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Figure 1: Workflow of PTWAS analysis
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Figure 2: Type I error control and power in hypothesis testing of causal relationships
by various methods in TWAS The left panel shows the QQ-plot of testing p-values as the
simulated data are specifically generated from the null scenario. All methods properly control
the type I errors. The right panel shows the receiver operating characteristic (ROC) curves by
different methods when the simulated data are from a mixture of null and alternative scenarios.
At any specified value of the false-positive rate, PTWAS shows the highest true-positive rate
among compared methods. All methods utilizing multiple independent eQTLs show higher

powers than SMR (which uses a single best eQTL of each gene as the corresponding instrument).
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Figure 3: Boxplots of point estimates of causal effects by various methods in sim-
ulations The true causal effect is set at 1.00 (dotted horizontal line) for all simulations. A
total of 800 genes that pass the initial PTWAS scan (with p-value cutoff 0.05) are examined
by each method. SMR utilizes the standard two-stage least squares algorithm based on the top
eQTL SNP for each gene. For TWAS-Fusion and PrediXcan, the point estimates are obtained by
regressing the phenotype data on the corresponding predicted gene expression levels. Note that
effect size estimation is not the designed usage of TWAS-Fusion and PrediXcan. Our intention
is to illustrate that methods designed for testing may not be suitable for estimation. Among
all methods compared, PTWAS and SMR yield seemingly unbiased estimates. The results by

PTWAS are, overall, more accurate.
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Figure 4: Impact of strength of eQTLs on causal effect estimation in PTWAS 800
genes that pass the initial PTWAS scan (p-value < 0.05) are used in this experiment. Panel A
illustrates the relationship between the accuracy of the estimation (measured by rooted mean
square error, RMSE) and the strength of the eQTL instruments (measured by signal-level PIP).
The filled points represent all the genes satisfying the SPIP threshold. The stars represent the
subset of genes where multiple independent qualifying eQTL instruments are available. The dot-
ted line represents the RMSE by SMR. Overall,3 gstimation accuracy increases when the strength

of eQTL instruments improves and utilizing multiple instruments increases the accuracy of the

estimation. Panel B shows the average heterogeneity of causal effects estimated from multiple
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Figure 5: Discovery in PTWAS scan by traits The results are from the analysis of GTEx
eQTL data in 49 tissues and 114 complex traits using the PTWAS scan. Each point represents
the number of rejected genes at the 5% FDR level for the corresponding trait. The distribution
is highly skewed: a large proportion of tested genes are rejected in polygenic traits like heights,

whereas few rejections are reported for > 20 traits.

39


https://doi.org/10.1101/808295

bioRxiv preprint doi: https://doi.org/10.1101/808295; this version posted October 17, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

[2]

5 8-

Q

<

'_

zZ

<

o o

§ =

)

=

g s

& o e

2 w7 4. o, b

K Al

3 .

l_

o

\.é -

[=))

_IO o g [
T T T T T |
0 50 100 150 200 250

-10g1o(PTWAS p-value) from UKB heights

Figure 6: Comparison of PTWAS p-values for the height data from GIANT consor-
tium and UK Biobank Each data point represents a single gene whose PTWAS p-values are
computed from GIANT and UK Biobank data, respectively. There is a strong linear trend for
highly significant p-values (overall spearman’s correlation = 0.50, p < 2.2 x 10716). However,

UK Biobank data, which have a larger sample size, show consistently higher significance.
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Figure 7: Histograms of I? distribution for validating exclusion restriction from PT-
WAS scan signals Panel A shows the histogram of the I? statistics computed from 2.09 million
trait-gene-tissue combinations, where the gene has at least two independent eQTLs with individ-
ual signal-level PIP > 0.50. For each trait-gene-tissue pair, the I? index measures the consistency
of the causal effects estimated from each independent eQTL. Panel B and C show the Histograms
with at least 3 and 5 eligible independent eQTLs, respectively. The overall patterns of the dis-
tributions are the same in all panels, where majority of the test cases show strong consistency
among independent instruments. However, the ability of identifying violations of ER improves

with the increasing availability of independent eQTL instruments.
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Figure 8: Examples of identified violations of exclusion restrictions All three examples
are identified from the PTWAS scan procedure, the corresponding tissues represent the tissues
where the minimum p-values are achieved. Each SNP-level estimate and its corresponding 95%
confidence interval are plotted. Data points with the same color represent the SNPs within the
same signal cluster and in LD. The size of the point reflects the relative magnitude of SNP-level
PIP. In all examples, within cluster estimates are highly consistent; estimates by different clusters
are qualitatively different, which is a clear indication of violation of the exclusion restriction. The
I? statistics computed for the three cases are 0.94 (GUCY1A1), 0.96 (CTB-171A8.1), and 0.98
(HLA-DQ@B?2), respectively.
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Figure 9: Examples of estimated gene-to-trait effects in different tissues The selected

gene-trait pairs have well-established causal relationships in literature. Here we observe different

tissue-consistent and tissue-specific patterns in each gene-trait pair.
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Figure 10: Comparison of -logl0 p-values from PTWAS scan and gene-level colocal-
ization probabilities in GTEx whole blood for the cardiovascular disease Each data
point corresponds a unique candidate gene. The red line is the fitted LOWESS curve, which

indicates a strong positive linear correlation between the two quantities for significant PTWAS

signals.
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Supplementary Figures

Figure S1: Diagram representing instrumental variable analysis Variables G, X, Y, and U
represent eQTLs, gene expressions, complex traits and unobserved confounding factors, respec-

tively. The arrow from X to Y represents the causal relationship of interest.
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Figure S2: Distribution of Gini coefficients summarizing the sparsity of the composite
IVs in different TWAS scan methods For each simulated gene, we compute the Gini coeffi-
cient based on the assigned weights of all the cis-SNPs for computing the composite IV /predicted
gene expression levels. A low (i.e.,— 0) Gini coefficient indicates many SNPs play important
roles; whereas a high value (i.e.,— 1) suggests only a few SNPs make contributions. Among
the methods compared, PrediXcan (based on ElasticNet algorithm) utilizes the most sparse set
of SNPs for predicting gene expressions, and TWAS-Fusion utilizes many more SNPs (most of
which are likely weak IVs). PTWAS is overall similar to PrediXcan but with a notable long left
tail. This is mainly because the weight assignment in PTWAS takes accounts of LD: strong eQTL

SNPs that are highly correlated (hence not identifiable) are assigned to comparable weights.
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Figure S3: Allelic heterogeneity in implicated PTWAS signal genes The histogram
shows the distribution of the posterior expected number of cis-eQTLs of each unique gene-tissue
pair that are implicated in the PTWAS scan and suitable for effect size estimation from the
analysis of GTEx data and 114 complex traits. The plot indicates that a substantial proportion

of gene-tissue pairs have more than 1 strong eQTLs.

47


https://doi.org/10.1101/808295

bioRxiv preprint doi: https://doi.org/10.1101/808295; this version posted October 17, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

8
-
S ®
=}
o
g -
T
o
o
S -
-
o -4 Tl T T T T 1T T T 1 T T T T 1T T T T T T Tt
[ I I I I 1
0.0 0.2 0.4 0.6 0.8 1.0
cross-tissue I?
g o
g 8
2 o
ga
LLO
S
S
n
o e e e i e e B e e B S e e e e e e S
[ I I I I 1
0.0 0.2 0.4 0.6 0.8 1.0

cross-tissue 12 (number of tissues >= 20)

Figure S4: Heterogeneity of gene-to-trait effects across tissues The histograms show the
distributions of I? statistics which quantify the heterogeneity of estimated gene-to-trait effects
across different GTEx tissues. The top panel shows all eligible gene-trait paris. The bottom
panel shows the gene-trait pairs that are measured in > 20 different GTEx tissues. The overall

patterns remain the same.
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Figure S5: Comparison of distributions of colocalization probabilities between all
genes and PTWAS significant genes The red line represents the cumulative distribution
function (cdf) of colocalization probabilities summarized from all 32,363 candidate genes in all 49
tissues across 114 traits. The green line represents the cdf from the corresponding PTWAS signif-
icant genes. It is clear that PTWAS signal genes are enriched with modest to high colocalization

probabilities.

Supplementary Tables

[See attached excel file]

Table S1: Descriptions of 114 complex trait datasets used in the PTWAS analysis.
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[See attached text file]

Table S2: Complete list of significant gene-trait pairs at 5% FDR level identified in

the multi-tissue PTWAS scan of 114 complex traits.

[See attached compressed text file]

Table S3: Complete list of estimation and model validation results for all gene-trait-

tissue combinations.

[See attached text file]

Table S4: Complete cross-tissue heterogeneity results for all gene-trait pairs.
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