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Abstract

Transcriptome-wide association studies (TWAS), an integrative framework using expres-

sion quantitative trait loci (eQTLs) to construct proxies for gene expression, have emerged

as a promising method to investigate the biological mechanisms underlying associations

between genotypes and complex traits. However, challenges remain in interpreting TWAS
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results, especially regarding their causality implications. In this paper, we describe a new

computational framework, probabilistic TWAS (PTWAS), to detect associations and inves-

tigate causal relationships between gene expression and complex traits. We use established

concepts and principles from instrumental variables (IV) analysis to delineate and address

the unique challenges that arise in TWAS. PTWAS utilizes probabilistic eQTL annotations

derived from multi-variant Bayesian fine-mapping analysis conferring higher power to detect

TWAS associations than existing methods. Additionally, PTWAS provides novel function-

alities to evaluate the causal assumptions and estimate tissue- or cell-type specific causal

effects of gene expression on complex traits. These features make PTWAS uniquely suited

for in-depth investigations of the biological mechanisms that contribute to complex trait

variation. Using eQTL data across 49 tissues from GTEx v8, we apply PTWAS to analyze

114 complex traits using GWAS summary statistics from several large-scale projects, in-

cluding the UK Biobank. Our analysis reveals an abundance of genes with strong evidence

of eQTL-mediated causal effects on complex traits and highlights the heterogeneity and

tissue-relevance of these effects across complex traits. We distribute software and eQTL

annotations to enable users performing rigorous TWAS analysis by leveraging the full po-

tentials of the latest GTEx multi-tissue eQTL data.

1 Introduction

Over the past two decades, genome-wide association studies (GWAS) have identified an abun-

dance of genetic loci associated with complex traits and diseases [1]. However, most GWAS loci

are located in the non-coding regions of the genome, and our understanding of the mechanisms

and causal relationships underlying these associations is still lacking. Direct experimental in-

vestigation of the causal path from genotype to complex trait (e.g., via randomized controlled

experiments on human subjects using CRISPR) is limited by technical difficulties and ethical

constraints. Thus, statistical methods for causal inference from observational data become a log-
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ical alternative, especically with the increasing availability of large-scale GWAS and molecular

QTL data. Instrumental variable (IV) analysis is an established inference framework to investi-

gate causal relationships from observational data in the presence of possible confounding, which

has been widely applied in econometrics and epidemiology. In observational epidemiology, the

study of health consequences of modifiable environmental factors by utilizing genetic variants as

instrumental variables is commonly known as Mendelian randomization (MR), which has shown

great promise when active intervention is implausible [2, 3].

IV analysis naturally integrates genetic, molecular phenotype, and complex trait data and inves-

tigates the causal links from molecular phenotypes (e.g., gene expressions, DNA methylations)

leading to complex diseases. Most popular approaches for transcriptome-wide association anal-

ysis (TWAS), e.g., PrediXcan [4], TWAS-Fusion [5], and SMR [6], all can be viewed as some

forms of IV analysis with an emphasis on testing causal relationships from gene expressions to

complex traits. IV analysis, in comparison to other competing causal inference frameworks, is

particularly suitable for TWAS because of its explicit consideration of confounding factors in the

model formulation. However, we note that existing TWAS methods have at least two notable

weaknesses when considering under the framework of IV analysis. First, validating the causal

implications from the positive association findings from TWAS is mostly unaddressed. Second,

efficient estimation of causal effects remains an open problem. The latter issue is particularly

crucial for investigating causal molecular mechanisms in different cellular environments. In this

paper, we show that the solutions to these problems can be directly derived from the established

principles of IV analysis.

Compared to the traditional applications of IV/MR analysis, TWAS also presents some unique

challenges. Most notably, it deals with tens of thousands of candidate genes for each given

complex trait of interest, which warrants a powerful and efficient testing procedure. Such pro-

cedures are under-developed in the traditional IV analysis literature. Additionally, it is now

well-known that a single gene can be regulated by multiple independent genetic variants, which

3

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/808295doi: bioRxiv preprint 

https://doi.org/10.1101/808295


is known as allelic heterogeneity (AH) [7]. However, the available molecular QTLs for any given

gene are quite limited compared to the conventional MR analysis. This feature prevents direct

applications of some established analytic approaches like Egger regression [8], which requires a

relatively large number of independent eQTLs. Finally, both molecular QTLs and GWAS hits

are inferred from association analysis and embedded with uncertainty at single variant levels

due to linkage disequilibrium (LD). Simultaneous accounting for allelic heterogeneity and LD in

TWAS will likely significantly improve the precision and power of the analysis. This issue also

remains unsolved in a computationally efficient way.

In this paper, we propose a new analytic framework named as probabilistic analysis of transcriptome-

wide association study, or PTWAS, to address three interrelated areas in TWAS analysis:

1. Testing of the causal relationship from genes to complex traits

2. Validating causal implications through model diagnosis

3. Estimating causal effects from genes to complex traits (i.e., gene-to-trait effects)

PTWAS is built upon the causal inference framework of IV analysis and is designed specifically

to deal with the challenges arising from the TWAS analysis. PTWAS utilizes the probabilistic

annotations of eQTLs derived from the state-of-the-art multi-SNP analysis method for fine-

mapping of cis-eQTLs. This feature provides excellent convenience and flexibility to account for

uncertainty in eQTLs for both testing and estimation purposes. Taking advantage of wide-spread

allelic heterogeneity, PTWAS also provides a principled way to examine the causal implications

from the PTWAS analysis. Through theoretical derivation and numerical simulation studies, we

illustrate the advantages of PTWAS over the existing methods. We apply PTWAS to analyze the

eQTL data from the GTEx project (version 8) [9] and 114 complex traits from the UK Biobank

[10] and other large-scale consortia. Our results demonstrate the unique benefits of utilizing

estimated gene-to-trait effects (rather than testing p-values) in investigating and interpreting
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causal molecular mechanisms of complex traits. The software package and utilities implementing

the proposed computational approaches and relevant resources are available in https://github.

com/xqwen/ptwas.

2 Results

2.1 Method overview

The causal inference procedure implemented in PTWAS involves three sequential stages that

cover hypothesis testing, causal assumption validation, and effect size estimation. PTWAS works

with summary-level statistics from GWAS and probabilistic annotations of eQTLs derived from

the multi-SNP fine-mapping analysis. The PTWAS procedure starts with a multiple hypothesis

testing of causal relations between candidate genes and the complex trait of interest, which

yields an outcome that is similar to the results of PrediXcan and TWAS-Fusion. For all the

genes rejected in the first stage, PTWAS further performs a model diagnosis procedure to detect

potential violations of the critical causal assumptions in the IV analysis. Finally, an estimate of

the causal effect on the complex trait of interest is derived for each qualified gene that passes

previous screening steps. Figure 1 summarizes the workflow of the complete PTWAS procedure.

A key feature of PTWAS is that we adopt a well-established statistical principle in the IV anal-

ysis to construct and utilize strong instruments for inference and model diagnosis. Specifically,

we use the probabilistic quantifications of cis-eQTLs derived from the fine-mapping analysis to

characterize the strength of eQTLs while accounting for allelic heterogeneity and LD [11, 12].

For each gene, the adopted probabilistic annotations provide comprehensive information at three

different levels: i) the posterior probability for each plausible association model (i.e., the combi-

nation of genetic variants), which we refer to as the posterior model probability; ii) the posterior

inclusion probability (PIP) for each SNP (or, SNP-level PIP); and iii) the posterior probability
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for an independent signal cluster, which we refer to as signal-level PIP, or SPIP. A signal cluster

consists of a set of SNPs in LD that are deemed to represent the same underlying causal eQTL

(but not completely identifiable based on the association data). The Bayesian credible set now

commonly used in fine-mapping analyses of genetic associations [13] is special cases of signal

clusters. (i.e., a (100 × p)% Bayesian credible set can be constructed from a signal cluster by

selecting the minimum subset of representing SNPs with cumulative PIPs ≥ p.)

Multiple hypothesis testing For hypothesis testing, we construct a composite instrumental

variable [14, 15] as the test statistic by combining the strength of multiple independent eQTLs

from a given gene. Specifically, we first derive a standard linear least-square prediction function of

expression phenotype for each plausible genetic association model identified from the eQTL fine-

mapping analysis. We then compute the composite IV as the weighted sum of the resulting least-

square predictions, where the individual weight is computed from the corresponding posterior

model probability. The composite IV remains a linear function of genotypes and is subsequently

used to test correlation with the complex trait of interest. Henceforward, we refer to the multiple

testing procedure between constructed composite IVs and the complex trait as the PTWAS scan.

Same to the available TWAS methods like PrediXcan and TWAS-Fusion, the proposed hypothesis

testing procedure aims to qualitatively examine the presence/absence of the causal relationships

from candidate genes to the complex trait of interest. The difference between the methods lies

in the way that the composite IV is constructed. It is crucial to note that the implication from

these scan procedures is limited: it provides interpretations on neither the direction nor the

magnitude of the underlying gene-to-trait effects if it asserts causal relationships exist [16].

Validating causal assumption For the genes that pass the initial PTWAS scan, we consider

validating the causal assumptions of the IV analysis and further estimating the causal effects

from implicated genes to the complex trait. The intuition for the proposed procedure is that
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each independent eQTL should provide an independent estimate of the same gene-to-trait effect

under the assumptions of IV analysis. Consequently, the estimates of the effect from multiple

independent eQTLs are expected to be highly consistent if the causal assumption of exclusion

restriction (ER) holds. Conversely, a significant degree of inconsistency/heterogeneity observed

from the estimates indicates potentially severe violations of the causal assumption. To implement

this idea, we first construct an eQTL-level estimate of the gene-to-trait effect for each strong

eQTL signal cluster (by thresholding on the signal-level PIPs). The emphasis on exclusive usage

of strong eQTLs is because weak eQTLs are considered to be weak instruments, which provides

unreliable and severely biased causal effect estimates. Within each selected signal cluster, we first

compute a SNP-level estimate, known as the Ward ratio estimate, for each member SNP. We then

combine the SNP-level estimates from the member SNPs weighted by their corresponding PIPs.

This novel signal cluster-level estimator is derived from the principle of Bayesian model averaging

(BMA), and fully accounts for the uncertainty by LD. Across multiple strong eQTL signals, we

compute an I2 statistic [17] to quantify the heterogeneity of those independent estimates. The

possible values of an I2 statistic range from 0 to 1, with I2 = 1, indicating the highest level of

inconsistency.

Causal effect estimation For the genes with small I2 value, we further aggregate the signal-

level estimates by applying a fixed-effect meta-analysis model, which results in a final gene-level

estimate of the causal effect by PTWAS. This estimator of gene-to-trait effects is similar to

the IVW estimator in the IV analysis literature [15], which is known to be robust and efficient

[18]. However, there is an important distinction: our aggregation of the estimates of individual

instruments occurs at the levels of independent eQTL clusters rather than individual SNPs.

Furthermore, we only admit strong eQTLs (judging by their signal-level PIPs) to the estimation

procedure. These new features likely make the proposed estimator even more efficient.

PTWAS conceptually connects to all the existing TWAS methods, especially in the stage of
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scanning candidate genes. However, it also presents some notable distinctions. Both PTWAS

and SMR are derived from the IV analysis. However, PTWAS explicitly takes advantage of the

wide-spread allelic heterogeneity by constructing the composite IV and testing causal effects from

multiple independent eQTLs. Both TWAS-Fusion and PrediXcan focus on predicting/imputing

gene expression levels from eQTL information. The composite IVs constructed by PTWAS can

also be interpreted as a natural ensemble predictions of gene expressions. Additionally, the

separation of the hypothesis testing and the effect size estimation procedures is also a unique

feature in PTWAS. Particularly, the emphasis on estimation accuracy prompts a slightly different

statistical strategy from hypothesis testing. Our proposed estimation and model validation

procedures are derived from the well-established principles of the IV analysis and should provide

unbiased estimates and calibrated error quantifications while taking advantage of widespread

allelic heterogeneity and accounting for LD. Most importantly, these properties enable valid

and meaningful comparisons of gene-to-trait effects in different cellular environments within the

context of TWAS.

2.2 Improved power for testing causal genes

We perform simulation studies to validate the proposed PTWAS method and compare its per-

formance to the existing approaches. Our simulated data sets attempt to match the features of

observed eQTL and GWAS data in practice, e.g., the distribution of z-statistics from single-SNP

analysis, by including both strong sparse association signals and weak polygenic background

effects.

We compare the PTWAS scan procedure to the existing methods, including PrediXcan, TWAS-

Fusion, and SMR. We find that all examined approaches effectively control the type I errors in

the scan procedure of testing causal genes (Figure 2). However, approaches explicitly accounting

for allelic heterogeneity and utilizing multiple independent eQTLs (i.e., PTWAS, TWAS-Fusion,
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and PrediXcan) show much-improved power over SMR (which utilizes only a single instrument).

Among the three multi-SNP TWAS methods, PTAWS consistently exhibits the highest power

under our simulation settings, which is shown by the ROC curves in Figure 2.

Using the simulated data, we inspect the weight distribution over SNPs from the composite IVs

constructed by different approaches. Specifically, we measure the concentration/dispersion of the

(absolute) weights among SNPs using the Gini coefficient, which effectively measures the sparsity

of weights [19]). Particularly, a Gini coefficient→ 1 indicates a highly sparse weight distribution,

i.e., only a few SNPs play essential roles in the corresponding composite IVs; whereas a Gini coef-

ficient→ 0 indicates the weights are evenly distributed in all candidate SNPs. The distributions

of Gini coefficients computed from simulated datasets by PTWAS, PrediXcan, and PTWAS are

shown in Supplementary Figure S2. We find that weights constructed by TWAS-Fusion are most

dispersed and the weights by PrediXcan and PTWAS are mostly highly concentrated (with the

mean of the Gini coefficient across datasets nearing 1). Compared to PrediXcan, the distribu-

tion of the Gini coefficients from PTWAS is mostly concentrated but shows a notably extended

left tail representing dispersed weight allocation. Upon further inspection, we find those cases

correspond to the scenarios where the causal SNPs lie in high LD regions. From the fundamental

principle of the IV analysis, only strong instruments should be considered, which suggests an

overall sparse weighting scheme. On the other hand, SNPs in high LD are not distinguishable

and should receive similar weights. Among the methods tested, only the weighting scheme from

PTWAS satisfies both desired properties.

The observations from this set of simulations seem to confirm that our design principle of PT-

WAS for explicitly accounting for allelic heterogeneity and LD contributes to the improved scan

performance.
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2.3 Accurate estimation of causal effects

We further examine the estimation procedure by PTWAS and various TWAS methods using

simulations. In this particular experiment, we focus on estimating the effects of genes that

pass the initial PTWAS scan. It is important to note that our criteria to evaluate the estimation

procedures differ from the hypothesis testing, and has a distinct focus on the estimation accuracy

(e.g., measured by rooted mean square errors, or RMSE) on the gene-to-trait effects.

It might be intuitive to estimate the causal effect from a target gene to the complex trait of

interest by simply regressing the complex trait phenotype on the composite IV or genetically

predicted gene expression of the target gene. This approach, however, is not principled mainly

because it ignores substantial uncertainty associated with the imputed gene expression levels.

In practice, such ad-hoc approach shows both noticeable bias and large variance in estimation

(Figure 3).

We evaluate the proposed effect estimation procedure and compare its performance to SMR,

which implements a standard two-stage least square (2SLS) algorithm by utilizing the strongest

eQTL SNP (form single-SNP analysis) as the sole instrument. In our simulation studies, both

PTWAS and SMR yield seemingly unbiased estimates (Figure 3). However, the results from

PTWAS show higher accuracy. Even when a single (best) eQTL signal is utilized for estimation,

we find that PTWAS is slightly more accurate (RMSE = 0.39) than SMR (RMSE = 0.44). This

is likely due to the unique design of PTWAS that averages single-SNP estimates over a set of

highly linked SNPs.

In all cases, we find that the estimation accuracy is directly correlated with the strength of instru-

ments (i.e., eQTLs), which is quantified by the corresponding signal-level PIPs (Figure 4). By

employing stronger eQTLs into the PTWAS estimation procedure, the accuracy monotonically

increases. This observation directly verifies the estimation principle from the IV analysis. For

a given SPIP threshold, we find that the estimates by combining multiple independent eQTLs
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(whenever available) tend to be more accurate than those relying on a single eQTL signal clus-

ter. Furthermore, when the strength of the eQTLs is well controlled, we observe the causal

effect estimates by independent eQTLs become highly consistent under the true causal model as

illustrated by the average I2 in Figure 4. This particular observation validates our rationale for

the model diagnosis procedure in PTWAS: the I2 computed from multiple independent eQTLs

with modest strength (SPIP > 0.50) is expected to be less than 0.10.

Last, we consider the possibility of conducting the scan procedure using the estimated causal

effects as the SMR test. Specifically, we construct a z-statistic from the estimated causal effect

and the corresponding standard error. We find this approach has slightly better power (0.725

at FDR 5% level ) than the SMR test (0.713). However, both are markedly less powerful than

the TWAS-Fusion (0.781), PrediXcan (0.784), and the proposed PTWAS scan procedure (0.800)

at the same rejection threshold. We suspect this phenomenon is partially due to the difficulty

in estimating the SNP-level standard errors (used by both SMR and the proposed estimation

procedure). The estimated standard errors tend to be conservative in the lack of sufficiently large

samples. Therefore, we do not recommend to replace the proposed PTWAS scan procedure with

the SMR-like test.

In summary, we conclude that both principled effect estimation approaches, SMR and PTWAS,

produce unbiased estimates in causal effect estimation. PTWAS shows improved precision by

accounting for LD, the strength of the eQTL instruments, and the multiple independent eQTLs.

The simulations also provide us some practical guidelines on the threshold values for strong

instruments. Informed by the simulation results, we decide to admit eQTLs with signal-level

PIP > 0.50 for model validation and effect size estimation in our real data analysis.
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2.4 Multi-tissue PTWAS analysis of complex traits

We perform the PTWAS analysis on 114 complex traits from the UK Biobank (45 traits) and

multiple large-scale consortia (69 traits), including CARDiOGRAM, PGC, and GIANT, by the

GTEx GWAS working group [20]. A complete summary of the complex trait datasets are pro-

vided in Supplementary Table S1. We analyze the multi-tissue eQTL data from release 8 of

the GTEx project [9] using DAP [11, 12] to generate the required probabilistic annotations of

cis-eQTLs across 49 tissues. A total of 32,363 candidate genes are selected for the PTWAS anal-

ysis. For the analyses that we present in this paper, we utilize only the GWAS summary-level

association statistics derived from the single-SNP analysis. Additional summary-level statistics

for unreported GWAS SNPs in each trait are imputed to match the cis-SNPs in the GTEx panel.

2.4.1 Scan trait-associated genes across multiple tissues

For each complex trait and each candidate gene, we first examine the global null hypothesis

asserting that the target gene is not associated with the trait in any of the tissues. To this

end, we construct the proposed PTWAS composite IVs for the target gene in all tissues and test

their associations with the complex trait of interest. The resulting p-values from the single-tissue

testing are subsequently combined using the ACAT method [21], which produces valid p-values

for testing the global null hypotheses.

Across 114 traits, we reject the global null hypothesis for 115,327 gene-trait pairs at the false

discovery rate (FDR) 5% level (at a more stringent p-value 0.05 level after Bonferroni correc-

tion, 30,777 gene-trait pairs are rejected). The complete list of significant gene-trait pairs is

summarized in Supplementary Table S2 The genes rejected per trait have a notably skewed

distribution (Figure 5). For well-known polygenic traits (e.g., height, BMI) and physiological

traits (e.g., white blood cell count, lymphocyte count), a large number of genes are identified.

The PTWAS analysis of the standing height data of UK Biobank identifies 13,696 genes at
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5% FDR level, or 42% of total genes tested. On the other extreme, for 25 out of 114 traits,

less than 10 genes are rejected. As expected, we find the power of discoveries is strongly

correlated with the quality, sample size and power of the corresponding GWAS data as the

composite IVs constructed from the GTEx data remain invariant for a given tissue across all

traits. In the 45 traits from the UK biobank, we observe a strong correlation (ρ = 0.55, p-value

= 1.1× 10−4) between the TWAS discovery and the estimated heritability (data obtained from

https://nealelab.github.io/UKBB_ldsc/). Figure 6 shows a comparison of multi-tissue PT-

WAS scan p-values of height-associated genes from UK biobank data and GIANT consortium.

The strong linear trend indicates that both studies consistently give higher ranks of association

for the same set of genes. However, the evidence from the UK Biobank data, with a much larger

sample size, is often orders of magnitude stronger.

Additionally, we observe that PTWAS consistently identifies more candidate genes than the

existing approaches, which re-confirms our finding in the simulation study. In the joint analysis

of the height data from the GIANT consortium and the eQTL data from the GTEx whole

blood, we find that PTWAS and S-PrediXcan identify 2,065 and 1,385 genes at 5% FDR level,

respectively. (Both approaches utilize the algorithm implemented in S-PrediXcan to test the

gene-level association, the difference in discovery is solely driven by the difference in computing

the gene-level composite IVs/predicted gene expression levels).

2.4.2 Validation of causal model assumption

We identify 24,548 unique genes from the 115,327 significant gene-trait pairs discovered at the

cross-tissue scan stage. Within this set of genes, there are 401,889 gene-tissue pairs, corre-

sponding to 2,094,658 trait-tissue-gene combinations, containing at least one cis-eQTL signals

with SPIP ≥ 0.50, which we deem suitable for causal effect estimation. This set of gene-tissue

pairs also show widespread allelic heterogeneity (Supplementary Figure S3). We further iden-
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tify 124,858 gene-tissue pairs, corresponding to 664,868 trait-tissue-gene combinations that are

suitable (i.e., each identified gene in the corresponding tissue has at least two independent el-

igible eQTLs) for the proposed causal model validation analysis. The complete results for all

trait-tissue-gene combinations are summarized in Supplementary Table S3.

Within these testable instances, we observe that the majority show high levels of consistency

among independent eQTL instruments (Figure 7). Specifically, we find 54.5% (or 362,315 trait-

tissue-gene combinations) of the tested cases have I2 ≤ 0.05, while there are only 31.7% (or

211,291) of the cases with I2 values exceeding 0.5. As expected, we find that the ability to detect

high degrees of heterogeneity in estimated causal effects improves with the increased availability

of independent eQTL instruments. Nevertheless, the main feature of the I2 distribution remains

the same for different numbers of available IVs (Figure 7).

We show some examples of PTWAS scan signals that seemingly violate the exclusion restriction

in Figure 8: GUCY1A1 to cardiovascular disease (CAD) in artery tibial (I2 = 0.94), CTB-

171A8.1 to LDL cholesterol in artery aorta (I2 = 0.96), and HLA-DQB2 to height in muscle

skeletal (I2 = 0.98). (The specific tissues are where the most significant PTWAS scan p-values

are identified.) In these examples, we observe the common pattern that the SNP-level estimates

from correlated SNPs within each signal cluster are highly consistent, yet between the signal

clusters, the estimates show high levels of inconsistency. In literature, GUCY1A1 is considered a

potential causal gene to CAD. Despite the association evidence discovered in a seemingly relevant

tissue, the substantial inconsistency of the estimated gene-to-trait effects indicates that the role

of the gene to the underlying disease can be complicated. In the case of the gene HLA-DQB2

where we compute the I2 from the UK Biobank data, a similar high I2 value is also confirmed by

the height data from the GIANT consortium (I2 = 0.77). Similarly in the case of CTB-171A8.1

where the original I2 is computed from the LDL data from the global lipid genetics consortium

(GLGC), a confirmative I2 = 0.97 is also found from the data of self-reported high cholesterol

levels (binary outcomes) in the UK Biobank.
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2.4.3 Gene effects to complex traits across multiple tissues

We proceed to estimate the potential causal effects from the genes implicated in the PTWAS

scan to the complex traits of interest. For this analysis, we remove the 211,291 trait-gene-tissue

combinations flagged in the ER validating analysis (I2 > 0.5) but include all the trait-gene-

tissue combinations with only a single eligible eQTL instrument. In the end, we estimate the

causal effects for 1,883,367 trait-gene-tissue combinations, corresponding to 114,083 gene-trait

pairs, implicated by the PTWAS scan using the proposed estimation procedure. On average,

each gene-trait pair is estimated in ∼ 17 different tissues. The complete estimation results are

summarized in Supplementary Table S3.

We examine the heterogeneity of the estimated gene-to-trait effects across multiple tissues, for

which we again compute an I2 statistic (The complete results are summarized in Supplementary

Table S4). The resulting I2 statistics display a clear bi-modal distribution (Figure S4). A

significant proportion of the TWAS signals exhibit a high-level of consistency in effect sizes across

different tissues: for all the investigated gene-trait pairs measured in multiple tissues, 46.9% show

strong consistency with I2 < 0.1, whereas 12.8% exhibit a significant degree of heterogeneity

with I2 > 0.75, suggesting potential gene-environment interactions (i.e., environmental factors

modify the gene-to-trait effects). The median and the mean of all the cross-tissue I2 statistics

are 0.30 and 0.18, respectively. Note that the tissue-specific effects of eQTLs drive the observed

heterogeneity of the estimated gene-to-trait effects across tissues. The overall pattern that we

observe from this analysis is qualitatively similoar to the reported tissue-specificity of cis-eQTLs

in the literature: while a good proportion of eQTLs behaves in a tissue-consistent manner, a

noticeable proportion shows strong evidence of tissue-specific eQTL effects [22, 23, 24]. This

finding also confirms that, at cellular level, gene-environment interactions are widespread.

The estimated tissue-specific gene-to-trait effects provide potential insights for understanding

the molecular mechanisms of complex diseases, many of which have been well-documented in the
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literature. In Figure 9, we highlight 4 examples: SORT1 gene for LDL cholesterol, CETP gene

for HDL cholesterol, and PHACTR1, MRAS genes for cardiovascular disease (CAD). In some

cases, we find that the strongest or most confident effect size estimates are obtained from the

biologically most relevant tissues, e.g., SORT1 in liver and PHACTR1 in artery coronary. In

other cases, the estimated effects are similar in a group of similar tissues which possibly share

some common cell types. The estimates also confirm the directional effects from the genes to

corresponding traits: increased gene expression of SORT1 and PHACTR1 increase LDL levels

and the risk of CAD, respectively; while increased gene expression of CETP and MRAS decrease

the HDL level and the risk of CAD, respectively.

2.4.4 Comparison to colocalization analysis

We compare the results from our multi-tissue PTWAS scan to the results from the colocalization

analysis implemented in the software package ENLOC [25]. Colocalization analysis is a different

type of integrative analysis approach that serves complementary goals as the TWAS analysis.

Specifically, it aims to identify the overlapping of GWAS and eQTL signals at the single-variant

level. Overall, the ENLOC analysis identifies much fewer gene-trait pairs where causal GWAS hits

and cis-eQTLs are overlapping with high confidence. This is likely due to the fact that the GWAS

and the GTEx data are from different cohorts (the two-sample design) and their LD patterns

do not match exactly. The mismatch in LD patterns tends to increase the uncertainty of SNP-

level colocalizations. Thus, relatively fewer signals can be assessed with very high colocalization

probabilities.

Nevertheless, we observe that the gene-trait pairs identified by the PTWAS analysis are much

more enriched with modest and high colocalization probabilities (Figure S5). The Kolmogorov-

Smirnov statistic comparing the distributions of colocalization probabilities between all gene-trait

pairs and PTWAS identified gene-trait pairs is 0.774 with the corresponding p-value < 2.2×10−16.

16

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/808295doi: bioRxiv preprint 

https://doi.org/10.1101/808295


For a closer inspection, we examine the joint analyses of GWAS data of CAD from the CARDiO-

GRAM consortium and the GTEx eQTL data from whole blood. Figure 10 shows the scatter

plot of the colocalization probabilities from ENLOC and the p-values from PTWAS. The plot

displays a clear linear trend with high probabilities of colocalization corresponding to significant

PTWAS p-values. However, the correlation is imperfect, as some most significant TWAS genes

only exhibit weak evidence of colocalization, which is likely due to the differences of LD patterns

in the GWAS and eQTL data for the relevant genomic regions.

3 Discussion

In this paper, we propose a new computational framework to systematically investigate potential

causal mechanisms from tens of thousands of candidate molecular phenotypes leading to complex

diseases.

TWAS presents some unique challenges for the traditional causal inference methodologies like

the IV analysis. Notably, the large number of candidate genes is rarely encountered in the appli-

cation scenarios from econometrics and epidemiology. This unique feature prompts developing

efficient multiple hypothesis testing procedures to screen candidate genes effectively. It is equally

important to note that hypothesis testing may not be the endpoint of a sound causal inference:

interpreting and validating the scan results have essential implications on follow-up studies. In

this paper, we also illustrate that robust estimation of the causal effect, which has been empha-

sized in the traditional IV analysis, is critical to uncovering the impacts of cellular environments

on disease etiology. Thus, we conclude that all three aspects of the PTWAS analysis: multiple

hypothesis testing, model validation, and causal effect estimation, should be an integral part of

causal inference in TWAS.

In PTWAS, our statistical strategies vary for different stages of the analysis. As noted by many
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authors [26, 16], although both hypothesis testing and causal effect estimation in the IV/MR

analysis are operated based on the same set of casual assumptions, estimation procedures require

additional parametric assumptions to formally define the casual effect (in PTWAS, we adopt the

traditional definition of the causal effect via the linear structural equations embedded in the

2SLS method). Although it is possible to construct the test statistics based on the estimated

gene-to-trait effects, we show that such test statistics tend to be underpowered compared to

composite IV-based test statistics. (This is likely due to the overestimation of the corresponding

standard errors.) The detailed discussion on this topic is outside the scope of this paper, and we

will provide a full account in a follow-up technical article.

In this paper, we regard the commonly referred “genetic predictions of gene expressions” in

the scan procedure as composite instrumental variables for investigating the causal relationships

between candidate genes and the complex trait of interest. Although it is conceptually correct

to interpret the composite IVs as genetic predictions of gene expression phenotype, we note that

such predictions are generally inaccurate. The evidence here is two-fold: first, existing studies

suggest the overall heritability of gene expressions, on average, is quite low [27]; second, as shown

by many genomic experiments of differential gene expression analysis, manipulation of cellular

environments can have drastic impacts on gene expression levels.

One of the advantages of the proposed PTWAS framework is its utilization of multiple indepen-

dent eQTLs throughout the three stages of the analysis. This has been shown to improve the

power of multiple hypothesis testing, enable the model validation, and increase the estimation

efficiency. Importantly, our computational approaches carefully distinguish SNPs representing

different independent eQTL signals and SNPs tagging the same eQTL signal. We note that

regarding highly correlated SNPs as independent instruments are theoretically invalid. Instead,

our approach uses a set of eQTL SNPs in LD (i.e., a Bayesian credible set) to represent an

instrument and weight the evidence from individual SNPs through Bayesian model averaging

(BMA). This strategy is proven effective in our simulations and real data analysis by carrying
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over the SNP-level uncertainty from the eQTL analysis. Recently, [28] propose an IV analysis

approach, TWMR, to utilize multiple independent eQTLs identified from conditional analysis

for estimating gene-to-trait effects in TWAS. Many authors have reported Bayesian multi-SNP

fine-mapping methods, e.g., DAP, are more powerful than conditional analysis-based methods

to effectively identify independent eQTLs [29, 30, 11]. Furthermore, TWMR estimation can be

viewed as a special case of the proposed BMA weighting in PTWAS, which assigns all weights to

the lead eQTL SNP within each signal cluster. However, such extreme weighting scheme seems

sub-optimal in estimation accuracy as shown in our simulation studies.

Recently emerged TWAS methods, represented by FOCUS [31] and TWMR [28], also consider

the strong correlations among the observed expressions of multiple genes. In the extreme cases,

if the expressions of two genes are perfectly correlated, the true causal gene is not identifiable.

Analyzing one gene at a time can fail to account for such correlations and result in over-reporting

of causal genes. We have not explicitly addressed this issue in this paper due to our limited scope.

However, we note the test statistics/p-values derived from our novel PTWAS scan procedure can

be directly plugged into the fine-mapping methods implemented in FOCUS and yield desired

credible sets of causal genes. We will continuously pursue this direction in our follow-up work.

Finally, we acknowledge that, like any observational data based causal inference approach, the

proposed procedure is imperfect. It is mainly because some critical causal assumptions can

not be rigorously verified, and some required conditions are not satisfied for every gene-trait

pair in practice. In our application context, a good proportion of genes lack discoveries of

multiple independent and strong eQTLs. Thus, the proposed model validation procedure is not

applicable. The emergence of large-scale eQTL datasets will alleviate this problem in the near

future as the ability to uncover multiple eQTLs is directly correlated with the sample size of eQTL

[9]. Nevertheless, from a theoretical point of view, only severe violations of causal assumptions

can be detected by model diagnosis approaches. In other words, passing the model validation

procedure does not prove the assumptions are true but only indicate that they are reasonable
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given the data at hand. Should such caveat deter our efforts to apply the proposed approaches,

or more generally, formulate and perform observational-data based causal inference in TWAS?

Our opinion is no. The challenge is not unique to the field of genetics and genomics. We believe

that our proposed approach falls into the category of “shoe leather” methodology advocated by

David Freedman [32], which “exploits natural variation to mitigate confounding and relies on

intimate knowledge of the subject matter to develop meticulous research designs and eliminate

rival explanations.”

4 Methods

The probabilistic annotations of eQTLs used by PTWAS require comprehensive characterizations

of the strengths and uncertainty of the genetic associations of expression traits at different levels.

At the model level, each plausible association model (i.e., a combination of SNPs, denoted by

Mi) is assessed by a posterior model probability, PMi
. When multiple independent eQTLs coexist

for a gene, the model including all relevant representing SNPs should have much higher posterior

probability than the models including only single or incomplete eQTLs. A SNP-level PIP, pj,

characterizes if a particular SNP j is a causal eQTL. In the presence of LD, causal eQTLs

may not be statistically identifiable even if the evidence for the existence of an eQTL can be

overwhelmingly strong [25]. Thus, we use the signal-level PIP to quantify the overall strength of

an independent eQTL. Specifically for each potential eQTL signal k, we identify a set of SNPs in

LD that represent the same association signal. The corresponding signal-level PIP is computed

by qk =
∑

j∈Sk
pj. Thus, the comprehensive probabilistic annotations of eQTLs for a gene is

given by
(
{(Mi, PMi

)}, {(Sk, qk)}, {pj}
)
. All these information are used for different tasks in

PTWAS.
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4.1 TWAS as IV analysis

The instrumental variable analysis can be represented by the graphical model in Supplementary

Figure S1. There are three key assumptions to establish causal implications from the IV analysis.

In the context of TWAS, they can be characterized as: i) inclusion restriction: the selected

instrument (G), i.e., genetic variants, must be associated with the expression of the target gene

(X); ii) randomization assumption: the instrument is (marginally) independent of confounders

(U); and iii) exclusion restriction: the selected genetic variants affect the complex trait of interest

(Y ) only through the target gene. Notably, the inclusion restriction (IR) requires the instruments

are eQTLs, and the exclusion restriction (ER) explicitly excludes the possibility of (horizontal)

pleiotropy. Under these causal assumptions, the evidence of the association between G and Y ,

i.e., G 6⊥⊥ Y , is sufficient to reject the null hypothesis that states no causal link between the

target gene and the complex trait of interest [33, 26, 16].

The two-sample design refers to the setting that G,X, and Y are not taken from the same

samples. Instead, the eQTL data (Gx, X) and the GWAS data (Gy, Y ) are measured from two

sets of non-overlapping samples. The two-sample design has some important implications on the

IV analysis, especially the estimation bias of causal effects introduced by the weak instruments

(i.e., weak eQTLs). In a one-sample design, the weak instruments can cause severe type I errors

in testing causal relationships, whereas in a two-sample design, the bias is always towards 0,

therefore, results only in the loss of power but not inflation of type I errors.

The weighted sum of IVs, i.e.,
∑

iwiGi, is itself a valid instrumental variable because it satisfies

all three IV assumptions. It is often referred to as a composite IV or allele score in literature

[14, 15]. For hypothesis testing purposes, the aggregation of independent instruments with

modest strength has an intuitive appeal for improved power for testing.
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4.2 Composite IV for hypothesis testing

If the true causal eQTLs are known, the principled inference procedure in the IV analysis is

the two-stage least squares (2SLS) method [16]. In the settings of the two-sample design, the

first stage regression in the 2SLS finds the least-squares prediction of gene expressions using

the eQTL data. The resulting prediction function is, by definition, a composite IV, where the

weight for each individual genetic variant is the least square estimate of the corresponding genetic

effect on the expression phenotype. In practice, even after the fine-mapping of eQTLs, there is

substantial uncertainty regarding the number of independent eQTLs and the actual causal SNP

for each eQTL. Selecting a single “best” association model from the eQTL data to perform the

2SLS procedure does not convey the uncertainty from the eQTL analysis, hence unlikely optimal.

We propose a model averaging approach that utilizes the posterior model probabilities {PMi
} to

construct composite IVs based on the existing 2SLS procedure. For a set of L sparse candidate

association models identified from the eQTL analysis, we fit each model Mi by the least-square

algorithm. We obtain an effect size estimate, β̂Mi,j, for each SNP j in model Mi. (β̂Mi,j = 0 if

SNP j /∈ Mi.) We then compute an overall weight for SNP j by averaging its estimated effects

across all L candidate models, i.e.,

wj =
L∑
i=1

PMi
β̂Mi,j. (1)

Finally, the proposed composite instrumental variable, x̂, is computed by:

x̂ =

p∑
j=1

wjGj =
K∑
i=1

PMi

(
p∑

j=1

β̂Mi,jGj

)
=

K∑
i=1

PMi
x̂Mi

, (2)

where x̂Mi
denotes the least squares prediction by the model Mi. Therefore, the resulting com-

posite IV can be naturally interpreted as an ensemble prediction of expression levels for the target

gene (and each x̂Mi
is known as a base prediction).
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The composite IV (2) constructed by PTWAS has some unique and desired properties for the

causal inference. First, it naturally considers multiple independent eQTL signals. Second, the

weighting scheme also accounts for LD. Third, the proposed procedure provides a principled way

to weigh weak versus strong instruments by utilizing the posterior model probabilities.

For a complex trait data set where individual-level data are available, we compute x̂ for each

sample by plugging in the corresponding genotype data into the equation (2) and test its corre-

lation with the observed complex trait phenotype. When only summary-level statistics (instead

of individual-level genotype data) are made available from the complex trait data, we apply

the approximate procedure described in [34], i.e., the S-PrediXcan algorithm, to compute the

corresponding values of x̂ based on z-statistics.

4.3 Estimating causal effects

We take a slightly different strategy to estimate the causal effects from a target gene to the

trait of interest to ensure accuracy and robustness. Notably, we emphasize in obtaining effect

size estimates from strong instruments, where we quantify the strength of an instrument by its

corresponding signal-level PIP. The designed filtering of weak instruments is to avoid biased

estimates. When multiple independent eQTLs are available, we aggregate the estimates from

the individual eQTLs using a fixed-effect meta-analysis procedure.

The proposed estimating procedure starts with selecting strong eQTLs by thresholding on the

corresponding signal-level PIPs. For a qualified eQTL signal with m member SNPs and signal

probability q =
∑m

i=1 pi, we then re-normalize the SNP probabilities by

p̃i = pi/q, (3)

which corresponds to the conditional probability of SNP i being a causal eQTL. Next, we obtain
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an estimate of the causal effect, β̂xy,i and the corresponding variance σ2
xy,i based on the summary

statistics of SNP i using the standard 2SLS method (i.e., similar to SMR). Subsequently, by the

law of total expectation, we combine the individual estimate from each member SNP weighted

by its conditional causal probability, i.e.,

β̂xy =
m∑
i=1

p̃iβ̂xy,i. (4)

Similarly, by the law of total variance, we obtain

Var(β̂xy) =
m∑
i=1

p̃i(σ
2
xy,i + β̂2

xy,i)− β̂2
xy (5)

For each independent instrument/eQTL, the proposed estimator provides an intuitive and prin-

cipled approach to fully account for LD.

Under the IV assumptions, each independent eQTL provides an independent estimate of the

underlying causal effects. If the causal link from the target gene to the complex trait is indeed

true, the multiple estimates from independent eQTLs are analogous to the multiple estimates

from a meta-analysis, where the underlying true causal effect should be constant regardless of

the instruments used for measurement. By this logic, it becomes natural to adopt a fixed-effect

meta-analysis model to combine the individual β̂xy using the inverse variance weighting (IVW)

scheme.

4.4 Diagnosis of exclusion restriction

The causality implications inferred from TWAS analysis are subject to the validity of the IV

assumptions, especially the exclusion restriction (ER). Although rigorous validation of ER based

on observed data is considered theoretically implausible [35, 26, 16], it is practically feasible to

detect severe departures from ER when multiple independent instruments become available. If
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ER holds, the causal effects estimated from multiple independent eQTLs (using the procedure in

the above section) should be highly consistent, and low levels of heterogeneity among estimates

are expected. In contrast, observations of elevated heterogeneity levels should flag potential

violations of ER.

To implement this idea, we compute an I2 statistic [17] based on the causal effect estimates from

multiple independent eQTLs that are available. Namely,

I2 = max

(
0,
Q− T + 1

Q

)
, (6)

where T represents the number of independent eQTLs used for effect estimation, and Q is the

Cochrans Q statistic and is given by

Q =
T∑

k=1

(β̂k − ˆ̄β)2

σ̂2
k

.

Specially, (β̂k, σ̂k) are estimated effect size and the corresponding standard error from the k-th

independent eQTL, and ˆ̄β is the fixed-effect estimate of the overall causal effect. The I2 statistic

ranges from 0 to 1 and is designed initially to represent the percentage of the variance observed

in a meta-analysis that can be attributed to the heterogeneity among participating studies. In

the application context of TWAS, I2 → 0 indicates reasonable consistency among estimates by

multiple eQTLs, whereas I2 → 1 implies severe departures from ER.

We note that the underlying idea of the proposed model diagnosis approach is similar to the

intuition behind Egger regression [8] that is widely applied in the context of MR analysis of

multiple complex traits. However, the available independent eQTLs/instruments for any given

gene are typically limited, which render the regression-type of diagnosis like Egger regression

implausible. The proposed approach directly addresses this difficulty and is tailored for the

application in TWAS.
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We use I2 as a quantitative metric to measure the effect size heterogeneity in a comprehensible

scale. It is theoretically possible to set up a hypothesis testing procedure to select genes with

consistent eQTL-level estimates. Note that in this case, the null hypothesis has to assert het-

erogeneity in the underlying effect sizes. We have not seen any successful applications of such

hypothesis testing. In practice, some authors suggest setting up the null hypothesis as in the

Cochran’s Q test (which states all underlying effects are the same) and attempting to “accept”

the null hypothesis. This, in our view, is a statistical mistake.

4.5 Simulation details

Throughout our simulation studies, we use the real genotype data from 706 whole blood samples

of the GTEx v8 data to simulate expression and complex trait phenotype data. To mimic the two-

sample design, we randomly select 400 individuals and 1000 genes to simulate their expression

data. The remaining 306 individuals are used to simulate complex trait data.

For each gene, we select 1,500 cis-SNPs and independently sample the causal eQTLs from a

Bernoulli distribution with the frequency = 0.002, Thus, on average, each gene has three causal

eQTLs. The effect size of each causal gene is sampled from a Gaussian distribution with mean

0 and variance 0.5. We also add a polygenic background effect to all candidate SNPs, such

that the heritability of the expression phenotype is roughly 50% (variations are due to the allele

frequencies of the causal SNPs). More specifically, for individual i, the expression level for a

candidate gene, xi, is simulated by

xi = µ+

p∑
j=1

(βjγj + αj) gi,j + εi, εi ∼ N(0, 1), (7)

where gi,j represents the genotype of SNP j for the i-th individual, βj, αj represents the (strong)

sparse genetic effect and the polygenic effect, respectively, and γj is the latent Bernoulli random

26

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/808295doi: bioRxiv preprint 

https://doi.org/10.1101/808295


variable. The corresponding complex trait for individual i, yi, is subsequently simulated by a

simple structural equation,

yi = u+ ηxi + ei, ei ∼ N(0, 1), (8)

where η represents the causal gene-to-trait effects. To investigate the power and type I error

control of the PTWAS scan procedure, we sample η from a Gaussian distribution N(0, φ2
k) where

the variance parameter is chosen from the set {φ2
k : 0, 0.2, 0.5, 0.8, 1, 1.2}. (Note that φ2

k = 0

represents the null model). To examine the effect size estimation, we fix η = 1 for all simulated

data sets. We simulate the expression data for all 706 individuals but use only the subset of 400

individuals for eQTL analysis. We only simulate the complex trait data for the subset of 306

individuals.

For the proposed PTWAS procedure, we analyze the eQTL data and construct the composite

IVs using the software package DAP. For PrediXcan method, we apply the elastic net algorithm

with cross-validation to find the genetic predictions of gene expressions. We also run the software

package BSLMM to produce the predicted gene expression functions for TWAS-Fusion. When

running the BSLMM, we apply the default settings except resetting the number of sampling

steps to 200,000 and the burn-in steps to 100,000 for computational considerations.

4.6 Multi-tissue TWAS analysis

For multi-tissue TWAS analysis, we utilize the GTEx cis-eQTL data from 49 tissues (version

8) and 114 complex traits from the UK Biobank and other consortia. We perform multi-SNP

fine-mapping of cis-eQTL analysis for each GTEx tissue using DAP, and generate the all three

required levels of probabilistic annotations (i.e., posterior model probabilities, SNP-level PIPs,

and signal-level PIPs) for the proposed PTWAS analysis.
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4.6.1 Data preparation

The 114 complex trait data sets are selected and harmonized by the GTEx GWAS analysis sub-

group. For each complex trait, only summary statistics are extracted, and additional summary

statistics are imputed for the GTEx SNPs that are not directly available from the original studies.

The details of the GWAS data processing are documented in [20].

The probabilistic eQTL annotations required by PTWAS are derived from the GTEx release v8

data across 49 tissues using DAP [11, 12]. The pre-processing of the RNA-seq and genotype

data follow the protocols of the GTEx data processing, which are detailed in [9]. The multi-SNP

fine-mapping analysis by DAP uses the individual-level genotype data and controls the same set

of covariates and PEER factors as in GTEx v8 single-SNP eQTL mapping.

4.6.2 Multi-tissue PTWAS scan

Let βi
xy denotes the unobserved causal effect from gene x to trait y in the i-th tissue. We apply

a multi-tissue PTWAS scan to test a global null hypothesis that states

β1
xy = · · · = βL

xy = 0.

To carry out the testing procedure, we first derive a p-value, pixy, by applying the PTWAS scan

procedure in the i-th tissue for the target gene-trait pair. We then apply the ACAT method [21]

to the set of p-values for each gene-trait pair, {pixy : 1, ..., 49}, and compute a p-value for testing

the global null hypothesis. For each trait, we finally apply Storey’s q-value procedure to control

the false discovery rate at 5% level and identify the genes that reject the global null hypothesis.
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4.6.3 Estimating gene-to-trait effects

For each complex trait, we focus on the set of genes implicated from the PTWAS scan procedure.

For a gene rejected at the scan stage (at FDR 5% level) for the trait of interest, we consider all

its gene-tissue pairs (not just the most significant tissue) for the effect estimation and the model

validation. We then select the gene-tissue-trait combination that contain at least one eQTL

signal cluster with SPIP ≥ 0.50 for estimation purpose. This particular threshold is mainly

informed by our simulation studies, where we observe reliable estimation results for signals with

SPIP ≥ 0.50. To validate ER assumption, we require the selected gene-tissue-trait combinations

to have more than two eQTL signal clusters with SPIP ≥ 0.50.

For each selected gene-tissue-trait combination, we carry out the proposed effect estimation

and/or model validation procedures separately.

4.7 Software and data resources

The Github repository https://github.com/xqwen/ptwas/ contains the implementations of

the algorithms described in this paper. The repository also provides a step-by-step guidelines

on running the complete PTWAS analysis. The probabilistic annotations of eQTLs are gener-

ated by the software package DAP (https://github.com/xqwen/dap/) with both C++ and R

implementations.

We have made the following resources available.

1. Probabilistic annotation of GTEx v8 cis-eQTLs across 49 tissues: https://storage.

googleapis.com/gtex_analysis_v8/single_tissue_qtl_data/GTEx_v8_finemapping_

DAPG.tar

2. Weights computed from GTEx v8 data for PTWAS scan across 49 tissues: https://
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tinyurl.com/yxe9k6vl

3. Summary statistics of 114 complex traits in GAMBIT format: https://tinyurl.com/

y2hfhehj

30

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/808295doi: bioRxiv preprint 

https://tinyurl.com/yxe9k6vl
https://tinyurl.com/yxe9k6vl
https://tinyurl.com/y2hfhehj
https://tinyurl.com/y2hfhehj
https://doi.org/10.1101/808295


References

[1] MacArthur, J. et al. The new nhgri-ebi catalog of published genome-wide association studies

(gwas catalog). Nucleic acids research 45, D896–D901 (2016).

[2] Voight, B. F. et al. Plasma hdl cholesterol and risk of myocardial infarction: a mendelian

randomisation study. The Lancet 380, 572–580 (2012).

[3] Trajanoska, K. et al. Assessment of the genetic and clinical determinants of fracture risk:

genome wide association and mendelian randomisation study. bmj 362, k3225 (2018).

[4] Gamazon, E. R. et al. A gene-based association method for mapping traits using reference

transcriptome data. Nature genetics 47, 1091 (2015).

[5] Gusev, A. et al. Transcriptome-wide association study of schizophrenia and chromatin

activity yields mechanistic disease insights. Nature genetics 50, 538 (2018).

[6] Zhu, Z. et al. Integration of summary data from gwas and eqtl studies predicts complex

trait gene targets. Nature genetics 48, 481 (2016).

[7] Hormozdiari, F. et al. Widespread allelic heterogeneity in complex traits. The American

Journal of Human Genetics 100, 789–802 (2017).

[8] Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid instru-

ments: effect estimation and bias detection through egger regression. International journal

of epidemiology 44, 512–525 (2015).

[9] GTEx Consortium. The gtex consortium atlas of genetic regulatory effects across human

tissues. bioRxiv 787903 (2019).

[10] Bycroft, C. et al. The uk biobank resource with deep phenotyping and genomic data. Nature

562, 203 (2018).

31

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/808295doi: bioRxiv preprint 

https://doi.org/10.1101/808295


[11] Wen, X., Lee, Y., Luca, F. & Pique-Regi, R. Efficient integrative multi-snp association

analysis via deterministic approximation of posteriors. The American Journal of Human

Genetics 98, 1114–1129 (2016).

[12] Lee, Y., Francesca, L., Pique-Regi, R. & Wen, X. Bayesian multi-snp genetic association

analysis: Control of fdr and use of summary statistics. bioRxiv 316471 (2018).

[13] Maller, J. B. et al. Bayesian refinement of association signals for 14 loci in 3 common

diseases. Nature genetics 44, 1294–1301 (2012).

[14] Pierce, B. L., Ahsan, H. & VanderWeele, T. J. Power and instrument strength requirements

for mendelian randomization studies using multiple genetic variants. International journal

of epidemiology 40, 740–752 (2010).

[15] Burgess, S. & Thompson, S. G. Use of allele scores as instrumental variables for mendelian

randomization. International journal of epidemiology 42, 1134–1144 (2013).

[16] Sheehan, N. A. & Didelez, V. Epidemiology, genetic epidemiology and mendelian randomi-

sation: more need than ever to attend to detail. Human genetics 1–16 (2019).

[17] Higgins, J. P. & Thompson, S. G. Quantifying heterogeneity in a meta-analysis. Statistics

in medicine 21, 1539–1558 (2002).

[18] Bowden, J. et al. A framework for the investigation of pleiotropy in two-sample summary

data mendelian randomization. Statistics in medicine 36, 1783–1802 (2017).

[19] Hurley, N. & Rickard, S. Comparing measures of sparsity. IEEE Transactions on Informa-

tion Theory 55, 4723–4741 (2009).

[20] GTEx Consortium. Widespread dose-dependent effects of rna expression and splicing inform

disease biology. bioRxiv xxxxxx (2019).

32

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/808295doi: bioRxiv preprint 

https://doi.org/10.1101/808295


[21] Liu, Y. et al. Acat: A fast and powerful p value combination method for rare-variant analysis

in sequencing studies. The American Journal of Human Genetics 104, 410–421 (2019).

[22] Flutre, T., Wen, X., Pritchard, J. & Stephens, M. A statistical framework for joint eqtl

analysis in multiple tissues. PLoS genetics 9, e1003486 (2013).

[23] GTEx Consortium. Genetic effects on gene expression across human tissues. Nature 550,

204 (2017).

[24] Li, G., Shabalin, A. A., Rusyn, I., Wright, F. A. & Nobel, A. B. An empirical bayes approach

for multiple tissue eqtl analysis. Biostatistics 19, 391–406 (2017).

[25] Wen, X., Pique-Regi, R. & Luca, F. Integrating molecular qtl data into genome-wide

genetic association analysis: Probabilistic assessment of enrichment and colocalization. PLoS

genetics 13, e1006646 (2017).

[26] VanderWeele, T. J., Tchetgen, E. J. T., Cornelis, M. & Kraft, P. Methodological challenges

in mendelian randomization. Epidemiology (Cambridge, Mass.) 25, 427 (2014).

[27] Wheeler, H. E. et al. Survey of the heritability and sparse architecture of gene expression

traits across human tissues. PLoS genetics 12, e1006423 (2016).

[28] Porcu, E. et al. Mendelian randomization integrating gwas and eqtl data reveals genetic

determinants of complex and clinical traits. Nature communications 10 (2019).

[29] Guan, Y. & Stephens, M. Bayesian variable selection regression for genome-wide association

studies and other large-scale problems. The Annals of Applied Statistics 1780–1815 (2011).

[30] Hormozdiari, F., Kostem, E., Kang, E. Y., Pasaniuc, B. & Eskin, E. Identifying causal

variants at loci with multiple signals of association. Genetics 198, 497–508 (2014).

[31] Mancuso, N. et al. Probabilistic fine-mapping of transcriptome-wide association studies.

Nature genetics 51, 675 (2019).

33

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/808295doi: bioRxiv preprint 

https://doi.org/10.1101/808295


[32] Freedman, D. A. Statistical models and shoe leather. Sociological methodology 291–313

(1991).

[33] Katan, M. Apoupoprotein e isoforms, serum cholesterol, and cancer. The Lancet 327,

507–508 (1986).

[34] Barbeira, A. N. et al. Exploring the phenotypic consequences of tissue specific gene ex-

pression variation inferred from gwas summary statistics. Nature communications 9, 1825

(2018).

[35] Kraay, A. Instrumental variables regressions with uncertain exclusion restrictions: A

bayesian approach. Journal of Applied Econometrics 27, 108–128 (2012).

34

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/808295doi: bioRxiv preprint 

https://doi.org/10.1101/808295


Figures

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 1. PTWAS	Scan/Hypothesis	Testing	
tetesting	

2. Causal	Model	Validation	
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Figure 1: Workflow of PTWAS analysis
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Figure 2: Type I error control and power in hypothesis testing of causal relationships

by various methods in TWAS The left panel shows the QQ-plot of testing p-values as the

simulated data are specifically generated from the null scenario. All methods properly control

the type I errors. The right panel shows the receiver operating characteristic (ROC) curves by

different methods when the simulated data are from a mixture of null and alternative scenarios.

At any specified value of the false-positive rate, PTWAS shows the highest true-positive rate

among compared methods. All methods utilizing multiple independent eQTLs show higher

powers than SMR (which uses a single best eQTL of each gene as the corresponding instrument).
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Figure 3: Boxplots of point estimates of causal effects by various methods in sim-

ulations The true causal effect is set at 1.00 (dotted horizontal line) for all simulations. A

total of 800 genes that pass the initial PTWAS scan (with p-value cutoff 0.05) are examined

by each method. SMR utilizes the standard two-stage least squares algorithm based on the top

eQTL SNP for each gene. For TWAS-Fusion and PrediXcan, the point estimates are obtained by

regressing the phenotype data on the corresponding predicted gene expression levels. Note that

effect size estimation is not the designed usage of TWAS-Fusion and PrediXcan. Our intention

is to illustrate that methods designed for testing may not be suitable for estimation. Among

all methods compared, PTWAS and SMR yield seemingly unbiased estimates. The results by

PTWAS are, overall, more accurate.
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Figure 4: Impact of strength of eQTLs on causal effect estimation in PTWAS 800

genes that pass the initial PTWAS scan (p-value ≤ 0.05) are used in this experiment. Panel A

illustrates the relationship between the accuracy of the estimation (measured by rooted mean

square error, RMSE) and the strength of the eQTL instruments (measured by signal-level PIP).

The filled points represent all the genes satisfying the SPIP threshold. The stars represent the

subset of genes where multiple independent qualifying eQTL instruments are available. The dot-

ted line represents the RMSE by SMR. Overall, estimation accuracy increases when the strength

of eQTL instruments improves and utilizing multiple instruments increases the accuracy of the

estimation. Panel B shows the average heterogeneity of causal effects estimated from multiple

independent eQTLs. Each data point represents the I2 (at log10 scale) value averaged over the

genes having at least two independent eQTLs satisfying the SPIP threshold. As expected, the

computed heterogeneity decays fast as the strength of the eQTLs is increased.
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Figure 5: Discovery in PTWAS scan by traits The results are from the analysis of GTEx

eQTL data in 49 tissues and 114 complex traits using the PTWAS scan. Each point represents

the number of rejected genes at the 5% FDR level for the corresponding trait. The distribution

is highly skewed: a large proportion of tested genes are rejected in polygenic traits like heights,

whereas few rejections are reported for > 20 traits.
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Figure 6: Comparison of PTWAS p-values for the height data from GIANT consor-

tium and UK Biobank Each data point represents a single gene whose PTWAS p-values are

computed from GIANT and UK Biobank data, respectively. There is a strong linear trend for

highly significant p-values (overall spearman’s correlation = 0.50, p < 2.2 × 10−16). However,

UK Biobank data, which have a larger sample size, show consistently higher significance.
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Figure 7: Histograms of I2 distribution for validating exclusion restriction from PT-

WAS scan signals Panel A shows the histogram of the I2 statistics computed from 2.09 million

trait-gene-tissue combinations, where the gene has at least two independent eQTLs with individ-

ual signal-level PIP > 0.50. For each trait-gene-tissue pair, the I2 index measures the consistency

of the causal effects estimated from each independent eQTL. Panel B and C show the Histograms

with at least 3 and 5 eligible independent eQTLs, respectively. The overall patterns of the dis-

tributions are the same in all panels, where majority of the test cases show strong consistency

among independent instruments. However, the ability of identifying violations of ER improves

with the increasing availability of independent eQTL instruments.
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Figure 8: Examples of identified violations of exclusion restrictions All three examples

are identified from the PTWAS scan procedure, the corresponding tissues represent the tissues

where the minimum p-values are achieved. Each SNP-level estimate and its corresponding 95%

confidence interval are plotted. Data points with the same color represent the SNPs within the

same signal cluster and in LD. The size of the point reflects the relative magnitude of SNP-level

PIP. In all examples, within cluster estimates are highly consistent; estimates by different clusters

are qualitatively different, which is a clear indication of violation of the exclusion restriction. The

I2 statistics computed for the three cases are 0.94 (GUCY1A1), 0.96 (CTB-171A8.1), and 0.98

(HLA-DQB2), respectively.
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Figure 9: Examples of estimated gene-to-trait effects in different tissues The selected

gene-trait pairs have well-established causal relationships in literature. Here we observe different

tissue-consistent and tissue-specific patterns in each gene-trait pair.
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Figure 10: Comparison of -log10 p-values from PTWAS scan and gene-level colocal-

ization probabilities in GTEx whole blood for the cardiovascular disease Each data

point corresponds a unique candidate gene. The red line is the fitted LOWESS curve, which

indicates a strong positive linear correlation between the two quantities for significant PTWAS

signals.
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Supplementary Figures

Figure S1: Diagram representing instrumental variable analysis Variables G,X, Y, and U

represent eQTLs, gene expressions, complex traits and unobserved confounding factors, respec-

tively. The arrow from X to Y represents the causal relationship of interest.
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Figure S2: Distribution of Gini coefficients summarizing the sparsity of the composite

IVs in different TWAS scan methods For each simulated gene, we compute the Gini coeffi-

cient based on the assigned weights of all the cis-SNPs for computing the composite IV/predicted

gene expression levels. A low (i.e.,→ 0) Gini coefficient indicates many SNPs play important

roles; whereas a high value (i.e.,→ 1) suggests only a few SNPs make contributions. Among

the methods compared, PrediXcan (based on ElasticNet algorithm) utilizes the most sparse set

of SNPs for predicting gene expressions, and TWAS-Fusion utilizes many more SNPs (most of

which are likely weak IVs). PTWAS is overall similar to PrediXcan but with a notable long left

tail. This is mainly because the weight assignment in PTWAS takes accounts of LD: strong eQTL

SNPs that are highly correlated (hence not identifiable) are assigned to comparable weights.
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Figure S3: Allelic heterogeneity in implicated PTWAS signal genes The histogram

shows the distribution of the posterior expected number of cis-eQTLs of each unique gene-tissue

pair that are implicated in the PTWAS scan and suitable for effect size estimation from the

analysis of GTEx data and 114 complex traits. The plot indicates that a substantial proportion

of gene-tissue pairs have more than 1 strong eQTLs.
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Figure S4: Heterogeneity of gene-to-trait effects across tissues The histograms show the

distributions of I2 statistics which quantify the heterogeneity of estimated gene-to-trait effects

across different GTEx tissues. The top panel shows all eligible gene-trait paris. The bottom

panel shows the gene-trait pairs that are measured in ≥ 20 different GTEx tissues. The overall

patterns remain the same.
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Figure S5: Comparison of distributions of colocalization probabilities between all

genes and PTWAS significant genes The red line represents the cumulative distribution

function (cdf) of colocalization probabilities summarized from all 32,363 candidate genes in all 49

tissues across 114 traits. The green line represents the cdf from the corresponding PTWAS signif-

icant genes. It is clear that PTWAS signal genes are enriched with modest to high colocalization

probabilities.

Supplementary Tables

[See attached excel file]

Table S1: Descriptions of 114 complex trait datasets used in the PTWAS analysis.
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[See attached text file]

Table S2: Complete list of significant gene-trait pairs at 5% FDR level identified in

the multi-tissue PTWAS scan of 114 complex traits.

[See attached compressed text file]

Table S3: Complete list of estimation and model validation results for all gene-trait-

tissue combinations.

[See attached text file]

Table S4: Complete cross-tissue heterogeneity results for all gene-trait pairs.
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