standard methods (Fig. 3b, h), and that PSID identifies these dynamics 200 

more accurately than standard methods (Fig. 3a, c, g, i). To find the behaviorally relevant neural dynamics, we 201 

used PSID, NDM and RM to model neural features with various state dimensions (Fig. 3a, g). The dimension of 202 

behaviorally relevant neural dynamics is defined as the minimal state dimension required to best explain behavior 203 

using neural activity. To find this dimension from data, for each method and in each dataset, we found the 204 
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smallest state dimension at which the best possible behavior decoding performance was achieved (Methods, 205 

Supplementary Fig. 5a, b). First, we found that the best possible decoding performance using PSID was 206 

significantly higher than the best possible decoding performance using both NDM and RM in both monkeys, 207 

suggesting that PSID more accurately learns behaviorally relevant neural dynamics (Fig. 3c, i; P < 10−5; one-sided 208 

signed-rank; 𝑁𝑁𝑠𝑠 ≥ 48, Methods). Second, importantly, this best performance was achieved using a significantly 209 

smaller state dimension with PSID compared with NDM and RM-----a median dimension of only 4 in both 210 

monkeys with PSID versus 12-30 with NDM and RM, or at least 3 times smaller (Fig. 3b, h; P < 10−9; one-sided 211 

signed-rank; 𝑁𝑁𝑠𝑠 ≥ 48). Third, we confirmed with numerical simulations that PSID accurately estimates the true 212 

dimension of behaviorally relevant neural dynamics, whereas NDM overestimates it (Supplementary Fig. 5a, b). 213 

Finally, as a control analysis, we repeated NDM using the standard EM algorithm instead of the standard SID, and 214 

found similar results: PSID again achieved a significantly better decoding performance (P < 10−9; one-sided 215 

signed-rank; 𝑁𝑁𝑠𝑠 ≥ 48) using significantly lower-dimensional latent states (P < 10−7; one-sided signed-rank; 𝑁𝑁𝑠𝑠 ≥216 

48). Together these results suggest that the behaviorally relevant motor cortical dynamics have a markedly lower 217 

dimension than is found by standard methods; PSID reveals this low dimension by more accurately learning 218 

behaviorally relevant neural dynamics and dissociating them from behaviorally irrelevant ones.  219 

We next found that the dimensionality of the behaviorally relevant neural dynamics was much lower than that 220 

of neural dynamics or joint angle dynamics, suggesting that the low-dimensionality PSID finds is not simply 221 

because either neural or behavior dynamics are just as low-dimensional. To quantify the dimensionality of neural 222 

and behavior dynamics, we found the latent state dimension required to achieve the best self-prediction of neural 223 

or behavioral signals using their own past, and defined it as the total neural or behavior dynamics dimension, 224 

respectively (Methods). We confirmed in numerical simulations that this procedure correctly estimates the total 225 

latent state dimension in each signal (Supplementary Fig. 5c, d, e). First, for the neural features, we found that in 226 

both monkeys a median latent state dimension of at least 100 was required to achieve the best neural self-227 
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prediction (Fig. 3d, f, j, l), which is significantly larger than the behaviorally relevant neural dynamics dimension 228 

of 4 as revealed by PSID (P < 10−18; one-sided rank-sum; 𝑁𝑁𝑠𝑠 ≥ 48). Second, for the behavior defined as joint 229 

angles, we found that in both monkeys a median latent state dimension of 40 was required to achieve the best 230 

behavior self-prediction (Fig. 3e, f, k, l), which is again significantly larger than the behaviorally relevant neural 231 

dynamics dimension of 4 as revealed by PSID (P < 0.004; one-sided rank-sum). Moreover, the self-prediction of 232 

behavior from its own past was much better than its decoding from neural activity (Fig. 3a, e, g, k) and reached an 233 

almost perfect CC of 0.98 for both monkeys (Fig. 3e, k), indicating that there are predictable dynamics in behavior 234 

that are not present in the recorded neural activity (corresponding to 𝜖𝜖𝑘𝑘 in Fig. 1). Taken together, these results 235 

suggest that beyond the low-dimensional behaviorally relevant neural dynamics extracted via PSID, both recorded 236 

neural activity and behavior have significant additional dynamics that are predictable from their own past but are 237 

unrelated to the other signal; PSID uniquely enables the dissociation of shared dynamics from the dynamics that 238 

are present in one signal but not the other (Fig. 1). 239 

Finally, we found that the above results held irrespective of the exact behavioral signal. We repeated all the 240 

above analyses for the 3D position of hand and elbow taken as the behavioral signal (instead of joint angles) and 241 

found consistent results (Supplementary Fig. 6). PSID again revealed a significantly lower dimension for 242 

behaviorally relevant neural dynamics compared with NDM for both monkeys (P < 10−6; one-sided signed-rank; 243 

𝑁𝑁𝑠𝑠 ≥ 48) and achieved a significantly better decoding compared with NDM and RM (P < 10−8; one-sided signed-244 

rank; 𝑁𝑁𝑠𝑠 ≥ 48). Moreover, in both monkeys, the dimension of behaviorally relevant neural dynamics revealed by 245 

PSID was again significantly smaller than the dimension of dynamics in the recorded neural activity (P < 10−18; 246 

one-sided rank-sum) and in behavior (P < 0.004; one-sided rank-sum) as estimated based on their self-prediction.  247 
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Figure 3. PSID reveals a markedly lower dimension for behaviorally relevant neural dynamics in the motor cortex 
during unconstrained naturalistic 3D reach, grasp and return movements. 
 (a) Average joint angle decoding accuracy, i.e. cross-validated correlation coefficient (CC), as a function of the state dimension 
using PSID, NDM, and RM. Decoding CC is averaged across the datasets and the shaded area indicates the s.e.m. 
Dimensionality of neural activity (i.e. 70) and behavior (i.e. 27) are shown in a box along with the decoder structure. (b) The 
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state dimension that achieves the best decoding in each dataset. Bars show the median (also written next to the bar), box edges 
show the 25th and 75th percentiles, and whiskers represent the minimum and maximum values (other than outliers). Outliers 
are the points that are more than 1.5 times the interquartile distance, i.e. the box height, away from the top and bottom of the 
box. All data points are shown. Asterisks indicate significance of statistical tests with *: P < 0.05, **: P < 0.005, ***: P < 0.0005, 
and n.s.: P > 0.05. (c) Best decoding CC in each dataset (state dimensions from (b)). For decoding, bars show the mean and 
whiskers show the s.e.m. (d) One-step-ahead self-prediction of neural activity (cross-validated CC), averaged across datasets. 
(e) Same as (d) for behavior. (f) The behaviorally relevant neural dynamics dimension (i.e. PSID result from (b)), total neural 
dynamics dimension (i.e. state dimension from (d)), and total behavior dynamics dimension (i.e. state dimension from (e)) for 
all datasets. (g)-(l) Same as (a)-(f), for monkey C. 
 248 

PSID reveals behaviorally relevant rotational dynamics that otherwise go unnoticed  249 

Reducing the dimension of neural population activity and finding its low-dimensional representation are 250 

essential for visualizing and characterizing the relationship of neural dynamics to behavior14,16,20---22. We 251 

hypothesized that PSID would be particularly beneficial for doing this compared with standard NDM methods, 252 

because PSID can prioritize and directly dissociate the behaviorally relevant dynamics within neural activity. To 253 

test this hypothesis, we used PSID and NDM to extract a 2D representation of neural dynamics (Fig. 4), which is 254 

commonly done to visualize neural dynamics on planes14,20---22. We then compared the properties and the decoding 255 

accuracy of the extracted 2D dynamics. To do this, using both PSID and NDM, we fitted models with latent states 256 

of dimension 2 to neural activity during our naturalistic 3D reach, grasp and return task (Fig. 4a), estimated the 257 

latent states from neural activity using these models (Methods), and then plotted the two estimated latent states 258 

against each other during reach and return movement epochs (Fig. 4b, c, e, f).  259 

We found that in both monkeys, both PSID and NDM extracted neural states that exhibited rotational 260 

dynamics. This suggests that our complex task with unconstrained naturalistic 3D reaches and grasps involves 261 

rotational motor cortical dynamics akin to what has been observed for reaching during other tasks, often 262 

involving 2D cursor control14,20---22. However, surprisingly, a clear difference emerged in the properties of rotations 263 

uncovered by PSID compared with NDM when we considered the dynamics during the return movement epochs. 264 

During the return epochs, the 2D neural dynamics extracted using PSID showed a rotation in the opposite 265 

direction of the rotation during the reach epochs (Fig. 4b, e). In contrast, similar to results from prior work21, 266 
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neural dynamics extracted using NDM showed a rotation in the same direction during both reach and return 267 

epochs (Fig. 4c, f). As the behavior involves opposite directions of movement during reach and return epochs, 268 

these results intuitively suggest that PSID finds a low-dimensional mapping of neural population activity that is 269 

more behaviorally relevant (Fig 4a). To quantify this suggestion, we decoded the behavior using the low-270 

dimensional latent states in each case. We found that the 2D latent states extracted using PSID explained the 271 

behavior significantly better than those extracted using NDM and led to significantly better decoding (Fig. 4d, g; P 272 

< 10−9; one-sided signed-rank; 𝑁𝑁𝑠𝑠 ≥ 48). Moreover, the decoding accuracy using the PSID extracted 2D states 273 

was only 7% (Monkey J) or 4% (Monkey C) worse than the best possible PSID decoding whereas for NDM the 274 

decoding using 2D states was 23% (Monkey J) or 30% (Monkey C) worse than NDM’s best possible decoding (Fig. 275 

3a, g). This indicates that while both types of rotational dynamics depicted in Fig. 4 exist in the high-dimensional 276 

manifold traversed by the neural activity, PSID extracted the 2D mapping that preserved the more behaviorally 277 

relevant neural dynamics (an illustrative example is provided in Supplementary Video 1). These results suggest 278 

that PSID can reveal low-dimensional behaviorally relevant neural dynamics that may otherwise be missed when 279 

using standard NDM methods.  280 

Beyond the above 2D results, the marked advantage of PSID over NDM when performing dimensionality 281 

reduction held across all dimensions (Fig. 3a, g). At any given latent state dimension, PSID extracted a low-282 

dimensional state that resulted in substantially better decoding compared with NDM (Fig. 3a, g). This suggests 283 

that even beyond a 2D dimensionality reduction for visualization, PSID could be used as a general dynamic 284 

dimensionality reduction method that preferentially preserves the most behaviorally relevant dynamics 285 

(Discussion).   286 

Finally, as a control, we found that jPCA, which is another behavior agnostic method specifically designed for 287 

extracting rotational dynamics20, also extracted unidirectional rotations similar to NDM (Supplementary Fig. 7). 288 
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As another control, we repeated NDM with standard EM algorithm instead of the standard SID and found that it 289 

again extracted very similar unidirectional rotations as those found with SID. 290 

 

 
 
Figure 4. PSID reveals rotational neural dynamics with opposite direction during 3D reach and return movements, 
which is not found by standard methods.  
(a) Example reach and return epochs in the task defined as periods of movement toward the target and back from the target, 
respectively. Pictures are recreated using the 3D tracked markers and are from a view facing the monkey. (b) The latent neural 
state dynamics during 3D reach (blue) and return (red) movements found by PSID with 2D latent states (𝑛𝑛𝑥𝑥 = 𝑛𝑛1 = 2). We 
plot the states starting at the beginning of a reach/return movement epoch; the arrows mark the end of the movement epoch. 
Light lines show the average trace over trials in each dataset and dark lines show the overall average trace across datasets. The 
direction of rotation is noted by CW for clockwise or CCW for counter clockwise. States have arbitrary units (a.u.). (c) Same 
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as (a) but using NDM with 2D latent states (𝑛𝑛𝑥𝑥 = 2). (d) Cross-validated correlation coefficient (CC) between the decoded and 
true joint angles, decoded with the latent states extracted using PSID and NDM in (a) and (b). Bars, whiskers and asterisks are 
defined as in Fig. 3c. (e)-(g) Same as (b)-(d), for monkey C. 
 

 291 

PSID extracted dynamics are more informative of behavior for almost all joints 292 

Previous results showed that on average across the arm and finger joints, PSID identified latent states that led to 293 

significantly better decoding of reach, grasp, and return behavior compared with states of the same (Fig. 3a, g) or 294 

even higher dimension obtained from NDM or from RM (Fig. 3c, i). We next found that this result held for almost 295 

all arm or finger joints separately as well and was not restricted to a limited set of joints (e.g. only finger joints). 296 

Computing the best decoding accuracy of each joint separately (Supplementary Fig. 8), we found that PSID 297 

achieved better decoding than NDM for all individual joints in both monkeys and that this difference was 298 

statistically significant in almost all joints (Supplementary Fig. 8b, d; P < 10−4 for all joints in monkey C and P < 299 

10−12 for 25 of 27 joints in monkey J; one-sided signed-rank test; 𝑁𝑁𝑠𝑠 = 240 and 𝑁𝑁𝑠𝑠 = 455 for monkeys C and J, 300 

respectively). Moreover, PSID achieved significantly better decoding than RM for all 27 joints in monkey J 301 

(Supplementary Fig. 8b; P < 0.04 for each joint; one-sided signed-rank; 𝑁𝑁𝑠𝑠 = 455) and for 24 of the 25 joints in 302 

monkey C (Supplementary Fig. 8d; P < 0.004 for each joint; one-sided signed-rank; 𝑁𝑁𝑠𝑠 = 240), and similar 303 

decoding for 1 joint in monkey C (𝑃𝑃 = 0.27 two-sided signed-rank; 𝑁𝑁𝑠𝑠 = 240). Additionally, the significantly 304 

better decoding in PSID was achieved using states of significantly lower dimension compared with NDM and RM 305 

(Supplementary Fig. 8a, c; P < 10−90; one-sided signed-rank; 𝑁𝑁𝑠𝑠 ≥ 1200). Specifically, PSID used a median state 306 

dimension of 3 (monkey J) or 2 (monkey C) while NDM used a median state dimension of 8 (monkey J) or 15 307 

(monkey C), and RM used a state dimension of 27 (monkey J) or 25 (Monkey C). 308 
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PSID extracted dynamics are more informative of behavior for almost all recording channels across 309 

premotor, primary motor, and prefrontal areas 310 

We found that PSID was extracting more behaviorally relevant information from each recording channel rather 311 

than performing an implicit channel selection by discarding some channels with no behaviorally relevant 312 

information. To distinguish between these alternatives, we repeated the modeling but this time using only the 313 

neural features from one channel at a time (Fig. 5). We found that for both monkeys, PSID achieved significantly 314 

better decoding of behavior in at least 96% and 98% of individual channels compared with NDM and RM, 315 

respectively (Fig. 5b, d; P < 0.05 for each channel; one-sided signed-rank; 𝑁𝑁𝑠𝑠 ≥ 20). Moreover, PSID achieved this 316 

significant improvement in decoding while using significantly lower state dimensions than NDM and RM (Fig. 5a, 317 

c; P < 10−68; one-sided signed-rank; 𝑁𝑁𝑠𝑠 ≥ 512). Specifically, PSID used a median state dimension of only 5 for 318 

both monkeys while NDM used a median state dimension of 15 (monkey J) or 20 (monkey C), and RM used a 319 

state dimension of 27 (monkey J) or 25 (Monkey C). Thus, while recording channels from different anatomical 320 

regions (including ipsilateral PMd and PMv coverage in monkey C) had different ranges of decoding accuracy 321 

(Fig. 5b, d), even channels with a relatively weak decoding saw an improvement in decoding accuracy when using 322 

PSID. These results suggest that almost all channels contained behaviorally relevant dynamics and PSID could 323 

more accurately model these dynamics leading to better decoding of behavior while also using lower-dimensional 324 

latent states.  325 
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Figure 5. PSID more accurately identified the behaviorally relevant dynamics in each recording channel across 
premotor, primary motor, and prefrontal areas.  
(a) The state dimension used by each method to achieve the best decoding using the neural features from each recoding channel 
separately. For PSID and NDM, for each channel, the latent state dimension is chosen to be the smallest value for which the 
decoding CC reaches within 1 s.e.m. of the best decoding CC using that channel among all latent state dimensions. Bars, boxes 
and asterisks are defined as in Fig. 3b. (b) Cross-validated correlation coefficient (CC) between the decoded and true joint 
angles is shown for PSID. Asterisks mark channels for which PSID results in significantly (P < 0.05) better decoding compared 
with NDM (red asterisk) or RM (dark blue asterisk). The latent state dimension for each method is chosen as in (a). (c)-(d) 
Same as (a)-(b), for monkey C.  
 326 

Discussion 327 

Here we develop and demonstrate a novel PSID algorithm for dissociating and modeling behaviorally relevant 328 

neural dynamics. Our simulations showed that compared with current methods, PSID learns the behaviorally 329 

relevant neural dynamics significantly more accurately, with markedly lower-dimensional latent states, and orders 330 

of magnitude fewer training samples. Our analyses on NHP motor cortical activity during an unconstrained 3D 331 
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reach, grasp and return task confirmed these findings and revealed multiple new features of the underlying neural 332 

dynamics. First, PSID revealed the behaviorally relevant neural dynamics to be much lower-dimensional than 333 

implied by standard methods, and identified these dynamics more accurately as evident by better behavior 334 

decoding (Fig. 3). Second, PSID revealed distinct low-dimensional rotational dynamics in neural activity with 335 

opposite directions of rotation during reach and return epochs, which were more predictive of behavior than the 336 

alternative unidirectional rotational dynamics found by standard methods (Fig. 4). Finally, PSID resulted in 337 

significantly better decoding for almost any arm and finger joint angle (Supplementary Fig. 8) and for individual 338 

recording channels (Fig. 5). These results suggest that PSID can reveal low-dimensional behaviorally relevant 339 

neural dynamics that can otherwise go unnoticed.  340 

The key idea in PSID was to ensure behaviorally relevant neural dynamics are not missed or confounded by 341 

prioritizing them in fitting the dynamic model. To do so, PSID models the neural activity as a latent SSM while 342 

prioritizing latent states that are informative of the behavior. Prior methods for NDM, including the standard SID 343 

or EM with linear dynamics5,16,30,32 as well as those with generalized linear dynamic systems (GLDS)29,35 or 344 

nonlinear dynamic models such as recurrent neural networks (RNN)22, are agnostic to behavior in fitting the 345 

dynamic model unlike PSID that takes behavior into account in fitting the dynamic model. Thus PSID can 346 

uncover important behaviorally relevant neural dynamics that may otherwise be discarded, such as the reversed 347 

rotational dynamics during return epochs in our task that were not revealed by NDM (Fig. 4, Supplementary 348 

Video 1).  349 

Prior works have reported low-dimensional rotational neural dynamics during different tasks, often involving 350 

2D control of a cursor14,20---22. Here we also found low-dimensional rotational dynamics during an unconstrained 351 

naturalistic 3D reach, grasp and return task-----using PSID and NDM that have no supervision to try to do so as 352 

well as jPCA20 that aims to find rotations. However, while both NDM and PSID revealed rotations in neural 353 

dynamics during reach epochs, interestingly, the directions of the identified rotations were different in the return 354 
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epochs between NDM and PSID. Similar to prior work applying NDM and jPCA to a center-out 2D cursor 355 

control task21, here NDM and jPCA extracted rotations in the same direction during reach and return epochs. In 356 

contrast, PSID extracted rotations that were in the opposite directions during reach and return epochs, and 357 

further were more behaviorally relevant (i.e. had significantly better behavior decoding accuracy, which was also 358 

close to the best decoding possible with even large latent state dimensions). This result demonstrates that while 359 

both the NDM- and PSID-extracted low-dimensional rotational dynamics existed in the high-dimensional neural 360 

activity (Supplementary Video 1), PSID revealed a low-dimensional mapping that preserved the behaviorally 361 

relevant components of neural dynamics. Future application of PSID to other behavioral tasks and brain regions 362 

may similarly reveal behaviorally relevant features of neural dynamics that may otherwise not be uncovered. 363 

Our neural data was recorded from the motor cortical areas, which strongly encode movement related 364 

information and thus have long enabled motor brain machine interfaces1,2,23. Given this strong motor encoding, 365 

both RM, which models the dynamics of behavior agnostic to neural activity2,23, and NDM, which indiscriminately 366 

models all neural dynamics agnostic to behavior21,29,30,32, have been successful in decoding movement. Despite this 367 

strong encoding in motor cortical activity, PSID still resulted in significant improvements in decoding compared 368 

with standard methods and did so using smaller latent state dimensions (Fig. 3 and Supplementary Fig. 8). Our 369 

per channel analysis further showed that every channel contained behaviorally relevant information, which was 370 

better learned using PSID, thus resulting in decoding improvements (Fig. 5). Many brain functions such as 371 

memory36 and mood5 or brain dysfunctions such as epileptic seizures7 could have a more distributed or less 372 

targetable representation in neural activity. As a result, using PSID in such applications may prove even more 373 

beneficial since the activity is likely to contain more behaviorally irrelevant dynamics. 374 

PSID can also be viewed as a dynamic dimensionally reduction method that provides a low-dimensional 375 

mapping of neural activity while preserving the behaviorally relevant information. PSID is a dynamic method 376 

since it models the temporal structure in neural activity (equation (1))-----how it evolves over time. It can hence 377 
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also aggregate information over time to optimally extract the latent brain state (Methods). Dynamic 378 

dimensionality reduction methods-----i.e. methods that explicitly take into account temporal structure in extracting 379 

latent states such as Gaussian process factor analysis (GPFA)35 and SSM5,16,21,29,30,32,34-----perform the dimensionality 380 

reduction only based on neural activity and are agnostic to behavior. In contrast, PSID enables taking behavior 381 

into account to ensure behaviorally relevant neural dynamics are accurately revealed. Thus, by focusing on 382 

behaviorally relevant neural dynamics, PSID can achieve a targeted dynamic dimensionality reduction that can be 383 

more suitable for studying neural mechanisms underlying a behavior of interest. For example, a multitude of prior 384 

works have reported that variables with 10-30 dimensions can sufficiently explain the information in motor 385 

cortical neural activity using dynamic (or non-dynamic) dimensionality reduction algorithms such as GPFA, 386 

RNN, and SSM3,13,19,21,22,30,34,35. However, unlike PSID, the algorithms used in these works did not aim to explicitly 387 

dissociate the behaviorally relevant parts of neural dynamics. Here, PSID revealed a markedly lower dimension for 388 

the behaviorally relevant neural dynamics of around 4, which was significantly lower that the dimension of 12-30 389 

implied by the standard NDM approach (Fig. 3). This result demonstrates the utility of PSID in accurately 390 

estimating the dimensionality of behaviorally relevant neural dynamics, which is a fundamental sought-after 391 

question across domains of neuroscience3,13,19.  392 

For datasets with discrete classes of behavioral conditions, several non-dynamic dimensionality reduction 393 

methods such as linear discriminant analysis (LDA)16 and demixed principal component analysis (dPCA)25 can 394 

take the discrete behavior classes into account and find a low dimensional projection of neural activity that is 395 

suitable for dissociating those classes16. However, unlike PSID, these methods are not applicable to continuous 396 

behavioral measurements such as movements. Further these methods cannot learn dynamic models and hence do 397 

not model the temporal patterns of neural activity or aggregate information over time, which is important 398 

especially in studying temporally structured behaviors such as unconstrained movements2,23 or speech4. Thus, 399 

PSID is a unique method that can enable dynamic dimensionality reduction by modeling temporal structure in 400 
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neural population activity, apply to continuous valued behavioral measurements, and extract behaviorally relevant 401 

low-dimensional representations (i.e. latent states) for neural activity. 402 

PSID uses a linear state-space model formulation in which both the latent state dynamics and the observation 403 

model are defined as linear functions of the latent state. A linear observation model is suitable for modeling 404 

continuous-valued observations such as the log-power features extracted from LFP signals in this work5,29,32,37. For 405 

spiking activity, some prior works have used a linear observation model with the spike counts in time windows of 406 

various lengths taken as the observation2,21,23, for which PSID is readily applicable. More recent studies have shown 407 

that using a GLDS framework with a nonlinear point process observation model for the binary spike events could 408 

provide a more accurate mathematical model in BMIs38,39. A variation of NDM using SID has been developed for 409 

GLDS models34 and an interesting area of future investigation is to generalize PSID to enable learning GLDS 410 

models with behaviorally relevant latent states from binary spike events. Moreover, given the growing interest in 411 

multi-scale modeling of simultaneous spike-field activity29,37,40,41, developing a multiscale version of PSID that can 412 

model observations from multiple modalities and timescales together would be another interesting area of future 413 

investigation.  414 

In addition to serving as a new method to investigate the neural mechanisms of behavior, PSID may also help 415 

with future neurotechnologies for decoding and modulating behaviorally relevant brain states such as BMIs or 416 

closed-loop deep brain stimulation (DBS) systems7. While the motor representations in our datasets were strong, 417 

PSID could still help with decoding of behavior regardless of the latent state dimension. This decoding benefit 418 

may be even greater for brain states that are less strongly encoded or require recording neural activity from a more 419 

distributed brain network that is involved in various functions and thus exhibits more behaviorally irrelevant 420 

dynamics3,9,12,42. Further, PSID was able to identify a markedly lower-dimensional state that achieved close to 421 

maximal decoding accuracy. The identification of this low-dimensional behaviorally relevant state will be critical 422 

for developing model-based controllers43 to modulate various brain functions with electrical or optogenetic 423 
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stimulation. This is because controllers designed for models with lower-dimensional states are generally more 424 

robust44. Finally, developing adaptive methods for latent state-space models that can track changes in behaviorally 425 

relevant dynamics, for example due to learning or stimulation-induced plasticity2,45---48, and can appropriately select 426 

the learning rate49 during adaptation are important future directions.  427 

Here we described PSID as a tool for extracting and modeling behaviorally relevant dynamics from neural 428 

activity. In this application, neural activity is taken as the primary signal and behavior is taken as a secondary 429 

signal encoded by the primary signal. While this is the typical scenario of interest in neuroscience and neural 430 

engineering, the mathematical derivation of PSID does not depend on the nature of the two signals (Methods). 431 

For example, one could take behavior as the primary signal and neural activity as the secondary signal. If so, PSID 432 

would extract neural-activity-related dynamics from behavior and optionally also identify any additional 433 

behavioral dynamics not encoded in the recorded neural activity. Indeed, all numerical simulations reported in 434 

this work could be interpreted as having either neural activity or behavior as the primary signal and the other as 435 

the secondary signal. Beyond that, the two signals could even be generated by completely different sources. For 436 

example, in studying interpersonal neural and behavioral synchrony50 and social behavior10, applying PSID to 437 

neural and/or behavioral signals that are synchronously recorded from two individuals may enable extraction and 438 

modeling of common dynamics between the two. In general, when signals acquired from two systems are 439 

suspected to have shared dynamics (e.g. because they may be driven by common dynamic inputs), PSID can be 440 

used to extract and model the shared dynamics.  441 

Taken together, the novel PSID modeling algorithm introduced in this work can serve as a tool to advance our 442 

understanding of how behaviorally observable brain functions are encoded in neural activity across broad tasks 443 

and brain regions. Also, PSID may prove to be particularly beneficial in studies of less strongly encoded brain 444 

functions involved in emotion, memory, and social behaviors.  445 
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Methods 446 

Dynamic model 447 

Model formulation 448 

We used a linear state space dynamic model to describe the temporal evolution of neural activity and behavior 449 

as:  450 

 �
𝑥𝑥𝑘𝑘+1𝑠𝑠 =  𝐴𝐴 𝑥𝑥𝑘𝑘𝑠𝑠 + 𝑤𝑤𝑘𝑘     
𝑦𝑦𝑘𝑘 = 𝐶𝐶𝑦𝑦𝑥𝑥𝑘𝑘𝑠𝑠 + 𝑣𝑣𝑘𝑘
𝑧𝑧𝑘𝑘 = 𝐶𝐶𝑧𝑧 𝑥𝑥𝑘𝑘𝑠𝑠 + 𝜖𝜖𝑘𝑘

 (2) 

Here, 𝑘𝑘 specifies the time index, 𝑦𝑦𝑘𝑘 ∈ ℝ𝑛𝑛𝑦𝑦 is the recorded neural activity, 𝑧𝑧𝑘𝑘 ∈ ℝ𝑛𝑛𝑧𝑧 is the behavior (e.g., 451 

movement kinematics), 𝑥𝑥𝑘𝑘𝑠𝑠 ∈ ℝ𝑛𝑛𝑥𝑥 is the latent dynamic state variable that drives the recorded neural activity 𝑦𝑦𝑘𝑘  452 

and can also drive the behavior 𝑧𝑧𝑘𝑘, 𝜖𝜖𝑘𝑘 ∈ ℝ𝑛𝑛𝑧𝑧 is a random process representing the dynamics in behavior that are 453 

not present in the recorded neural activity, and 𝑤𝑤𝑘𝑘 ∈ ℝ𝑛𝑛𝑥𝑥, 𝑣𝑣𝑘𝑘 ∈ ℝ𝑛𝑛𝑦𝑦  are zero-mean white noises that are 454 

independent of 𝑥𝑥𝑘𝑘𝑠𝑠, i.e. 𝑬𝑬�𝑥𝑥𝑘𝑘𝑠𝑠𝑤𝑤𝑘𝑘𝑇𝑇� = 0 and 𝑬𝑬�𝑥𝑥𝑘𝑘𝑠𝑠𝑣𝑣𝑘𝑘𝑇𝑇� = 0 with the following cross-correlations:  455 

 𝑬𝑬��
𝑤𝑤𝑘𝑘
𝑣𝑣𝑘𝑘 �

[𝑤𝑤𝑘𝑘𝑇𝑇 𝑣𝑣𝑘𝑘𝑇𝑇]� ≜ � 𝑄𝑄 𝑆𝑆
𝑆𝑆𝑇𝑇 𝑅𝑅

�. (3) 

𝜖𝜖𝑘𝑘 is a general random process denoting the variations of 𝑧𝑧𝑘𝑘 that are not generated by 𝑥𝑥𝑘𝑘𝑠𝑠 and thus are not present 456 

in the recorded neural activity. Thus, we only assume that 𝜖𝜖𝑘𝑘 is zero-mean and independent of 𝑥𝑥𝑘𝑘𝑠𝑠, i.e. 𝑬𝑬�𝑥𝑥𝑘𝑘𝑠𝑠𝜖𝜖𝑘𝑘𝑇𝑇� =457 

0 and the other noises, i.e. 𝑬𝑬�𝑤𝑤𝑘𝑘′𝜖𝜖𝑘𝑘𝑇𝑇� = 0 and 𝑬𝑬�𝑣𝑣𝑘𝑘′𝜖𝜖𝑘𝑘𝑇𝑇� = 0 for any 𝑘𝑘′, but we do not make any assumptions 458 

about the dynamics of 𝜖𝜖𝑘𝑘. In fact, 𝜖𝜖𝑘𝑘 does not need to be white and can be any general non-white (colored) 459 

random process. Note that 𝜖𝜖𝑘𝑘 is also independent of 𝑦𝑦𝑘𝑘  (since it is independent of 𝑥𝑥𝑘𝑘𝑠𝑠 and 𝑣𝑣𝑘𝑘), thus observing 𝑦𝑦𝑘𝑘  460 

does not provide any information about 𝜖𝜖𝑘𝑘. Due to the zero-mean assumption for noise statistics, it is easy to 461 

show that 𝑥𝑥𝑘𝑘𝑠𝑠, 𝑦𝑦𝑘𝑘 , and 𝑧𝑧𝑘𝑘 are also zero-mean, implying that in preprocessing, the mean of 𝑦𝑦𝑘𝑘  and 𝑧𝑧𝑘𝑘 should be 462 

subtracted from them and later added back to any model predictions if needed. The parameters �𝐴𝐴,𝐶𝐶𝑦𝑦,𝐶𝐶𝑧𝑧,𝑄𝑄,𝑅𝑅, 𝑆𝑆� 463 

fully specify the model in equation (2) (if statistical properties of 𝜖𝜖𝑘𝑘 are also of interest, another set of latent state-464 

space parameters can be used to model it, Supplementary Note 1). There are other sets of parameters that can also 465 
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equivalently and fully specify the model; Specifically, the set of parameters �𝐴𝐴,𝐶𝐶𝑦𝑦,𝐶𝐶𝑧𝑧,𝐺𝐺𝑦𝑦,Σ𝑦𝑦, Σ𝑥𝑥� with 𝐺𝐺𝑦𝑦 ≜466 

𝑬𝑬�𝑥𝑥𝑘𝑘+1𝑠𝑠 𝑦𝑦𝑘𝑘𝑇𝑇�, Σ𝑦𝑦 ≜ 𝑬𝑬�𝑦𝑦𝑘𝑘𝑦𝑦𝑘𝑘𝑇𝑇�, and Σ𝑥𝑥 ≜ 𝑬𝑬�𝑥𝑥𝑘𝑘𝑠𝑠𝑥𝑥𝑘𝑘𝑠𝑠
𝑇𝑇� can also fully characterize the model and is more suitable for 467 

evaluating learning algorithms (Supplementary Note 2).  468 

Definition of behaviorally relevant and behaviorally irrelevant latent states 469 

𝑥𝑥𝑘𝑘𝑠𝑠  is a latent state that represents all dynamics in the neural activity 𝑦𝑦𝑘𝑘 , which could be due to various internal 470 

brain processes including the brain function of interest, other brain functions, or internal states. Without loss of 471 

generality, it can be shown (Supplementary Note 3) that equation (2) can be equivalently written in a different 472 

basis as 473 

 

⎩
⎪⎪
⎪
⎨
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⎪
⎧�
𝑥𝑥𝑘𝑘+1

(1)

𝑥𝑥𝑘𝑘+1
(2) � = �𝐴𝐴11 0

𝐴𝐴21 𝐴𝐴22
� �
𝑥𝑥𝑘𝑘

(1)

𝑥𝑥𝑘𝑘
(2)�+ �

𝑤𝑤𝑘𝑘
(1)

𝑤𝑤𝑘𝑘
(2)�

𝑦𝑦𝑘𝑘 = [𝐶𝐶𝑦𝑦1 𝐶𝐶𝑦𝑦2] �
𝑥𝑥𝑘𝑘

(1)

𝑥𝑥𝑘𝑘
(2)�+ 𝑣𝑣𝑘𝑘

𝑧𝑧𝑘𝑘 = [𝐶𝐶𝑧𝑧1   0  ]  �
𝑥𝑥𝑘𝑘

(1)

𝑥𝑥𝑘𝑘
(2)�+ 𝜖𝜖𝑘𝑘

,   𝑥𝑥𝑘𝑘 = �
𝑥𝑥𝑘𝑘

(1)

𝑥𝑥𝑘𝑘
(2)�. (4) 

where 𝑥𝑥𝑘𝑘
(1) ∈ ℝ𝑛𝑛1 is the minimal set of states that affect behavior and whose dimension 𝑛𝑛1 is the rank of the 474 

behavior observability matrix (equation (42)). Thus, we refer to 𝑥𝑥𝑘𝑘
(1) as the behaviorally relevant latent states and 475 

𝑥𝑥𝑘𝑘
(2) ∈ ℝ𝑛𝑛2 with 𝑛𝑛2 = 𝑛𝑛𝑥𝑥 − 𝑛𝑛1 as the behaviorally irrelevant latent states. We interchangeably refer to the 476 

dimension of the latent states as the number of latent states (e.g. 𝑛𝑛𝑥𝑥 is the total number of latent states or the total 477 

latent state dimension). 478 

Equation (4) presents a general formulation of which special cases also include the models used in neural 479 

dynamics modeling (NDM) and representational modeling (RM). If we assume that all latent states can contribute 480 

to behavior (𝑛𝑛1 = 𝑛𝑛𝑥𝑥 and 𝑛𝑛2 = 0), equation (4) reduces to the linear SSM typically used to model the dynamics of 481 

neural activity in NDM5,21,30,32,43. If we further take 𝐶𝐶𝑧𝑧 to be the identity matrix and 𝜖𝜖𝑘𝑘 = 0, the state will be set to 482 

the behavior 𝑧𝑧𝑘𝑘 and equation (4) reduces to the linear SSMs used in RM2,23. Thus, if the assumptions of standard 483 
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NDM (i.e. all latent states can drive both neural activity and behavior) or RM (i.e. behavior drives neural activity) 484 

hold better for a given dataset, PSID would still identify these standard models because the solution would still fall 485 

within the model in equation (4) used by PSID.  486 

The learning problem 487 

In the general learning problem, given training time series {𝑦𝑦𝑘𝑘: 0 ≤ 𝑘𝑘 < 𝑁𝑁} and {𝑧𝑧𝑘𝑘: 0 ≤ 𝑘𝑘 < 𝑁𝑁}, the aim is to 488 

find the dimension of the latent state 𝑛𝑛𝑥𝑥 and all model parameters �𝐴𝐴,𝐶𝐶𝑦𝑦,𝐶𝐶𝑧𝑧,𝐺𝐺𝑦𝑦,Σ𝑦𝑦, Σ𝑥𝑥� that generate the data 489 

according to equation (2) or equivalently equation (4). Unlike prior work, here we critically require an 490 

identification algorithm that can dissociate the behaviorally relevant and irrelevant latent states, and can prioritize 491 

identification of the behaviorally relevant latent states (i.e. 𝑥𝑥𝑘𝑘
(1) from equation (4)). Prioritizing behaviorally 492 

relevant latent states means that the algorithm would include the behaviorally relevant latent states in the model 493 

even when performing dimensionality reduction and thus identifying a model with fewer states than the true 𝑛𝑛𝑥𝑥; 494 

this is typically the case given that training data is limited and neural dynamics are complex. 495 

The decoding problem 496 

Given the model parameters, the prediction (or decoding) problem is to provide the best estimate of 𝑧𝑧𝑘𝑘+1 given 497 

the past neural activity {𝑦𝑦𝑛𝑛: 0 ≤ 𝑛𝑛 ≤ 𝑘𝑘}. Given the linear state-space formulation of equation (2) and to achieve 498 

the minimum mean-square error, the best prediction of 𝑦𝑦𝑘𝑘+1 using 𝑦𝑦1 to 𝑦𝑦𝑘𝑘  and similarly the best prediction of 499 

𝑧𝑧𝑘𝑘+1 using 𝑦𝑦1 to 𝑦𝑦𝑘𝑘-----which we denote as 𝑦𝑦�𝑘𝑘+1|𝑘𝑘 and �̂�𝑧𝑘𝑘+1|𝑘𝑘, respectively-----are obtained with the well-known 500 

recursive Kalman filter51 (Supplementary Note 4). By reformulating equation (2) to describe neural activity and 501 

behavior in terms of the latent states estimated by the Kalman filter, we can show that the best prediction of 502 

behavior using past neural activity is a linear function of the past neural activity (Supplementary Note 4). This key 503 

insight enables us to identify the model parameters via a direct estimation of the latent states through a projection 504 

of the future behavior onto the past neural activity (Supplementary Note 5). 505 
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PSID: preferential subspace identification  506 

We develop a novel learning algorithm, named preferential subspace identification (PSID), to identify the 507 

parameters of the dynamic model in equation (4) using training time series {𝑦𝑦𝑘𝑘: 0 ≤ 𝑘𝑘 < 𝑁𝑁} and {𝑧𝑧𝑘𝑘: 0 ≤ 𝑘𝑘 < 𝑁𝑁} 508 

while prioritizing the learning of the dynamics of 𝑧𝑧𝑘𝑘 that are predictable from 𝑦𝑦𝑘𝑘 . The full algorithm is provided in 509 

Table 1. The detailed derivation is provided in Supplementary Note 5. In this section, we provide an overview of 510 

the derivation. 511 

PSID first extracts the latent states directly using the neural activity and behavior data, and then estimates the 512 

model parameters using the extracted latent states. The latent states are extracted in two stages: the first stage 513 

extracts behaviorally relevant latent states and the second stage, which is optional, extracts the remaining 514 

behaviorally irrelevant latent states. The first stage of PSID projects the future behavior (𝑍𝑍𝑓𝑓) onto the past neural 515 

activity (𝑌𝑌𝑝𝑝) (denoted as 𝑍𝑍𝑓𝑓/𝑌𝑌𝑝𝑝 in Fig. 1b, equation (7)), which we can show extracts the behaviorally relevant 516 

latent states (Supplementary Note 5). The second stage of PSID first finds the part of the future neural activity that 517 

is not explained by the extracted behaviorally relevant latent states, i.e., does not lie in the subspace spanned by 518 

these states. This is found by subtracting the orthogonal projection of future neural activity onto the extracted 519 

behaviorally relevant latent states (equation (18)). This second stage then projects this unexplained future neural 520 

activity onto the past neural activity to extract the behaviorally irrelevant latent states (equation (19)). Overall, 521 

PSID provides a non-iterative closed-form solution for estimating the parameters of the model in equation (4) 522 

(Supplementary Note 5). 523 

Table 1. PSID: Preferential subspace identification algorithm. 

Given the training time series {𝑦𝑦𝑘𝑘: 0 ≤ 𝑘𝑘 < 𝑁𝑁} and {𝑧𝑧𝑘𝑘: 0 ≤ 𝑘𝑘 < 𝑁𝑁}, state dimension 𝑛𝑛𝑥𝑥 and parameters 

𝑛𝑛1 ≤ 𝑛𝑛𝑥𝑥 (number of states extracted in the first stage) and 𝑖𝑖 (projection horizon), this algorithm identifies 

parameters of a dynamic linear state-space model as in equation (4).  

1. Form the following matrices (𝑗𝑗 = 𝑁𝑁 − 2𝑖𝑖 + 1 is the number of columns in these matrices): 
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𝑦𝑦0 𝑦𝑦1 ⋯ 𝑦𝑦𝑗𝑗−1
𝑦𝑦1 𝑦𝑦2 ⋯ 𝑦𝑦𝑗𝑗
⋮ ⋮ ⋱ ⋮
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   (6) 

2. If 𝑛𝑛1 = 0 (no behaviorally relevant latent states), skip to step 9 

3. [Begins stage 1 of PSID]: Compute the least squares prediction of 𝑍𝑍𝑓𝑓  from 𝑌𝑌𝑝𝑝, and 𝑍𝑍𝑓𝑓− from 𝑌𝑌𝑝𝑝+ as: 

     �̂�𝑍𝑓𝑓 = 𝑍𝑍𝑓𝑓𝑌𝑌𝑝𝑝𝑇𝑇�𝑌𝑌𝑝𝑝𝑌𝑌𝑝𝑝𝑇𝑇�
−1𝑌𝑌𝑝𝑝      (7) 

     �̂�𝑍𝑓𝑓− = 𝑍𝑍𝑓𝑓−𝑌𝑌𝑝𝑝+
𝑇𝑇�𝑌𝑌𝑝𝑝+𝑌𝑌𝑝𝑝+

𝑇𝑇�
−1
𝑌𝑌𝑝𝑝+     (8) 

4. Compute the singular value decomposition (SVD) of �̂�𝑍𝑓𝑓  and keep the top 𝑛𝑛1 singular values: 

     �̂�𝑍𝑓𝑓 = 𝑈𝑈𝑆𝑆𝑉𝑉𝑇𝑇 ≅ 𝑈𝑈1𝑆𝑆1𝑉𝑉1𝑇𝑇     (9) 

5. Compute the behavior observability matrix 𝛤𝛤𝑧𝑧𝑖𝑖  and the behaviorally relevant latent state 𝑋𝑋�𝑖𝑖
(1) as (.† 

denotes pseudoinverse): 

     𝛤𝛤𝑧𝑧𝑖𝑖 = 𝑈𝑈1𝑆𝑆1
1
2      (10) 

     𝑋𝑋�𝑖𝑖
(1) = 𝛤𝛤𝑧𝑧𝑖𝑖

†�̂�𝑍𝑓𝑓      (11) 

6. Remove the last 𝑛𝑛𝑧𝑧 rows of 𝛤𝛤𝑧𝑧𝑖𝑖  to get 𝛤𝛤𝑧𝑧𝑖𝑖−1 and then compute the behaviorally relevant latent state at the 

next time step (𝑋𝑋�𝑖𝑖+1
(1) ) as: 

      𝛤𝛤𝑧𝑧𝑖𝑖−1 = 𝛤𝛤𝑧𝑧𝑖𝑖(1:(𝑖𝑖−1)×𝑛𝑛𝑧𝑧,∶)
     (12) 

     𝑋𝑋�𝑖𝑖+1
(1) = 𝛤𝛤𝑧𝑧𝑖𝑖−1

† �̂�𝑍𝑓𝑓−      (13) 

7. Compute the least squares estimate of 𝐴𝐴11 using the latent states as: 

     𝐴𝐴11 = 𝑋𝑋�𝑖𝑖+1
(1)𝑋𝑋�𝑖𝑖

(1)†     (14) 
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8. If 𝑛𝑛𝑥𝑥 = 𝑛𝑛1 (no additional states), set 𝐴𝐴 = 𝐴𝐴11, 𝑋𝑋�𝑖𝑖 = 𝑋𝑋�𝑖𝑖
(1) and 𝑋𝑋�𝑖𝑖+1 = 𝑋𝑋�𝑖𝑖+1

(1)  and skip to step 17 

9. [Begins stage 2 of PSID]: If 𝑛𝑛1 > 0, find the neural observability matrix 𝛤𝛤𝑦𝑦𝑖𝑖
(1) for 𝑋𝑋�𝑖𝑖

(1) as the least squares 

solution of predicting 𝑌𝑌𝑓𝑓 using 𝑋𝑋�𝑖𝑖
(1), and subtract this prediction from 𝑌𝑌𝑓𝑓 (otherwise set 𝑌𝑌𝑓𝑓′ = 𝑌𝑌𝑓𝑓).  

     𝛤𝛤𝑦𝑦𝑖𝑖
(1) = 𝑌𝑌𝑓𝑓𝑋𝑋�𝑖𝑖

(1)𝑇𝑇 �𝑋𝑋�𝑖𝑖
(1)𝑋𝑋�𝑖𝑖

(1)𝑇𝑇�
−1

     (15) 

     𝑌𝑌𝑓𝑓′ = 𝑌𝑌𝑓𝑓 − 𝛤𝛤𝑦𝑦𝑖𝑖
(1)𝑋𝑋�𝑖𝑖

(1)     (16) 

10. If 𝑛𝑛1 > 0, remove the last 𝑛𝑛𝑦𝑦 rows of 𝛤𝛤𝑦𝑦𝑖𝑖
(1) to find the neural observability matrix for 𝑋𝑋�𝑖𝑖+1

(1)  and subtract 

the corresponding prediction from 𝑌𝑌𝑓𝑓− (otherwise set 𝑌𝑌𝑓𝑓−
′ = 𝑌𝑌𝑓𝑓−). 

     𝛤𝛤𝑦𝑦𝑖𝑖−1
(1) = 𝛤𝛤𝑦𝑦𝑖𝑖

(1)
�1:(𝑖𝑖−1)×𝑛𝑛𝑦𝑦,∶�

    (17) 

     𝑌𝑌𝑓𝑓−
′ = 𝑌𝑌𝑓𝑓− − 𝛤𝛤𝑦𝑦𝑖𝑖−1

(1) 𝑋𝑋�𝑖𝑖+1
(1)      (18) 

11. Compute the least squares prediction of 𝑌𝑌𝑓𝑓′ from 𝑌𝑌𝑝𝑝, and 𝑌𝑌𝑓𝑓−
′ from 𝑌𝑌𝑝𝑝+ as: 

     𝑌𝑌�𝑓𝑓′ = 𝑌𝑌𝑓𝑓′𝑌𝑌𝑝𝑝𝑇𝑇�𝑌𝑌𝑝𝑝𝑌𝑌𝑝𝑝𝑇𝑇�
−1𝑌𝑌𝑝𝑝      (19) 

     𝑌𝑌�𝑓𝑓−
′ = 𝑌𝑌𝑓𝑓−

′𝑌𝑌𝑝𝑝+
𝑇𝑇�𝑌𝑌𝑝𝑝+𝑌𝑌𝑝𝑝+

𝑇𝑇�
−1
𝑌𝑌𝑝𝑝+     (20) 

12. Compute the SVD of 𝑌𝑌�𝑓𝑓′ and keep the top 𝑛𝑛2 = 𝑛𝑛𝑥𝑥 − 𝑛𝑛1 singular values: 

     𝑌𝑌�𝑓𝑓′ = 𝑈𝑈′𝑆𝑆′𝑉𝑉′𝑇𝑇 ≅ 𝑈𝑈2𝑆𝑆2𝑉𝑉2𝑇𝑇     (21) 

13. Compute the remaining neural observability matrix Γ𝑦𝑦𝑖𝑖  and the corresponding latent state 𝑋𝑋�𝑖𝑖
(2) as: 

     Γ𝑦𝑦𝑖𝑖 = 𝑈𝑈2𝑆𝑆2
1
2      (22) 

     𝑋𝑋�𝑖𝑖
(2) = Γ𝑦𝑦𝑖𝑖

† 𝑌𝑌�𝑓𝑓′      (23) 

14. Remove the last 𝑛𝑛𝑦𝑦 rows of Γ𝑦𝑦𝑖𝑖  to get Γ𝑦𝑦𝑖𝑖−1  and then compute the remaining latent states at the next time 

step (𝑋𝑋�𝑖𝑖+1
(2) ) as: 

     Γ𝑦𝑦𝑖𝑖−1 = Γ𝑦𝑦𝑖𝑖�1:(𝑖𝑖−1)×𝑛𝑛𝑦𝑦,∶�
     (24) 

     𝑋𝑋�𝑖𝑖+1
(2) = Γ𝑦𝑦𝑖𝑖−1

† 𝑌𝑌�𝑓𝑓−
′     (25) 

15. If 𝑛𝑛1 > 0, concatenate 𝑋𝑋�𝑖𝑖
(2) to 𝑋𝑋�𝑖𝑖

(1) and 𝑋𝑋�𝑖𝑖+1
(2)  to 𝑋𝑋�𝑖𝑖+1

(1)  to get the full latent state (otherwise set 𝑋𝑋�𝑖𝑖 = 𝑋𝑋�𝑖𝑖
(2) 

and 𝑋𝑋�𝑖𝑖+1 = 𝑋𝑋�𝑖𝑖+1
(2) ): 

    𝑋𝑋�𝑖𝑖 = �
𝑋𝑋�𝑖𝑖

(1)

𝑋𝑋�𝑖𝑖
(2)�,  𝑋𝑋�𝑖𝑖+1 = �

𝑋𝑋�𝑖𝑖+1
(1)

𝑋𝑋�𝑖𝑖+1
(2) �    (26) 

16. Compute the least squares estimate of 𝐴𝐴21 and 𝐴𝐴22 using the latent states and form the full 𝐴𝐴 as: 

     [𝐴𝐴12 𝐴𝐴22] = 𝑋𝑋�𝑖𝑖+1
(2)𝑋𝑋�𝑖𝑖

†     (27) 
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     𝐴𝐴 = �𝐴𝐴11𝐴𝐴12 𝐴𝐴22
�     (28) 

17. Compute the least squares estimate of 𝐶𝐶𝑦𝑦 and 𝐶𝐶𝑧𝑧 using the latent states and the observations as: 

     𝐶𝐶𝑦𝑦 = 𝑌𝑌𝑖𝑖𝑋𝑋�𝑖𝑖
†      (29) 

     𝐶𝐶𝑧𝑧 = 𝑍𝑍𝑖𝑖𝑋𝑋�𝑖𝑖
†      (30) 

18. Compute the residuals as: 

    �𝑊𝑊𝑖𝑖
𝑉𝑉𝑖𝑖
� = �𝑋𝑋

�𝑖𝑖+1
𝑌𝑌𝑖𝑖

� − �
𝐴𝐴
𝐶𝐶𝑦𝑦�

𝑋𝑋�𝑖𝑖      (31) 

19. Compute the noise statistics as the sample covariance of the residuals: 

    � 𝑄𝑄 𝑆𝑆
𝑆𝑆𝑇𝑇 𝑅𝑅

� = 1
𝑗𝑗
�𝑊𝑊𝑖𝑖
𝑉𝑉𝑖𝑖
� �𝑊𝑊𝑖𝑖
𝑉𝑉𝑖𝑖
�
𝑇𝑇

     (32) 

20. Solve equation (46) to find the steady-state solution 𝑃𝑃�, and substitute 𝑃𝑃� in equation (45) to get the 

steady-state Kalman gain 𝐾𝐾. 

21. If parameters Σ𝑦𝑦 and 𝐺𝐺𝑦𝑦 are of interest, solve the Lyapunov equation (37) to get Σ𝑥𝑥, and then use 

equations (38) and (39) to compute Σ𝑦𝑦 and 𝐺𝐺𝑦𝑦, respectively. These parameters are not needed for 

Kalman filtering or for decoding behavior from neural activity (equation (44)). 

 

 524 

Identification of model structure parameters for PSID and NDM 525 

For both PSID and NDM, the total number of latent states 𝑛𝑛𝑥𝑥 is a parameter of the model structure. When 526 

learning of all dynamics in the neural activity (regardless of their relevance to behavior) is of interest, we estimate 527 

the appropriate value for this parameter using the following cross-validation procedure. We fit models with 528 

different values of 𝑛𝑛𝑥𝑥 and for each model, we compute the cross-validated accuracy of one-step-ahead prediction 529 

of neural activity 𝑦𝑦𝑘𝑘  using its past (equation (44) in Supplementary Note 4). This is referred to as neural self-530 

prediction to emphasize that the input is the past neural activity itself, which is used to predict the value of neural 531 

activity at the current time step. We use Pearson’s correlation coefficient (CC) to quantify the self-prediction 532 

(averaged across dimensions of neural activity). We then estimate the total neural latent state dimension 𝑛𝑛𝑥𝑥 as the 533 

value that reaches within 1 s.e.m. of the best possible neural self-prediction accuracy among all considered latent 534 

state dimensions. As shown with numerical simulations, using this approach with PSID or standard SID33,51 for 535 
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NDM accurately identifies the total number of latent states (Supplementary Fig. 3a-c and Supplementary Fig. 5c, 536 

e). We thus use this procedure to quantify the total neural dynamics dimension in NHP data (Fig. 3d, j). We also 537 

use the exact same procedure on the behavioral data using the behavior self-prediction to quantify the total 538 

behavior dynamics dimension in NHP data (Fig. 3e, k). 539 

To learn a model with PSID with a given latent state dimension 𝑛𝑛𝑥𝑥, we also need to specify another model 540 

structure parameter 𝑛𝑛1, i.e. the dimension of 𝑥𝑥𝑘𝑘
(1) in equation (4). To determine a suitable value for 𝑛𝑛1, we 541 

perform an inner cross-validation within the training data and fit models with the given 𝑛𝑛𝑥𝑥 and with different 542 

candidate values for 𝑛𝑛1. Among considered values for 𝑛𝑛1, we select the final value 𝑛𝑛1∗ as the value of 𝑛𝑛1 that within 543 

the inner cross-validation in the training data, maximizes the accuracy for decoding behavior using neural activity 544 

(equation (44) in Supplementary Note 4). We quantify the decoding accuracy using CC (averaged across 545 

dimensions of behavior). As shown with numerical simulations, this approach accurately identifies 𝑛𝑛1 546 

(Supplementary Fig. 3d, e). Thus, when fitting a model with any given latent state dimension 𝑛𝑛𝑥𝑥 using PSID, 547 

unless otherwise noted, we determine 𝑛𝑛1 using an inner cross-validation as detailed above (Fig. 3a-c, 548 

Supplementary Fig. 5a, Supplementary Fig. 3a).  549 

Generating random models for numerical simulations 550 

To validate the identification algorithms with numerical simulations, we generate random models with the 551 

following procedure. Dimension of 𝑦𝑦𝑘𝑘  and 𝑧𝑧𝑘𝑘 are selected randomly with uniform probability from the following 552 

ranges: 5 ≤ 𝑛𝑛𝑦𝑦,𝑛𝑛𝑧𝑧 ≤ 10. The full latent state dimension is selected with uniform probability from 1 ≤ 𝑛𝑛𝑥𝑥 ≤ 10 553 

and then the number of states driving behavior (𝑛𝑛1) is selected with uniform probability from 1 ≤ 𝑛𝑛1 ≤ 𝑛𝑛𝑥𝑥. We 554 

then randomly generate matrices with consistent dimensions to be used as the model parameters 𝐴𝐴, 𝐶𝐶𝑦𝑦, 𝐶𝐶𝑧𝑧, 𝑄𝑄, 𝑅𝑅, 𝑆𝑆 555 

(Supplementary Note 7). Specifically, the eigenvalues of 𝐴𝐴 are selected randomly from the unit circle and 𝑛𝑛1 of 556 

them are then randomly selected to be used in the behaviorally relevant part of 𝐴𝐴 (i.e. 𝐴𝐴11 in equation (4), 557 

Supplementary Note 7). Furthermore, noise statistics are randomly generated and then scaled with random values 558 
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to provide a wide range of relative state and observation noise values (Supplementary Note 7). Finally, we generate 559 

a separate randomly generated SSM with a random number of latent states as the model for the independent 560 

residual behavior dynamics 𝜖𝜖𝑘𝑘 (Supplementary Note 7). 561 

To generate a time-series realization with 𝑁𝑁 data points from a given model, we first randomly generate an 𝑁𝑁 562 

data point white gaussian noise with the covariance given in equation (62) and assign these random numbers to 563 

𝑤𝑤𝑘𝑘 and 𝑣𝑣𝑘𝑘. We then compute 𝑥𝑥𝑘𝑘 and 𝑦𝑦𝑘𝑘  by iterating through equation (2) with the initial value 𝑥𝑥−1 = 0. Finally, 564 

we generate a completely independent 𝑁𝑁-point time-series realization from the behavior residual dynamics model 565 

(see the previous paragraph) and add its generated behavior time series (i.e. 𝜖𝜖𝑘𝑘) to 𝐶𝐶𝑧𝑧𝑥𝑥𝑘𝑘 to get the total 𝑧𝑧𝑘𝑘 566 

(equation (2)). 567 

Evaluation metrics for learning of model parameters in numerical simulations 568 

A similarity transform is a revertible transformation of the basis in which states of the model are described and 569 

can be achieved by multiplying the states with any invertible matrix (Supplementary Note 2). For example, any 570 

permutation of the states is a similarity transform. Since any similarity transform on the model gives an equivalent 571 

model for the same neural activity and behavior (just changes the latent state basis in which we describe the 572 

model; Supplementary Note 2), we cannot directly compare the parameters of the identified model with the true 573 

model and need to consider all similarity transforms of the identified model as well. Thus, to evaluate the 574 

identification of model parameters, we first find a similarity transform that makes the basis of the latent states for 575 

the identified model as close as possible to the basis of the latent states for the true model. We then evaluate the 576 

difference between the identified and true values of each model parameter. Purely to find such a similarity 577 

transform, from the true model we generate a new realization with 𝑞𝑞 = 1000𝑛𝑛𝑥𝑥 samples, which is taken to be 578 

sufficiently long for the model dynamics to be reflected in the states. We then use both the true and the identified 579 

models to estimate the latent state using the steady-state Kalman filter (equation (44)) associated with each model, 580 
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namely 𝑥𝑥�𝑘𝑘+1|𝑘𝑘
(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) and 𝑥𝑥�𝑘𝑘+1|𝑘𝑘

(𝑖𝑖𝑖𝑖) . We then find the similarity transform that minimizes the mean-squared error between 581 

the two sets of Kalman estimated states as 582 

 𝑇𝑇� = argmin
𝑇𝑇

�� �𝑇𝑇𝑥𝑥�𝑘𝑘+1|𝑘𝑘
(𝑖𝑖𝑖𝑖) − 𝑥𝑥�𝑘𝑘+1|𝑘𝑘

(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)�
2

𝑞𝑞

𝑘𝑘=1

� = 𝑋𝑋�(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)𝑋𝑋�(𝑖𝑖𝑖𝑖)† (33) 

where 𝑋𝑋�(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) and 𝑋𝑋�(𝑖𝑖𝑖𝑖) are matrices whose 𝑘𝑘th column is composed of 𝑥𝑥�𝑘𝑘+1|𝑘𝑘
(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) and 𝑥𝑥�𝑘𝑘+1|𝑘𝑘

(𝑖𝑖𝑖𝑖) , respectively. We then 583 

apply the similarity transform 𝑇𝑇�  to the parameters of the identified model to get an equivalent model in the same 584 

basis as the true model. We emphasize again that the identified model and the model obtained from it using the 585 

above similarity transform are equivalent (Supplementary Note 2). 586 

Given the true model and the transformed identified model, we quantify the identification error for each model 587 

parameter Ψ (e.g. 𝐶𝐶𝑦𝑦) using the normalized matrix norm as: 588 

 𝑒𝑒Ψ =
�Ψ(𝑖𝑖𝑖𝑖) −Ψ(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)�𝐹𝐹

�Ψ(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)�𝐹𝐹
 (34) 

where |. |𝐹𝐹 denotes the Frobenius norm of a matrix, which for any matrix Ψ = �𝜓𝜓𝑖𝑖𝑗𝑗�𝑛𝑛×𝑚𝑚
 is defined as: 589 

 |Ψ|𝐹𝐹 = �∑ ∑ �𝜓𝜓𝑖𝑖𝑗𝑗�
2𝑚𝑚

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1 . (35) 

This concludes the evaluation of the identified model parameters.  590 

Evaluation metrics for learning of behaviorally relevant dynamics in numerical simulations 591 

Both for numerical simulations and for NHP data, we use the cross-validated accuracy of decoding behavior 592 

using neural activity as a measure of how accurately the behaviorally relevant neural dynamics are learned. In 593 

numerical simulations, we also evaluate a more direct metric based on the eigenvalues of the state transition 594 

matrix 𝐴𝐴; this is because for a linear SSM, these eigenvalues specify the dynamical characteristics52. Specifically, we 595 

evaluate the identification accuracy for the eigenvalues associated with the behaviorally relevant latent states (i.e. 596 

eigenvalues of 𝐴𝐴11 in equation (4)). PSID identifies the model in the form of equation (4) and arranges the latent 597 
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states such that the first block of 𝐴𝐴 (i.e. 𝐴𝐴11 in equation (28)) is associated with the behaviorally relevant states 598 

(𝑥𝑥𝑘𝑘
(1) in equation (4)). Thus for PSID, we simply compute the eigenvalues of 𝐴𝐴11 and evaluate their identification 599 

accuracy. NDM identification methods do not specify which states are behaviorally relevant. So to find these 600 

states, we first apply a similarity transform to make the NDM identified 𝐴𝐴 matrix block-diagonal with each 601 

complex conjugate pair of eigenvalues in a separate block (using MATLAB’s bdschur command followed by the 602 

cdf2rdf command). We then fit a linear regression from the states associated with each block to the behavior 603 

(using the training data) and sort the blocks by their prediction accuracy of behavior 𝑧𝑧𝑘𝑘. The behaviorally relevant 604 

eigenvalues are then taken to be the top 𝑛𝑛1 eigenvalues that result in the most accurate prediction of 𝑧𝑧𝑘𝑘. 605 

Finally, given the true behaviorally relevant eigenvalues and the identified behaviorally relevant eigenvalues, we 606 

find the closest pairing of the two sets (by comparing all possible pairings), put the true and the associated closest 607 

identified eigenvalues in two vectors, and compute the normalized eigen value detection error using equation (34).  608 

When evaluating the identified eigenvalues for models with a latent state dimension that is smaller than the true 609 

𝑛𝑛1 (for example in Fig. 2), we add zeros instead of the missing eigenvalues since a model with fewer latent states is 610 

equivalent to a model with more latent states that are always equal to zero and have eigenvalues of zero associated 611 

with them.  612 

Identification of the dimensionality for behaviorally relevant neural dynamics 613 

To estimate the dimensionality of the behaviorally relevant neural dynamics, we seek to find the minimal 614 

number (i.e., dimension) of latent states that is sufficient to best describe behavior using neural activity. To do 615 

this, for each method, we fit models with different values of state dimension 𝑛𝑛𝑥𝑥, and compute the cross-validated 616 

accuracy of decoding behavior using neural activity (equation (44) in Supplementary Note 4). We use Pearson’s 617 

correlation coefficient (CC), averaged across behavior dimensions, to quantify the decoding accuracy. We then 618 

estimate the dimension of the behaviorally relevant neural dynamics as the smallest latent state dimension that 619 

reaches within 1 s.e.m. of the best possible cross-validated decoding accuracy among all considered latent stateas 620 
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the smallest latent state dimension that reaches within 1 s.e.m. of the best possible cross-validated behavior 621 

decoding accuracy as described above (Fig. 3a-c).  622 

Recordings and task setup in non-human primates 623 

Neural activity was recorded in two adult Rhesus macaques while the subjects were performing naturalistic 624 

reach, grasp, and return movements in a 3D space37,53. All surgical and experimental procedures were performed 625 

in compliance with the National Institute of Health Guide for Care and Use of Laboratory Animals and were 626 

approved by the New York University Institutional Animal Care and Use Committee. In Monkey J, neural activity 627 

was recorded from 137 electrodes on a micro-drive (Gray Matter Research, USA) covering parts of primary motor 628 

cortex (M1), dorsal premotor cortex (PMd), ventral premotor cortex (PMv), and prefrontal cortex (PFC) on the 629 

left hemisphere and in monkey C, activity was recorded from 128 electrodes on four thirty-two electrode 630 

microdrives (Gray Matter Research, USA) covering PMd and PMv on both left and right hemispheres. Using 3D 631 

tracked reflective markers, the movement of various points on the torso, chest, right arm, hand and fingers were 632 

tracked. These markers were used to extract the angle of the 27 (monkey J) or 25 (monkey C) joints of the upper-633 

extremity, consisting of 7 joints in the shoulder, elbow, wrist, and 20 (monkey J) or 18 (monkey C) joints in 634 

fingers (4 in each, except 2 missing finger joints in monkey C)53,54. We analyzed the neural activity during 7 635 

(monkey J) or 4 (monkey C) recording sessions. For most of our analyses (unless otherwise specified), to further 636 

increase the sample size, we randomly divided the electrodes into non-overlapping groups of 10 electrodes and 637 

performed modeling in each group separately. We refer to each random electrode group in each recording session 638 

as one dataset.  639 

To model the recorded local field potentials (LFP), we performed common average referencing (CAR) and then 640 

as the neural features, extracted signal log-powers (i.e. in dB units) from 7 frequency bands37,55 (theta: 4-8 Hz, 641 

alpha: 8-12 Hz, low beta: 12-24 Hz, high beta: 24-34 Hz, low gamma: 34-55 Hz, high-gamma 1: 65-95 Hz, and high 642 

gamma 2: 130-170 Hz) within sliding 300ms windows at a time step of 50ms using Welch’s method (using 8 sub 643 
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windows with 50% overlap)56. The extracted features were taken as the neural activity time series 𝑦𝑦𝑘𝑘  (𝑦𝑦𝑘𝑘 ∈ ℝ70 in 644 

each dataset). Unless otherwise noted, the behavior time series 𝑧𝑧𝑘𝑘 was taken as the joint angles at the end of each 645 

window (𝑧𝑧𝑘𝑘 ∈ ℝ27 in monkey J and 𝑧𝑧𝑘𝑘 ∈ ℝ25 in monkey C). 646 

Cross-validated model evaluation and statistical tests on NHP neural datasets 647 

For each method, we performed the model identification and decoding within a 5-fold cross-validation and as 648 

the performance metric for predicting behavior, we computed the cross-validated correlation coefficient between 649 

the true and predicted joint angles. For all methods, in each cross-validation fold, we first z-scored each dimension 650 

of neural activity and behavior based on the training data to ensure that learning methods do not discount any 651 

behavior or neural dimensions due to a potentially smaller natural variance. In fitting the models with PSID, for 652 

each latent dimension 𝑛𝑛𝑥𝑥, unless specified otherwise, 𝑛𝑛1 was selected using a 4-fold inner cross-validation within 653 

the training data. For PSID and standard SID33,51, a horizon parameter of 𝑖𝑖 = 5 was used in all analyses, except for 654 

per channel analyses (Fig. 5) where a horizon of 𝑖𝑖 = 20 was used due to the smaller neural feature dimension. For 655 

the control analyses with NDM, we used the EM algorithm57,58.  656 

We used the Wilcoxon signed-rank or rank-sum for all paired and non-paired statistical tests, respectively. To 657 

correct for multiple-comparisons when comparing the performance of methods for different joints or channels, 658 

we corrected the P-values within the test data using the False Discovery Rate (FDR) control59.  659 

Data availability 660 

The data used to support the results are available upon reasonable request from the corresponding author. 661 

Code availability 662 

The code for the PSID algorithm is available from the corresponding author and will be available online at 663 

https://github.com/ShanechiLab/PSID.  664 
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Supplementary Figures 784 

 
 
Supplementary Figure 1. PSID correctly learns model parameters at a rate of convergence similar to that of SID while 
also being able to prioritize behaviorally relevant dynamics. 
(a) Normalized error for identification of each model parameter using PSID (with 106 training samples) across 100 random 
simulated models. Each model had randomly selected state, neural activity, and behavior dimensions as well as randomly 
generated parameters (Methods). The parameters 𝐴𝐴, 𝐶𝐶𝑦𝑦, 𝐶𝐶𝑧𝑧 from equation (2) together with the covariance of the neural activity 
Σ𝑦𝑦 ≜ 𝑬𝑬{𝑦𝑦𝑘𝑘𝑦𝑦𝑘𝑘𝑇𝑇} and the cross-covariance of the neural activity with the latent state 𝐺𝐺𝑦𝑦 ≜ 𝑬𝑬{𝑥𝑥𝑘𝑘+1𝑦𝑦𝑘𝑘𝑇𝑇} fully characterize the model 
(Methods). The horizontal dark line on the box shows the median, box edges show the 25th and 75th percentiles, whiskers 
represent the minimum and maximum values (other than outliers) and the dots show the outlier values. Outliers are defined 
as in Fig. 3. Using 106 samples, all parameters are identified with a median error smaller than 1%. (b) Normalized error for all 
parameters as a function of the number of training samples for PSID. The normalized error consistently decreases as more 
samples are used for identification. Solid line shows the average log10 of the normalized error and the shaded area shows the 
s.e.m. (c)-(d) Same as (a)-(b), shown for the standard SID algorithm. The rate of convergence for both PSID and SID, and for 
all parameters is around 10 times smaller error for 100 times more training samples (i.e. slope of -0.5 on (b), (d)). 
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Supplementary Figure 2. Identification error is larger for models that are closer to unobservability and thus inherently 
harder to identify. 
(a) Normalized error for each parameter (identified with PSID using 106 training samples) for the 100 random simulated 
models in Supplementary Fig. 1 is shown as a function of the condition number of the neural observability matrix Γ𝑦𝑦 for the 
model, which is defined as the ratio of its largest to its smallest singular values (Methods). The P-value for Pearson’s correlation 
coefficient between log10 cond(Γ𝑦𝑦) and log10 of normalized error is shown on each plot (number of data points is 100). The 
green line shows the least squares solution to fitting a line to the data points and the shaded area shows the associated 95% 
confidence interval. The condition number of the neural observability matrix for each model is significantly correlated with the 
identification error for the three model parameters (i.e. 𝐴𝐴, 𝐶𝐶𝑦𝑦, and 𝐶𝐶𝑧𝑧) that have the widest range of identification errors (as 
seen from Supplementary Fig. 1a). As a model gets closer to being unobservable and more difficult to identify, the condition 
number for the observability matrix increases. Thus this result indicates that the models for which these three parameters were 
poorly estimated were closer to being unobservable and thus were inherently more difficult to identify given the same number 
of training samples. (b) Same as (a) for SID, which similarly shows relatively larger error for models that are inherently less 
observable. 
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Supplementary Figure 3. Model structure parameters can be accurately estimated using cross-validation. 
(a) Detection of the total latent state dimension (𝑛𝑛𝑥𝑥) using cross-validation is shown for numerical simulations. We estimate 
𝑛𝑛𝑥𝑥 by considering candidate values of 𝑛𝑛𝑥𝑥 and selecting the value whose associated model reaches (within 1 s.e.m. of) the best 
neural self-prediction (predicting 𝑦𝑦𝑘𝑘  using its past values) among all candidate values (Methods). The Pearson’s correlation P-
value between the true and identified values is shown on the plot. The colored line and shaded area are defined as in 
Supplementary Fig. 2. (b) Same as (a), for detection of 𝑛𝑛𝑥𝑥 using cross-validation in standard SID. (c) The distribution of true 
and identified values of 𝑛𝑛𝑥𝑥 from (a)-(b) is shown as a box plot. Bars and boxes are defined as in Fig. 3b. All data points are 
shown. (d) Same as (a), for detection of the PSID parameter 𝑛𝑛1 (Methods). (e) The distribution of true and identified values of 
𝑛𝑛1 from (d) shown as a box plot. The true and identified 𝑛𝑛𝑥𝑥 and 𝑛𝑛1 are always integer values, so for better visualization and to 
avoid having multiple points at the exact same location on the plots a random small displacement has been added to each point.  
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Supplementary Figure 4. RM and NDM with the same latent state dimension as PSID cannot achieve a comparable 
performance to PSID even with unlimited training samples, and PSID requires orders of magnitude fewer samples to 
achieve the same performance as an NDM with a larger latent state dimension. 
(a) Normalized eigenvalue error is shown for 100 random simulated models when using RM, PSID, or NDM with similar or 
larger latent state dimension. Solid lines show the average across the 100 models, and the shaded areas show the s.e.m. For RM, 
the state dimension is the behavior dimension (here 𝑛𝑛𝑧𝑧 = 5). (b) Cross-validated behavior decoding CC for the models in (a). 
Optimal decoding using the true model is shown as black. For NDM with 4 latent states (i.e. in the dimension reduction regime) 
and RM, eigenvalue identification and decoding accuracies plateaued at some final value below that of the true model and 
stopped improving with further addition of training samples, indicating that the asymptotic performance of having unlimited 
training samples has been reached. Even for an NDM with a latent state dimension as large as the true model (i.e. not performing 
any dimension reduction and using 𝑛𝑛𝑥𝑥 = 16), (i) NDM was inferior in performance compared with PSID with a latent state 
dimension of only 4 when using the same number of training samples, and (ii) NDM required orders of magnitude more 
training samples to reach the performance of PSID with the smaller latent state dimension. Parameters are randomized as in 
Methods except the state noise (𝑤𝑤𝑡𝑡), which is 100 times smaller (i.e. −3 ≤ 𝛼𝛼1 ≤ −1), and the behavior signal-to-noise ratio, 
which is 10 times smaller (i.e. −1 ≤ 𝛼𝛼3 ≤ +1), both adjusted to make the decoding performances more similar to the NHP 
results. 
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Supplementary Figure 5. PSID can accurately estimate the behaviorally relevant dynamics dimension, as well as the 
total neural dynamics dimension and the total behavior dynamics dimension in simulations. 
(a) Cross-validated behavior decoding correlation coefficient (CC) as a function of latent state dimension using PSID and NDM 
within numerical simulations. Decoding CC is averaged across 100 random simulated models and the shaded area indicates 
the s.e.m. In each model, a random number of neural states were behaviorally irrelevant (Methods). (b) The behaviorally 
relevant neural dynamics dimension identified using PSID and NDM. This number is identified for each model as the smallest 
state dimension for which the CC reaches the best decoding performance. Bars, boxes and asterisks are defined as in Fig. 3b. 
While PSID accurately identifies the behaviorally relevant dynamics dimension, NDM overestimates it. (c) One-step-ahead 
self-prediction of neural activity (cross-validated CC) as a function of latent state dimension. To compute the self-prediction, 
SID (i.e., PSID with 𝑛𝑛1 = 0) is always used for modeling since dissociation of behaviorally relevant states is not needed. (d) 
Same as (c) for one-step-ahead self-prediction of behavior. (e) True and identified values for behaviorally relevant neural 
dynamics dimension (PSID results from (b)), the total neural dynamics dimension (identified as the state dimension for best 
neural self-prediction from (c)) and the total behavior dynamics dimension (identified as the state dimension for best behavior 
self-prediction from (d)). These results confirm with numerical simulations that our approach for identifying the total neural 
and behavior dynamics dimensions correctly estimates these numbers, and that PSID accurately identifies the behaviorally 
relevant dynamics dimension from data. Consequently, the same cross-validation approach is used in Fig. 3 for the real NHP 
data to compute the dimensions. 
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Supplementary Figure 6. PSID again reveals a markedly lower dimension for behaviorally relevant neural dynamics in 
the motor cortex when behavior is taken as the 3D end-point position (of hand and elbow) instead of the joint angles. 
Notation is the same as in Fig. 3, but this time for behavior taken as the 3D position of hand and elbow (𝑛𝑛𝑧𝑧 = 6). 
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Supplementary Figure 7. Similar to NDM, jPCA extracts rotations that are in the same direction during reach and return 
epochs. 
Notation is the same as in Fig. 4 for projections to 2D space extracted using jPCA. 
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Supplementary Figure 8. The PSID-extracted latent states with markedly lower dimension achieve significantly better 
decoding of almost all arm and finger joints. 
(a) The state dimension used by each method to achieve the best decoding for individual joints. For all methods, models are 
fitted to all joints as in Fig. 3. For PSID and NDM, models are fitted using various state dimensions; then for each joint, the 
latent state dimension is chosen to be the smallest value for which the decoding CC reaches within 1 s.e.m. of the best decoding 
CC possible for that joint among all latent state dimensions. Bars, boxes and asterisks are defined as in Fig. 3b. For better 
visualization of outliers, the vertical axis is broken. (b) Cross-validated correlation coefficient (CC) between the decoded and 
true joint angles is shown for PSID. Asterisks mark joints for which PSID results in significantly (P < 0.05) better decoding 
compared with NDM (red asterisk) or RM (dark blue asterisk). The latent state for each method is chosen as in (a). (c)-(d) 
Same as (a)-(b), for monkey C. 
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 793 

 
 
Supplementary Video 1. Visualization of how high-dimensional neural dynamics may contain 2D rotations both in the 
same and in opposite directions. 
The presented simulation depicts a hypothetical scenario where 3 dimensions of neural activity traverse a manifold in 3D space 
of which different projections reveal rotations in the same or opposite directions during reach vs return epochs. Among all 
projections, PSID can find the projection corresponding to the behaviorally relevant neural dynamics (e.g. here the (𝑦𝑦2 − 𝑦𝑦3) 
plane, if behavior is best predicted using the activity in this plane) whereas the standard behavior-agnostic NDM methods may 
find other projections (e.g. the (𝑦𝑦1 − 𝑦𝑦2) plane). 
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Supplementary Notes 795 

Supplementary Note 1: The distinction between primary and secondary signals 796 

To clarify the difference between the signals 𝑦𝑦𝑘𝑘  and 𝑧𝑧𝑘𝑘 in equation (2), it is worth noting that in the formulation 797 

of equation (2), 𝑦𝑦𝑘𝑘  is taken as the primary signal in the sense that the latent state 𝑥𝑥𝑘𝑘 describes the complete 798 

dynamics of 𝑦𝑦𝑘𝑘  that also includes its shared dynamics with the secondary signal 𝑧𝑧𝑘𝑘. The designation of the 799 

primary and secondary signals (e.g. taking 𝑦𝑦𝑘𝑘  to be the neural activity and 𝑧𝑧𝑘𝑘 to be the behavior or vice versa) is 800 

interchangeable as far as the shared dynamics of the two signals are of interest and the choice of the primary signal 801 

only determines which signal’s dynamics are fully described beyond the shared dynamics. In this work we take the 802 

primary signal 𝑦𝑦𝑘𝑘  to be the neural activity and the secondary signal 𝑧𝑧𝑘𝑘 to be the behavior. This is motivated by the 803 

typical scenario in neuroscience and neuroengineering where the neural activity is often considered the primary 804 

signal and the goal is to learn how behavior is encoded in it or to decode behavior from it.  805 

The term 𝐶𝐶𝑧𝑧 𝑥𝑥𝑘𝑘𝑠𝑠 in equation (2), which we refer to as 806 

 𝑧𝑧1𝑘𝑘 = 𝐶𝐶𝑧𝑧 𝑥𝑥𝑘𝑘𝑠𝑠, (36) 

represents the part of the secondary signal 𝑧𝑧𝑘𝑘 that is contributed by 𝑥𝑥𝑘𝑘𝑠𝑠 and thus shared with the primary signal. 807 

Any additional dynamics of the secondary signal that are not shared with the primary signal are modeled as the 808 

general independent signal 𝜖𝜖𝑘𝑘. If modeling these dynamics of the secondary signal is also of interest, after learning 809 

the parameters of equation (2), one could use the model to estimate 𝑧𝑧1𝑘𝑘 (Supplementary Note 4) and thus 𝜖𝜖𝑘𝑘 (as 810 

𝜖𝜖𝑘𝑘 = 𝑧𝑧𝑘𝑘 − 𝑧𝑧1𝑘𝑘) in the training data and then use standard dynamic modeling techniques (e.g. SID) to characterize 811 

the dynamics of 𝜖𝜖𝑘𝑘 in terms of another latent state-space model. But since these dynamics are independent of 𝑦𝑦𝑘𝑘 , 812 

such characterization would not be helpful in describing the encoding of 𝑧𝑧𝑘𝑘 in 𝑦𝑦𝑘𝑘  or in decoding of 𝑧𝑧𝑘𝑘 from 𝑦𝑦𝑘𝑘  813 

and thus we will not discuss their identification, and only discuss their generation in our numerical simulations 814 

(Supplementary Note 7). 815 
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Supplementary Note 2: Equivalent sets of parameters that can fully describe the model 816 

We define 𝐺𝐺𝑦𝑦 ≜ 𝑬𝑬�𝑥𝑥𝑘𝑘+1𝑠𝑠 𝑦𝑦𝑘𝑘𝑇𝑇� specifying the cross-covariance of 𝑦𝑦𝑘𝑘  with the state at the next time step, Σ𝑥𝑥 ≜817 

𝑬𝑬�𝑥𝑥𝑘𝑘𝑠𝑠𝑥𝑥𝑘𝑘𝑠𝑠
𝑇𝑇� specifying the covariance of 𝑥𝑥𝑘𝑘𝑠𝑠 and Σ𝑦𝑦 ≜ 𝑬𝑬�𝑦𝑦𝑘𝑘𝑦𝑦𝑘𝑘𝑇𝑇� specifying the covariance of 𝑦𝑦𝑘𝑘 . From equation (2), 818 

it is straight forward to show that these covariances are related to the model noise statistics (equation (3)) via 819 

 Σ𝑥𝑥 = 𝐴𝐴Σ𝑥𝑥𝐴𝐴𝑇𝑇 + 𝑄𝑄 (37) 

 Σ𝑦𝑦 = 𝐶𝐶𝑦𝑦Σ𝑥𝑥𝐶𝐶𝑦𝑦𝑇𝑇 + 𝑅𝑅 (38) 

 𝐺𝐺𝑦𝑦 = 𝐴𝐴Σ𝑥𝑥𝐶𝐶𝑦𝑦𝑇𝑇 + 𝑆𝑆 (39) 

where equation (37) is also known as the Lyapunov equation33,51. The Lyapunov equation (37) has a unique 820 

solution for Σ𝑥𝑥 if 𝐴𝐴 is stable (i.e. the absolute value of all its eigenvalues are less than 1)51. For stable systems 821 

(models with a stable 𝐴𝐴), it is clear from equations (37)-(39) that there is a one to one relation between the set of 822 

parameters �𝐴𝐴,𝐶𝐶𝑦𝑦,𝐶𝐶𝑧𝑧,𝐺𝐺𝑦𝑦,Σ𝑦𝑦, Σ𝑥𝑥� and the set �𝐴𝐴,𝐶𝐶𝑦𝑦,𝐶𝐶𝑧𝑧,𝑄𝑄,𝑅𝑅, 𝑆𝑆�, and thus both sets can be used to describe the 823 

model in equation (2).  824 

Equation (2) is known as the forward stochastic formulation for a linear state-space model. Given that only 𝑦𝑦𝑘𝑘  825 

and 𝑧𝑧𝑘𝑘 are measurable real quantities and that the stochastic latent state 𝑥𝑥𝑘𝑘𝑠𝑠 is not directly accessible, equation (2) 826 

is called an internal description for the signals 𝑦𝑦𝑘𝑘  and 𝑧𝑧𝑘𝑘51. This internal description is not unique and a family of 827 

infinitely many models with different 𝑥𝑥𝑘𝑘𝑠𝑠 can describe the same 𝑦𝑦𝑘𝑘  and 𝑧𝑧𝑘𝑘. For example, any non-singular matrix 828 

𝑇𝑇′ can transform equation (2) to an equivalent model with 𝑥𝑥𝑘𝑘𝑠𝑠𝑛𝑛𝑡𝑡𝑛𝑛 = 𝑇𝑇′𝑥𝑥𝑘𝑘𝑠𝑠, a process known as a similarity 829 

transform (or a change of basis). Moreover, Faurre’s stochastic realization problem shows that even beyond 830 

similarity transforms, there are non-unique sets of noise statistics (𝑄𝑄, 𝑅𝑅, and 𝑆𝑆) that give the exact same second 831 

order statistics for 𝑦𝑦𝑘𝑘33,51. The unique and complete external description for 𝑦𝑦𝑘𝑘  and 𝑧𝑧𝑘𝑘 consists of their second 832 

order statistics. Thus, in the model learning problem, all models that give the correct external description are 833 

equally valid solutions. The set of parameters �𝐴𝐴,𝐶𝐶𝑦𝑦,𝐶𝐶𝑧𝑧,𝐺𝐺𝑦𝑦,Σ𝑦𝑦, Σ𝑥𝑥� are thus more suitable (compared with the 834 

equivalent set of parameters �𝐴𝐴,𝐶𝐶𝑦𝑦,𝐶𝐶𝑧𝑧,𝑄𝑄,𝑅𝑅, 𝑆𝑆�) for evaluating model learning because among this set, all 835 
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parameters other than Σ𝑥𝑥 are uniquely determined from second order statistics of 𝑦𝑦𝑘𝑘  and 𝑧𝑧𝑘𝑘, up to within a 836 

similarity transform33,51.  837 

Supplementary Note 3: Equivalent model formulation with behaviorally relevant states separated 838 

from the other states giving rise to equation (4) 839 

Given the second order statistics of 𝑦𝑦𝑘𝑘  (its auto-covariances at all possible time differences, see equation (51)), 840 

any set of parameters for equation (2) that would describe how the same second order statistics could be generated 841 

from a latent state 𝑥𝑥𝑘𝑘𝑠𝑠 is known as a realization for 𝑦𝑦𝑘𝑘51. We can rewrite equation (2) in an equivalent realization in 842 

which the behaviorally relevant states are clearly separated from the others. To do this, without loss of generality, 843 

we first assume that equation (2) is written as a minimal realization of 𝑦𝑦𝑘𝑘 , defined as a realization with the smallest 844 

possible state dimension 𝑛𝑛𝑥𝑥51. For such a minimal realization, it can be shown that the pair �𝐴𝐴,𝐶𝐶𝑦𝑦� is observable 845 

and the pair �𝐴𝐴,𝐺𝐺𝑦𝑦� is reachable (Theorem 3.12 from ref. 51). Equivalently, both the neural observability matrix  846 

 Γ𝑦𝑦 =

⎣
⎢
⎢
⎡

𝐶𝐶𝑦𝑦
𝐶𝐶𝑦𝑦𝐴𝐴
⋮

𝐶𝐶𝑦𝑦𝐴𝐴𝑛𝑛𝑥𝑥−1⎦
⎥
⎥
⎤
 (40) 

and the neural reachability matrix  847 

 Δy = �𝐺𝐺𝑦𝑦 𝐴𝐴𝐺𝐺𝑦𝑦 … 𝐴𝐴𝑛𝑛𝑥𝑥−1𝐺𝐺𝑦𝑦� (41) 

are full rank with rank of 𝑛𝑛𝑥𝑥 (Theorems 3.4 and 3.7 from ref. 51).  848 

Since not all latent states that contribute to the neural activity are expected to also contribute to a specific 849 

behavior of interest (equations (2) and (36)), the pair (𝐴𝐴,𝐶𝐶𝑧𝑧) is not necessarily observable (i.e. it may not be 850 

possible to uniquely infer the full latent state 𝑥𝑥𝑘𝑘𝑠𝑠 only from behavioral observations 𝑧𝑧𝑘𝑘). In other words, the 851 

behavior observability matrix  852 
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 Γ𝑧𝑧 = �

𝐶𝐶𝑧𝑧
𝐶𝐶𝑧𝑧𝐴𝐴
⋮

𝐶𝐶𝑧𝑧𝐴𝐴𝑛𝑛𝑥𝑥−1
� (42) 

may not be full rank. We define 𝑛𝑛1 = rank(Γ𝑧𝑧) as the number of latent states that drive behavior because as we 853 

show next, the latent state 𝑥𝑥𝑘𝑘𝑠𝑠 can be separated into two parts in a way that only 𝑛𝑛1 dimensions contribute to the 854 

behavior 𝑧𝑧𝑘𝑘. We can show, by applying Theorem 3.6 from ref. 51 to the first and third rows of equation (2), that if 855 

𝑛𝑛1 < 𝑛𝑛𝑥𝑥, there exists a nonsingular matrix 𝑇𝑇′ that via the similarity transform  856 

 �
𝑥𝑥𝑘𝑘

(1)

𝑥𝑥𝑘𝑘
(2)� = 𝑥𝑥𝑘𝑘 = 𝑇𝑇′𝑥𝑥𝑘𝑘𝑠𝑠 (43) 

gives equation (4) as an equivalent formulation for equation (2).  857 

Supplementary Note 4: Kalman filtering and the equivalent forward innovation formulation 858 

Given the linear state-space formulation of equation (2), it can be shown that the best prediction of 𝑦𝑦𝑘𝑘+1 using 859 

𝑦𝑦1 to 𝑦𝑦𝑘𝑘  (denoted as 𝑦𝑦�𝑘𝑘+1|𝑘𝑘) in the sense of having the minimum mean-square error, and similarly the best 860 

prediction of 𝑧𝑧𝑘𝑘+1 using 𝑦𝑦1 to 𝑦𝑦𝑘𝑘  (denoted as �̂�𝑧𝑘𝑘+1|𝑘𝑘) are obtained with the well-known recursive Kalman filter51, 861 

which can be written as 862 

 �
𝑥𝑥�𝑘𝑘+1|𝑘𝑘 =  𝐴𝐴 𝑥𝑥�𝑘𝑘|𝑘𝑘−1 + 𝐾𝐾𝑘𝑘�𝑦𝑦𝑘𝑘 − 𝐶𝐶𝑥𝑥�𝑘𝑘|𝑘𝑘−1�
𝑦𝑦�𝑘𝑘+1|𝑘𝑘 = 𝐶𝐶𝑦𝑦𝑥𝑥�𝑘𝑘+1|𝑘𝑘                                         
�̂�𝑧𝑘𝑘+1|𝑘𝑘 = 𝐶𝐶𝑧𝑧 𝑥𝑥�𝑘𝑘+1|𝑘𝑘                                       

 (44) 

where the recursion is initialized with 𝑥𝑥�0|−1 = 0 and 𝐾𝐾𝑘𝑘 is the Kalman gain51 equal to 863 

 𝐾𝐾𝑘𝑘 = �𝐴𝐴𝑃𝑃�𝑘𝑘|𝑘𝑘−1𝐶𝐶𝑦𝑦𝑇𝑇 + 𝑆𝑆��𝐶𝐶𝑦𝑦𝑃𝑃�𝑘𝑘|𝑘𝑘−1𝐶𝐶𝑦𝑦𝑇𝑇 + 𝑅𝑅�−1. (45) 

Here 𝑃𝑃�𝑘𝑘|𝑘𝑘−1 is the covariance of the error for one-step-ahead prediction of the state (i.e. covariance of 𝑥𝑥�𝑘𝑘|𝑘𝑘−1 =864 

𝑥𝑥�𝑘𝑘|𝑘𝑘−1 − 𝑥𝑥𝑘𝑘) and can be computed via the recursive Riccati equation  865 

 𝑃𝑃�𝑘𝑘+1|𝑘𝑘 = 𝐴𝐴𝑃𝑃�𝑘𝑘|𝑘𝑘−1𝐴𝐴𝑇𝑇 + 𝑄𝑄 − �𝐴𝐴𝑃𝑃�𝑘𝑘|𝑘𝑘−1𝐶𝐶𝑦𝑦𝑇𝑇 + 𝑆𝑆��𝐶𝐶𝑦𝑦𝑃𝑃�𝑘𝑘|𝑘𝑘−1𝐶𝐶𝑦𝑦𝑇𝑇 + 𝑅𝑅�−1�𝐴𝐴𝑃𝑃�𝑘𝑘|𝑘𝑘−1𝐶𝐶𝑦𝑦𝑇𝑇 + 𝑆𝑆�𝑇𝑇 (46) 
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with the recursion initialized with 𝑃𝑃0|−1 = 𝑅𝑅𝑦𝑦. The steady-state solution of Riccati equation can be obtained by 866 

replacing 𝑃𝑃�𝑘𝑘+1|𝑘𝑘 with 𝑃𝑃�𝑘𝑘|𝑘𝑘−1 in the equation and solving for 𝑃𝑃�𝑘𝑘|𝑘𝑘−1. We will drop the subscript and denote the 867 

steady-state solution of equation (46) as 𝑃𝑃� and the associated steady-state Kalman gain as 𝐾𝐾, which is obtained by 868 

substituting 𝑃𝑃� in equation (45). 869 

Writing the outputs in terms of the Kalman filter states gives an alternative formulation for equation (2), which 870 

is known as the forward innovation formulation and is more convenient for deriving PSID. In particular, this 871 

formulation shows that the optimal estimate of the latent state is a linear function of the past neural activity. Based 872 

on this idea and the fact mentioned earlier that the best prediction of behavior and neural activity using past 873 

neural activity is a linear function of the latent state (equation (44)), we can show that linear projections of 874 

behavior and neural activity onto the past neural activity can be used to directly estimate the latent states from the 875 

data first, and then use the estimated latent states to learn the model parameters (Supplementary Note 5). The 876 

forward innovation formulation given by 877 

 �
𝑥𝑥𝑘𝑘+1 =  𝐴𝐴 𝑥𝑥𝑘𝑘 + 𝐾𝐾𝑒𝑒𝑘𝑘   
𝑦𝑦𝑘𝑘 = 𝐶𝐶𝑦𝑦𝑥𝑥𝑘𝑘 + 𝑒𝑒𝑘𝑘 
𝑧𝑧𝑘𝑘 = 𝐶𝐶𝑧𝑧 𝑥𝑥𝑘𝑘 + 𝜀𝜀𝑘𝑘

. (47) 

Here 𝑥𝑥𝑘𝑘 ≜ 𝑥𝑥�𝑘𝑘|𝑘𝑘−1, 𝐾𝐾 is the steady-state Kalman gain and 𝑒𝑒𝑘𝑘 is the innovation process, which is the part of 𝑦𝑦𝑘𝑘  that 878 

is not predictable from its past values33,51. Equations (2) and (47) have different state and noise time-series but are 879 

equivalent alternative internal descriptions for the same 𝑦𝑦𝑘𝑘  and 𝑧𝑧𝑘𝑘 (Supplementary Note 2). The forward 880 

innovation formulation in equation (47) is more convenient (compared with the forward stochastic formulation 881 

in equation (2)) for the derivation of PSID. Specifically, by recursively substituting the previous iteration of 882 

equation (47) into its current iteration, it can be shown that  883 

 𝑥𝑥�𝑘𝑘|𝑘𝑘−1 = Δ𝑦𝑦𝑘𝑘
𝑐𝑐 Λ𝑦𝑦𝑘𝑘

−1 �
𝑦𝑦0
⋮

𝑦𝑦𝑘𝑘−1
�. (48) 

where  884 
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 Δ𝑦𝑦𝑘𝑘
𝑐𝑐 = �𝐴𝐴𝑘𝑘−1𝐺𝐺𝑦𝑦 𝐴𝐴𝑘𝑘−2𝐺𝐺𝑦𝑦 ⋯ 𝐴𝐴𝐺𝐺𝑦𝑦 𝐺𝐺𝑦𝑦� (49) 

and  885 

 Λ𝑦𝑦𝑘𝑘 ≜

⎣
⎢
⎢
⎡
Σy0 Σy−1 ⋯ Σy1−𝑘𝑘
Σy1 Σy0 ⋯ Σy2−𝑘𝑘
⋮ ⋮ ⋱ ⋮

Σy𝑘𝑘−1 Σy𝑘𝑘−2 ⋯ Σy0 ⎦
⎥
⎥
⎤
 (50) 

with the notation Σyd ≜ 𝑬𝑬�𝑦𝑦𝑘𝑘+𝑖𝑖𝑦𝑦𝑘𝑘𝑇𝑇� (Theorem 6 from ref.  33). This formulation reveals a key observation that 886 

enables identification of model parameters via a direct estimation of the latent state: the latent state in equation 887 

(47) (which is an equivalent formulation for equation (2)), is a linear function of the past 𝑦𝑦𝑘𝑘 . Moreover, from 888 

equation (2), it can be shown that for d ≥ 1 889 

   Σyd ≜ 𝑬𝑬�𝑦𝑦𝑘𝑘+𝑖𝑖𝑦𝑦𝑘𝑘𝑇𝑇� = 𝐶𝐶𝑦𝑦𝐴𝐴𝑖𝑖−1𝐺𝐺𝑦𝑦,   Σy−d = �𝐶𝐶𝑦𝑦𝐴𝐴𝑖𝑖−1𝐺𝐺𝑦𝑦�
𝑇𝑇   (51) 

indicating that Λ𝑦𝑦𝑘𝑘  in equation (50) and thus the linear prediction function Δ𝑦𝑦𝑘𝑘
𝑐𝑐 Λ𝑦𝑦𝑘𝑘

−1 in (48) only depend on Σ𝑦𝑦, 𝐴𝐴, 890 

𝐶𝐶𝑦𝑦 and 𝐺𝐺𝑦𝑦33,51. Thus, from equations (44) and (48) it is clear that the only parameters that are needed for optimal 891 

prediction of 𝑦𝑦𝑘𝑘  and 𝑧𝑧𝑘𝑘 using past 𝑦𝑦𝑘𝑘  are 𝐴𝐴, 𝐶𝐶𝑦𝑦, 𝐶𝐶𝑧𝑧, 𝐺𝐺𝑦𝑦 and Σ𝑦𝑦, which are all parameters that are uniquely 892 

identifiable within a similarity transform33,51 (Supplementary Note 2). As we confirm with numerical simulations, 893 

all these parameters can be accurately estimated using PSID (Supplementary Fig. 1). 894 

Supplementary Note 5: Derivations of PSID 895 

PSID, stage 1: Extracting behaviorally relevant latent states 896 

The central idea in PSID is that based on equations (44) and (48), the part of 𝑧𝑧𝑘𝑘 that is predictable from past 𝑦𝑦𝑘𝑘  897 

is a linear combination of the past 𝑦𝑦𝑘𝑘  and thus must lie in a subspace of the space spanned by the past 𝑦𝑦𝑘𝑘 . We use 898 

an orthogonal projection from future 𝑧𝑧𝑘𝑘 onto past 𝑦𝑦𝑘𝑘  to extract the part of 𝑧𝑧𝑘𝑘 that is predictable from past 𝑦𝑦𝑘𝑘 , 899 

which leads to the direct extraction of the behaviorally relevant latent states from the neural and behavior data 𝑦𝑦𝑘𝑘  900 

and 𝑧𝑧𝑘𝑘, even before the model parameters are known. Given the extracted latent states, the model parameters can 901 

then be estimated using least squares based on equation (4).  902 
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In the first stage of PSID, the part of 𝑧𝑧𝑘𝑘 that is predictable from past 𝑦𝑦𝑘𝑘  is extracted from the training data by 903 

projecting the future 𝑧𝑧𝑘𝑘 values onto their corresponding past 𝑦𝑦𝑘𝑘  values. To find the projection, for each time 𝑘𝑘, we 904 

consider the corresponding ‘past’ and ‘future’ to be the previous 𝑖𝑖 samples and the next 𝑖𝑖 − 1 samples respectively, 905 

with 𝑖𝑖 being a user specified parameter termed the projection horizon. For each sample 𝑦𝑦𝑘𝑘  with 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑁𝑁 − 𝑖𝑖, the 906 

previous (past) 𝑖𝑖 samples (from 𝑦𝑦𝑘𝑘−𝑖𝑖 to 𝑦𝑦𝑘𝑘−1) are all stacked together as the (𝑘𝑘 − 𝑖𝑖 + 1)th column of one large 907 

matrix 𝑌𝑌𝑝𝑝 ∈ ℝ𝑖𝑖𝑛𝑛𝑦𝑦×𝑗𝑗 (with 𝑗𝑗 = 𝑁𝑁 − 2𝑖𝑖 + 1); correspondingly, for each sample 𝑦𝑦𝑘𝑘  with 𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝑁𝑁 − 𝑖𝑖, that sample 908 

together with the next (future) 𝑖𝑖 − 1 samples (from 𝑦𝑦𝑘𝑘 , to 𝑦𝑦𝑘𝑘+𝑖𝑖−1) are all stacked together as the (𝑘𝑘 − 𝑖𝑖 + 1)th 909 

column of one large matrix 𝑌𝑌𝑓𝑓 ∈ ℝ𝑖𝑖𝑛𝑛𝑦𝑦×𝑗𝑗 (equation (5)). Analogously, we form matrices 𝑍𝑍𝑝𝑝 ∈ ℝ𝑖𝑖𝑛𝑛𝑧𝑧×𝑗𝑗 and 𝑍𝑍𝑓𝑓 ∈910 

ℝ𝑖𝑖𝑛𝑛𝑧𝑧×𝑗𝑗 from 𝑧𝑧𝑘𝑘 (equation (6)). Thus, 𝑍𝑍𝑓𝑓  and 𝑌𝑌𝑝𝑝 have the same number of columns with each column of 𝑍𝑍𝑓𝑓  911 

containing some consecutive samples of behavior while the corresponding column in 𝑌𝑌𝑝𝑝 contains the previous 𝑖𝑖 912 

samples from neural activity. The goal is to find the part of 𝑍𝑍𝑓𝑓  that is linearly predictable from corresponding 913 

columns of 𝑌𝑌𝑝𝑝 (i.e. the behavior in each column of 𝑍𝑍𝑓𝑓 from its past neural activity). The linear least squares 914 

solution for this prediction problem has the closed form solution given in equation (7)33,51, which is in the form of 915 

a projection from future behavior onto past neural activity. We show below that this projection can be 916 

decomposed into the multiplication of an observability matrix for behavior and a running estimate of the Kalman 917 

estimated latent states, which will then enable the estimation of model parameters using the estimated latent 918 

states. 919 

First, note that the least squares solution of equation (7) can also be written as 920 

 �̂�𝑍𝑓𝑓 = 𝑍𝑍𝑓𝑓𝑌𝑌𝑝𝑝𝑇𝑇�𝑌𝑌𝑝𝑝𝑌𝑌𝑝𝑝𝑇𝑇�
−1𝑌𝑌𝑝𝑝 = Σ𝑧𝑧𝑓𝑓𝑦𝑦𝑝𝑝Σ𝑦𝑦𝑝𝑝𝑦𝑦𝑝𝑝

−1 𝑌𝑌𝑝𝑝 (52) 

where Σ𝑧𝑧𝑓𝑓𝑦𝑦𝑝𝑝 ≜
1
𝑗𝑗
𝑍𝑍𝑓𝑓𝑌𝑌𝑝𝑝𝑇𝑇 and Σ𝑦𝑦𝑝𝑝𝑦𝑦𝑝𝑝 ≜

1
𝑗𝑗
𝑌𝑌𝑝𝑝𝑌𝑌𝑝𝑝𝑇𝑇 are sample covariance matrices for the covariance of past neural 921 

activity with future behavior and past neural activity, respectively, computed using their observed time-samples 922 

from equations (5) and (6). Sample covariance estimates are asymptotically unbiased and thus for 𝑗𝑗 → ∞ they 923 

would converge to their true value in the model33,51. Consequently, for the model in equation (2), it can be shown 924 
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(by replacing samples covariances with exact covariances from the model) that for 𝑗𝑗 → ∞, Σ𝑦𝑦𝑝𝑝𝑦𝑦𝑝𝑝 converges to Λ𝑦𝑦𝑖𝑖 925 

defined per equation (50) and Σ𝑧𝑧𝑓𝑓𝑦𝑦𝑝𝑝 converges to  926 

 Λ𝑧𝑧𝑦𝑦𝑖𝑖 ≜

⎣
⎢
⎢
⎡
Σ𝑧𝑧𝑦𝑦𝑖𝑖 Σzy𝑖𝑖−1 ⋯ Σ𝑧𝑧𝑦𝑦1
Σ𝑧𝑧𝑦𝑦𝑖𝑖+1 Σ𝑧𝑧𝑦𝑦𝑖𝑖 ⋯ Σ𝑧𝑧𝑦𝑦2
⋮ ⋮ ⋱ ⋮

Σ𝑧𝑧𝑦𝑦2𝑖𝑖−1 Σ𝑧𝑧𝑦𝑦2𝑖𝑖−2 ⋯ Σ𝑧𝑧𝑦𝑦𝑖𝑖 ⎦
⎥
⎥
⎤
 (53) 

where we are using the notation Σ𝑧𝑧𝑦𝑦d ≜ 𝑬𝑬�𝑧𝑧𝑘𝑘+𝑖𝑖𝑦𝑦𝑘𝑘𝑇𝑇�. From equation (2) it can be shown that  927 

   Σ𝑧𝑧𝑦𝑦d ≜ 𝑬𝑬�𝑧𝑧𝑘𝑘+𝑖𝑖𝑦𝑦𝑘𝑘𝑇𝑇� = 𝐶𝐶𝑧𝑧𝐴𝐴𝑖𝑖−1𝐺𝐺𝑦𝑦,    Σ𝑧𝑧𝑦𝑦−d = �𝐶𝐶𝑧𝑧𝐴𝐴𝑖𝑖−1𝐺𝐺𝑦𝑦�
𝑇𝑇

   (54) 

which has a form similar to equation (51). Substituting into the definition of Λzy𝑖𝑖 from equation (53) gives 928 

 Λ𝑧𝑧𝑦𝑦𝑖𝑖 ≜

⎣
⎢
⎢
⎡
Σ𝑧𝑧𝑦𝑦𝑖𝑖 Σzy𝑖𝑖−1 ⋯ Σ𝑧𝑧𝑦𝑦1
Σ𝑧𝑧𝑦𝑦𝑖𝑖+1 Σ𝑧𝑧𝑦𝑦𝑖𝑖 ⋯ Σ𝑧𝑧𝑦𝑦2
⋮ ⋮ ⋱ ⋮

Σ𝑧𝑧𝑦𝑦2𝑖𝑖−1 Σ𝑧𝑧𝑦𝑦2𝑖𝑖−2 ⋯ Σ𝑧𝑧𝑦𝑦𝑖𝑖 ⎦
⎥
⎥
⎤

= �

𝐶𝐶𝑧𝑧
𝐶𝐶𝑧𝑧𝐴𝐴
⋮

𝐶𝐶𝑧𝑧𝐴𝐴𝑖𝑖−1
� �𝐴𝐴𝑖𝑖−1𝐺𝐺𝑦𝑦 𝐴𝐴𝑖𝑖−2𝐺𝐺𝑦𝑦 ⋯ 𝐴𝐴𝐺𝐺𝑦𝑦 𝐺𝐺𝑦𝑦� ≜ Γz𝑖𝑖Δ𝑦𝑦𝑖𝑖

𝑐𝑐  (55) 

where Γz𝑖𝑖 is termed the extended observability matrix for the pair (𝐴𝐴,𝐶𝐶𝑧𝑧) and Δ𝑦𝑦𝑖𝑖
𝑐𝑐  is termed the reversed extended 929 

controllability matrix for the pair �𝐴𝐴,𝐺𝐺𝑦𝑦�33. Moreover, based on equation (48), the Kalman filter prediction at time 930 

𝑘𝑘 using only the last 𝑖𝑖 observations (𝑦𝑦𝑘𝑘−𝑖𝑖 to 𝑦𝑦𝑘𝑘−1) can be written in terms of Δ𝑦𝑦𝑖𝑖
𝑐𝑐  (equation (55)) as  931 

 𝑥𝑥�𝑘𝑘|𝑘𝑘−1 = Δ𝑦𝑦𝑖𝑖
𝑐𝑐 Λ𝑦𝑦𝑖𝑖

−1 �
𝑦𝑦𝑘𝑘−𝑖𝑖
⋮

𝑦𝑦𝑘𝑘−1
�. (56) 

Thus, for 𝑗𝑗 → ∞, equation (52) can be written as  932 

 �̂�𝑍𝑓𝑓 = 𝑍𝑍𝑓𝑓𝑌𝑌𝑝𝑝𝑇𝑇�𝑌𝑌𝑝𝑝𝑌𝑌𝑝𝑝𝑇𝑇�
−1𝑌𝑌𝑝𝑝 = Σ𝑧𝑧𝑓𝑓𝑦𝑦𝑝𝑝Σ𝑦𝑦𝑝𝑝𝑦𝑦𝑝𝑝

−1 𝑌𝑌𝑝𝑝 = Λ𝑧𝑧𝑦𝑦𝑖𝑖Λ𝑦𝑦𝑖𝑖
−1𝑌𝑌𝑝𝑝 = 𝛤𝛤𝑧𝑧𝑖𝑖𝛥𝛥𝑦𝑦𝑖𝑖

𝑐𝑐 Λ𝑦𝑦𝑖𝑖
−1𝑌𝑌𝑝𝑝 = 𝛤𝛤𝑧𝑧𝑖𝑖𝑋𝑋�𝑖𝑖 (57) 

where columns of 𝑋𝑋�𝑖𝑖 are Kalman estimates obtained using the past 𝑖𝑖 observations of 𝑦𝑦𝑘𝑘  (from equation (56)). 933 

Before we use equation (57) to conclude the derivation of the first stage of PSID, it is useful for the derivation of 934 

the second stage to note that if we repeat the above steps for the projection of 𝑌𝑌𝑓𝑓 onto 𝑌𝑌𝑝𝑝, we will get  935 

 𝑌𝑌�𝑓𝑓 = 𝑌𝑌𝑓𝑓𝑌𝑌𝑝𝑝𝑇𝑇�𝑌𝑌𝑝𝑝𝑌𝑌𝑝𝑝𝑇𝑇�
−1𝑌𝑌𝑝𝑝 = Σ𝑦𝑦𝑓𝑓𝑦𝑦𝑝𝑝Σ𝑦𝑦𝑝𝑝𝑦𝑦𝑝𝑝

−1 𝑌𝑌𝑝𝑝 = Γ𝑦𝑦𝑖𝑖Δ𝑦𝑦𝑖𝑖
𝑐𝑐 Λ𝑦𝑦𝑖𝑖

−1𝑌𝑌𝑝𝑝 = Γ𝑦𝑦𝑖𝑖𝑋𝑋�𝑖𝑖  (58) 
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where Γyi is the extended observability matrix for the pair (𝐴𝐴,𝐶𝐶𝑦𝑦) and 𝑋𝑋�𝑖𝑖  are the exact same Kalman states as in 936 

equation (57).  937 

Equation (57) shows how �̂�𝑍𝑓𝑓, which is the projection of future behavior onto past neural activity and is directly 938 

computable from data, can be decomposed into the extended behavior observability matrix 𝛤𝛤𝑧𝑧𝑖𝑖 and the Kalman 939 

states 𝑋𝑋�𝑖𝑖. This decomposition allows us to estimate the latent states even before the model parameters are learned 940 

and paves the way for subsequent learning of the model parameters. The decomposition can be performed by 941 

taking singular value decomposition (SVD) from equation (57) (shown in equation (9)), which gives:  942 

 𝛤𝛤𝑧𝑧𝑖𝑖 = 𝑈𝑈𝑆𝑆
1
2,   𝑋𝑋�𝑖𝑖 = 𝑆𝑆

1
2𝑉𝑉𝑇𝑇 (59) 

Note that the above is only one of many valid decompositions since multiplying any non-singular matrix 𝑇𝑇 onto 943 

𝛤𝛤𝑧𝑧𝑖𝑖  from the right and its inverse 𝑇𝑇−1 onto 𝑋𝑋�𝑖𝑖 from the left amounts to a similarity transform and gives an 944 

equivalent model with a different basis33. Without loss of generality, we assume that the latent states are not trivial 945 

linear combinations of each other and thus 𝑋𝑋�𝑖𝑖 is full rank. Given that only 𝑛𝑛1 states drive behavior 946 

(Supplementary Note 3), 𝑋𝑋�𝑖𝑖 as well as 𝛤𝛤𝑧𝑧𝑖𝑖  will have rank of 𝑛𝑛1. Indeed, 𝑛𝑛1 was defined as the rank of the behavior 947 

observability matrix Γ𝑧𝑧 and for a sufficiently large horizon 𝑖𝑖 (i.e. 𝑖𝑖 ≥ 𝑛𝑛1 is sufficient but not necessary), the rank of 948 

the extended behavior observability matrix 𝛤𝛤𝑧𝑧𝑖𝑖  will also be 𝑛𝑛151. For 𝑗𝑗 → ∞, as shown earlier, equation (57) holds 949 

exactly and thus the row rank of �̂�𝑍𝑓𝑓 and the number of its non-zero singular values will be equal to the rank of 𝑋𝑋�𝑖𝑖  950 

and 𝛤𝛤𝑧𝑧𝑖𝑖 , which is 𝑛𝑛1 (Supplementary Note 3). For finite data (𝑗𝑗 < ∞), it is expected that an approximation of this 951 

relation will hold and thus one could find 𝑛𝑛1 via inspection of the singular values of �̂�𝑍𝑓𝑓. In Methods, we instead 952 

proposed a more general method of using cross validation to find both 𝑛𝑛1 and 𝑛𝑛𝑥𝑥, which doesn’t require an ad-953 

hoc determination of which singular values are notably larger than the others. Regardless of how 𝑛𝑛1 is determined, 954 

keeping the top 𝑛𝑛1 singular values from the SVD, we can extract 𝑋𝑋�𝑖𝑖
(1) as in equation (13). Note that in this stage, 955 

keeping of the top singular values ensures that the states that describe the behavior best (i.e. best approximate �̂�𝑍𝑓𝑓) 956 

are prioritized. 957 
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Having decomposed �̂�𝑍𝑓𝑓  into 𝛤𝛤𝑧𝑧𝑖𝑖 and 𝑋𝑋�𝑖𝑖
(1), determining the model parameters from these matrices is straight 958 

forward and there are multiple possible ways to accomplish this. We take an approach in the spirit of stochastic 959 

algorithm 3 from ref. 33 in SID, and use the state matrix 𝑋𝑋�𝑖𝑖
(1) to estimate the model parameters. This method has 960 

the advantage of guaranteeing that the estimated noise statistics are positive semi-definite, which is necessary for 961 

the model to be physically meaningful33. We first compute the subspace for the latent states at the next time step 962 

(having observed 𝑌𝑌𝑖𝑖  as defined in equation (5) in addition to 𝑌𝑌𝑝𝑝, i.e. having observed the past 𝑖𝑖 + 1 samples) by 963 

projecting 𝑍𝑍𝑓𝑓− onto 𝑌𝑌𝑝𝑝+ (equation (8)). Similar to equation (57), this projection can be decomposed as 964 

 �̂�𝑍𝑓𝑓− = 𝑍𝑍𝑓𝑓−𝑌𝑌𝑝𝑝+
𝑇𝑇�𝑌𝑌𝑝𝑝+𝑌𝑌𝑝𝑝+

𝑇𝑇�
−1
𝑌𝑌𝑝𝑝+ = 𝛤𝛤𝑧𝑧𝑖𝑖−1Δ𝑦𝑦𝑖𝑖+1

𝑐𝑐 Λ𝑦𝑦𝑖𝑖+1
−1 𝑌𝑌𝑝𝑝+ = 𝛤𝛤𝑧𝑧𝑖𝑖−1𝑋𝑋�𝑖𝑖+1 (60) 

where 𝛤𝛤𝑧𝑧𝑖𝑖−1, Δ𝑦𝑦𝑖𝑖+1
𝑐𝑐  and Λ𝑦𝑦𝑖𝑖+1  are defined similar to equations (55) and (50) and columns of 𝑋𝑋�𝑖𝑖+1 are Kalman 965 

estimates obtained using the past 𝑖𝑖 + 1 observations of 𝑦𝑦𝑘𝑘  (from equation (56)). From the definition of 966 

observability matrix, it is clear that 𝛤𝛤𝑧𝑧𝑖𝑖−1 can be computed by removing the last block row of 𝛤𝛤𝑧𝑧𝑖𝑖  (equation (12)). 967 

𝑋𝑋�𝑖𝑖+1 can then be computed (in the same basis as 𝑋𝑋�𝑖𝑖) by multiplying both sides of equation (60) with 𝛤𝛤𝑧𝑧𝑖𝑖−1
†  from the 968 

left (equation (13)). We then take columns of 𝑋𝑋�𝑖𝑖+1 and 𝑋𝑋�𝑖𝑖 as samples of the current state and the corresponding 969 

next state (i.e. 𝑥𝑥𝑘𝑘+1
(1)  and 𝑥𝑥𝑘𝑘

(1) from equation (4)) respectively, and based on equation (4), compute the least squares 970 

estimate for 𝐴𝐴11 that is given in equation (14). This concludes the extraction of behaviorally relevant latent states 971 

and the estimation of the segment of the state transition matrix 𝐴𝐴 that is associated with these states (i.e. 𝐴𝐴11). In 972 

the next stage of PSID, we extract the behaviorally irrelevant latent states (optional) and estimate the rest of the 𝐴𝐴 973 

matrix and all other model parameters using the extracted states to conclude the full derivation. 974 

PSID, stage 2: extracting behaviorally irrelevant latent states 975 

So far we have extracted the behaviorally relevant latent states as the key first step toward learning the model 976 

parameters. To find any remaining behaviorally irrelevant states, we need to find the variations in neural activity 977 

that are not explained by the behaviorally relevant latent states. We thus first remove any variations in 𝑌𝑌𝑓𝑓 (and 𝑌𝑌𝑓𝑓−) 978 

that lies in the subspace spanned by the extracted behaviorally relevant states 𝑋𝑋�𝑖𝑖
(1) (and 𝑋𝑋�𝑖𝑖+1

(1) ) (𝑖𝑖 is horizon as 979 
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defined previously), and then apply a procedure akin to the standard SID to the residual. The least squares 980 

solution for the best linear prediction of 𝑌𝑌𝑓𝑓 using 𝑋𝑋�𝑖𝑖
(1) is given by equation (15), and is termed 𝛤𝛤𝑦𝑦𝑖𝑖

(1). This solution 981 

can be thought of as the neural observability matrix associated with the behaviorally relevant states 𝑋𝑋�𝑖𝑖
(1) (equation 982 

(58)). Thus, similar to equation (60), the associated observability matrix for 𝑋𝑋�𝑖𝑖+1
(1)  can be computed by removing 983 

the last block row from the solution (equation (17)). We then subtract the best prediction of 𝑌𝑌𝑓𝑓 (𝑌𝑌𝑓𝑓−) using 𝑋𝑋�𝑖𝑖
(1) 984 

(𝑋𝑋�𝑖𝑖+1
(1) ) from it as shown in equation (16) (equation (18)), and call the result 𝑌𝑌𝑓𝑓′ (𝑌𝑌𝑓𝑓−

′). In other words, 𝑌𝑌𝑓𝑓′ (𝑌𝑌𝑓𝑓−
′) is 985 

the part of 𝑌𝑌𝑓𝑓 (𝑌𝑌𝑓𝑓−) that does not lie in the space spanned by 𝑋𝑋�𝑖𝑖
(1) (𝑋𝑋�𝑖𝑖+1

(1) ). Given that 𝑋𝑋�𝑖𝑖
(1) and thus 𝛤𝛤𝑦𝑦𝑖𝑖

(1)𝑋𝑋�𝑖𝑖
(1) (i.e. the 986 

linear prediction of 𝑌𝑌𝑓𝑓 using 𝑋𝑋�𝑖𝑖
(1)) are of rank 𝑛𝑛1 and that 𝑌𝑌�𝑓𝑓 (i.e. the projection of 𝑌𝑌𝑓𝑓 onto 𝑌𝑌𝑝𝑝) is of rank 𝑛𝑛𝑥𝑥 987 

(equation (58)), the projection of 𝑌𝑌𝑓𝑓′ = 𝑌𝑌𝑓𝑓 − 𝛤𝛤𝑦𝑦𝑖𝑖
(1)𝑋𝑋�𝑖𝑖

(1) (i.e. residual future neural activity) onto 𝑌𝑌𝑝𝑝 will be of rank 988 

𝑛𝑛2 = 𝑛𝑛𝑥𝑥 − 𝑛𝑛1. A similar procedure to what was applied to 𝑍𝑍𝑓𝑓  (and 𝑍𝑍𝑓𝑓−) to find 𝑋𝑋�𝑖𝑖
(1) (and 𝑋𝑋�𝑖𝑖+1

(1) ) can be applied to 989 

𝑌𝑌𝑓𝑓′ (and 𝑌𝑌𝑓𝑓−
′) to extract the 𝑛𝑛2 remaining states 𝑋𝑋�𝑖𝑖

(2) (and 𝑋𝑋�𝑖𝑖+1
(2) ) (steps 11-14 from Table 1). Of note is that in this 990 

stage, keeping the top singular values after SVD (equation (21)) ensures that the remaining states that describe the 991 

unexplained neural activity best (i.e. best approximate 𝑌𝑌�𝑓𝑓′) are prioritized. 992 

The above concludes the extraction of behaviorally irrelevant latent states. Concatenating the states extracted 993 

from both stages (i.e. 𝑋𝑋�𝑖𝑖
(1) and 𝑋𝑋�𝑖𝑖

(2) as well as 𝑋𝑋�𝑖𝑖+1
(1)  and 𝑋𝑋�𝑖𝑖+1

(2) ) together as in equation (26) concludes the extraction 994 

of all latent states, including behaviorally relevant and irrelevant ones. Given the fully extracted latent states, we 995 

then follow a similar approach as was taken before for 𝐴𝐴11 (equation (14)), to find the least squares estimate for 996 

𝐴𝐴12 and 𝐴𝐴22 (equation (27)), 𝐶𝐶𝑦𝑦 (equation (29)) and 𝐶𝐶𝑧𝑧 (equation (30)). Finally, the residuals from the least 997 

squares solutions to equations (14), (27) and (29) provide estimated values for 𝑤𝑤𝑘𝑘 and 𝑣𝑣𝑘𝑘 at each time step and 998 

thus we compute the sample covariance of these residuals to find the noise covariance parameters (equation (32)). 999 

This concludes the estimation of all model parameters. 1000 
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Finally, in addition to equation (30), another viable alternative for finding the parameter 𝐶𝐶𝑧𝑧 is to learn it using 1001 

linear regression, which is the procedure needed for the standard SID to relate its extracted latent state to behavior 1002 

and we use in this paper for both SID and PSID. Since 𝐶𝐶𝑧𝑧 is not involved in the Kalman filter recursions (first 2 1003 

rows of equation (44)), it does not have any effect on the estimation of latent states from 𝑦𝑦𝑘𝑘  and it only affects the 1004 

later prediction of 𝑧𝑧𝑘𝑘 from those latent states. Consequently, we can use the other identified parameters to apply 1005 

Kalman filter to the training 𝑦𝑦𝑘𝑘  and estimate the latent states 𝑥𝑥�𝑘𝑘+1|𝑘𝑘 (equation (44)). We can then use linear 1006 

regression to find the 𝐶𝐶𝑧𝑧 that minimizes the prediction of 𝑧𝑧𝑘𝑘 using 𝑥𝑥�𝑘𝑘+1|𝑘𝑘 as 1007 

 𝐶𝐶𝑧𝑧 = 𝑍𝑍𝑘𝑘𝑋𝑋�𝑘𝑘+1|𝑘𝑘
†  (61) 

where columns of 𝑍𝑍𝑘𝑘  contain 𝑧𝑧𝑘𝑘 for different time steps and columns of 𝑋𝑋�𝑘𝑘+1|𝑘𝑘 contain the corresponding 𝑥𝑥�𝑘𝑘+1|𝑘𝑘 1008 

estimates for those time steps. The advantage of using this alternative estimation of 𝐶𝐶𝑧𝑧 is that 𝑋𝑋�𝑘𝑘+1|𝑘𝑘 (used in 1009 

equation (61)) are more accurate estimates of the latent states obtained using all past observations whereas 𝑋𝑋�𝑖𝑖  1010 

(used in equation (30)) are less accurate estimates obtained using only the past 𝑖𝑖 observations.  1011 

Supplementary note 6: Standard SID as a special case of PSID and the asymptotic characteristics of 1012 

PSID 1013 

As a review of the standard SID, we refer the reader to chapter 8 from ref. 51 and chapter 3 from ref. 33. For 1014 

𝑛𝑛1 = 0, PSID (Table 1) reduces to the standard SID (specifically to stochastic algorithm 3 from ref. 33). This is 1015 

because if 𝑛𝑛1 = 0, no behaviorally relevant states (𝑋𝑋�𝑖𝑖
(1)) will be extracted leaving all variation of 𝑌𝑌𝑓𝑓 to be identified 1016 

in stage 2 of PSID, which is similar to using standard SID. Thus, the extracted 𝑋𝑋�𝑖𝑖
(2) in this case will be the same as 1017 

the 𝑋𝑋�𝑖𝑖  that is obtained from applying SID on 𝑦𝑦𝑘𝑘 . So to compare PSID with SID, we simply use PSID with 𝑛𝑛1 = 0.  1018 

As a generalization of the abovementioned version of SID (i.e. stochastic algorithm 3 from ref. 33), PSID has 1019 

similar asymptotic characteristics. In some other variations of SID (for example in stochastic algorithm 2 from ref. 1020 

33 and in Algorithm A in section 8.7 from  ref. 51), instead of applying SVD to 𝑌𝑌�𝑓𝑓, SVD is applied to the empirical 1021 

cross-covariance Σ𝑦𝑦𝑓𝑓𝑦𝑦𝑝𝑝 to decompose it into Γ𝑦𝑦𝑖𝑖  and 𝛥𝛥𝑦𝑦𝑖𝑖
𝑐𝑐  (equation (58)), giving an estimation of these matrices 1022 
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which for 𝑗𝑗 → ∞ is unbiased33. From this decomposition, model parameters 𝐴𝐴, 𝐶𝐶𝑦𝑦, and 𝐺𝐺𝑦𝑦 can then be extracted-----1023 

𝐶𝐶𝑦𝑦 as the first block of Γ𝑦𝑦𝑖𝑖, 𝐺𝐺𝑦𝑦 as the last block of 𝛥𝛥𝑦𝑦𝑖𝑖
𝑐𝑐 , and 𝐴𝐴 with a least squares solution within blocks of Γ𝑦𝑦𝑖𝑖  (for 1024 

details see the SID variants mentioned in the previous sentence). However, this approach cannot guarantee that 1025 

for finite data (𝑗𝑗 < ∞) the identified 𝐴𝐴, 𝐶𝐶𝑦𝑦, and 𝐺𝐺𝑦𝑦 will be associated with a positive real covariance sequence (i.e. 1026 

Faurre’s stochastic realization may have no solution)33. In the alternative approach taken by PSID (and its special 1027 

case, stochastic algorithms 3 from ref. 33), 𝐴𝐴 and 𝐶𝐶𝑦𝑦 are computed as least squares solution of forming equation 1028 

(2) with 𝑋𝑋�𝑖𝑖 taken as the value of the latent state and 𝐺𝐺𝑦𝑦 is identified later based on the residuals of the least squares 1029 

solution. This approach cannot guarantee an asymptotically unbiased estimate of 𝐺𝐺𝑦𝑦 (unless 𝑖𝑖 → ∞ in which case 1030 

Kalman estimates in equation (56) will be exact), but it guarantees that even for finite data (𝑗𝑗 < ∞) the identified 1031 

parameters will be associated with a positive real covariance sequence33, which is essential for the model to be 1032 

physically meaningful33.   1033 

Supplementary Note 7: Generating random model parameters for simulations 1034 

For a model with given 𝑛𝑛𝑥𝑥 and 𝑛𝑛1, 𝐴𝐴 was generated by first randomly generating its eigenvalues and then 1035 

generating a block diagonal real matrix with the randomly selected eigenvalues (using MATLAB’s cdf2rdf 1036 

command). We drew the eigenvalues with uniform probability from across the complex unit circle and then 1037 

randomly selected 𝑛𝑛1 of the 𝑛𝑛𝑥𝑥 to be later used as behaviorally relevant eigenvalues. As a technical detail, in both 1038 

the original random generation of eigenvalues and in selecting 𝑛𝑛1 of them for behavior we made sure eigenvalues 1039 

are either real valued or are in complex-conjugate pairs (as needed for models with real observations). To do this, 1040 

we first drew �𝑛𝑛𝑥𝑥
2
� points with uniform probability from across the complex unit circle and then added the 1041 

complex conjugate of each to the set of eigenvalues. If 𝑛𝑛𝑥𝑥 was odd, we then drew an additional eigen value from 1042 

the unit circle and set its angle to 0 or 𝜋𝜋, whichever was closer. Finally, to randomly select 𝑛𝑛1 of the 𝑛𝑛𝑥𝑥 eigenvalues 1043 

to be used as behaviorally relevant, we repeatedly permuted the values until the first 𝑛𝑛1 eigenvalues also formed a 1044 

set of complex conjugate pairs or real values. 1045 
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Next, we generated 𝐶𝐶𝑦𝑦 ∈ ℝ𝑛𝑛𝑦𝑦×𝑛𝑛𝑥𝑥 by drawing each element from standard normal distribution. We generated 1046 

𝐶𝐶𝑧𝑧 ∈ ℝ𝑛𝑛𝑧𝑧×𝑛𝑛𝑥𝑥  by drawing values from the standard normal distribution for the elements associated with the 1047 

behaviorally relevant eigenvalues of 𝐴𝐴 (or equivalently for the dimensions of 𝑥𝑥𝑘𝑘 that drive behavior) and setting 1048 

the other elements to 0 (see equation (4)).  1049 

For noise statistics 𝑄𝑄, 𝑅𝑅, and 𝑆𝑆, we generated general random covariance matrices and applied random scaling 1050 

factors to them to get a wide range of relative variances for the state noise 𝑤𝑤𝑘𝑘 and observation noise 𝑣𝑣𝑘𝑘. To do this, 1051 

we first generated a random square matrix Ω of the size 𝑛𝑛𝑥𝑥 + 𝑛𝑛𝑦𝑦 by drawing elements from standard normal 1052 

distribution and computed 𝐿𝐿 = ΩΩ𝑇𝑇, which is guaranteed to be symmetric and positive semi-definite. We next 1053 

selected random scaling factors for the state noise 𝑤𝑤𝑘𝑘 and the observation noise 𝑣𝑣𝑘𝑘 by independently selecting two 1054 

real numbers 𝑎𝑎1,𝑎𝑎2 with uniform probability from the range (−1, +1). We then applied the following scaling to 1055 

matrix 𝐿𝐿 to get the noise statistics as 1056 

 � 𝑄𝑄 𝑆𝑆
𝑆𝑆𝑇𝑇 𝑅𝑅

� = �
10𝑎𝑎1𝐼𝐼𝑛𝑛𝑥𝑥
10𝑎𝑎2𝐼𝐼𝑛𝑛𝑦𝑦

� 𝐿𝐿�10𝑎𝑎1𝐼𝐼𝑛𝑛𝑥𝑥 10𝑎𝑎2𝐼𝐼𝑛𝑛𝑦𝑦� (62) 

where 𝐼𝐼𝑛𝑛 denotes the identity matrix of the size 𝑛𝑛. This is equivalent to scaling 𝑣𝑣𝑘𝑘 by 10𝑎𝑎1 and independently 1057 

scaling 𝑤𝑤𝑘𝑘 by 10𝑎𝑎2 and generates a wide range of state and observation noise statistics. 1058 

Finally, to build a model for generating the independent behavior residual dynamics 𝜖𝜖𝑘𝑘 (which can be a general 1059 

colored signal and is not assumed to be white), we generate another random dynamic linear SSM with 1060 

independently selected latent state dimension of 1 ≤ 𝑛𝑛𝑥𝑥′ ≤ 10 and parameters generated as explained above for 1061 

the main model. We will refer to this model as the behavior residual dynamics model. To diversify the ratio of 1062 

behavior dynamics that are shared with neural activity (equation (36)) to the residual behavior dynamics (i.e. 𝜖𝜖𝑘𝑘), 1063 

we draw a random number 𝛼𝛼3 in the range (0, +2). We then multiply the rows of the 𝐶𝐶𝑧𝑧 parameter in the 1064 

behavior residual dynamics model with different scalar values such that for each behavior dimension 𝑚𝑚, the 1065 
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shared-to-residual ratio, defined as the ratio of the std of the term 𝑧𝑧𝑘𝑘1
(𝑚𝑚) (equation (36)) to the std of the term 𝜖𝜖𝑘𝑘

(𝑚𝑚), 1066 

is equal to 10𝛼𝛼3. 1067 
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