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A Characterizing Antibodies Targeting the Receptor Tyrosine
Kinase EGFR

A.1 Monoclonal Antibody Binding to a Receptor

In this section, we explain the states and weights notation used to develop the equilibrium statistical
mechanical models used in this work. As a focus, we consider the case of an antibody binding to a single
site on a receptor as shown in Fig S1A. We assume that the concentration of the antibody far exceeds
that of the receptor, so that one binding event will not noticeably affect the concentration c of free
antibody.

The receptor can exist in two states where it is either unbound or bound to the antibody, where
the relative probability of the bound state compared to the unbound state equals c

KD
, where KD is the

dissociation constant of the receptor-antibody binding (1). The (normalized) probability of each state is
given by its relative weight divided by the sum of the relative weights of all states. For example, the

probability that the receptor is bound to the antibody is shown to be the standard
c

KD

1+ c
KD

sigmoidal

response. As expected, the receptor will always be unbound in the absence of antibody (c = 0), while
the receptor will always be bound at saturating concentrations of antibody (c→∞).

Each receptor state also has a relative activity (i.e. the activity of the receptor when it is in this
state). In the context of EGFR, where the fractional activity is measured relative to the receptor in
the absence of antibody, the relative activity of the unbound state is by definition equal to 1. As in the
main text, we define the activity of the bound receptor to be α, where α = 0 implies that the receptor is
completely inactive when the antibody is bound and α = 1 represents the opposite limit where antibody
binding does not inhibit the receptor’s activity. A value of 0 < α < 1 represents an antibody that
partially inhibits activity upon binding.

The activity of the receptor in each state is given by the product of its relative activity and the
normalized probability of that state. Lastly, the average activity of the receptor is given by the sum of
its activity in each state,

Activity =
1 + α c

KD

1 + c
KD

. (S1)
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Figure S1. A statistical mechanical model of an antibody binding to a receptor. (A) The
relative probability and relative activity of each receptor state enable us to derive the average activity of
the receptor. (B) This method gives the same result of the dynamics model shown by the multiple rates,
provided that the system is in steady state.
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As a quick aside, we note out that all the models considered in this work analyze binding reactions
that quickly reach steady, and hence the equilibrium model derived above will should accurately describe
such systems. Eq (S1) can also be derived by considering the dynamics of the system shown in the rates
diagram Fig S1B. The unbound receptor (R) will switch to the bound state (R–Ab) at the rate ckon
(recall that c is the concentration of antibody) and subsequently unbind at a rate koff. Hence, the system
is governed by the two differential equations

d[R]

dt
= koff[R–Ab]− ckon[R] (S2)

d[R–Ab]

dt
= ckon[R]− koff[R–Ab]. (S3)

Since the total amount of receptor [Rtot] = [R] + [R–Ab] is fixed, these two equations are equivalent,
and either one can be solved to yield the dynamics of the system, namely,

[R] = c1e
−(koff+ckon)t + [Rtot]

koff
koff + ckon

. (S4)

c1 is fixed by the initial concentration of free receptor [R] at t = 0, but regardless of its value, we see
that the exponential term will shrink to zero at a time scale of 1

koff+ckon
, after which the system will be

in steady state with [R] = [Rtot]
koff

koff+ckon
. Defining the dissociation constant KD ≡ koff

kon
, the probability

that any receptor will be unbound in steady state is given by

[R]

[Rtot]
=

1

1 + c
KD

(S5)

as found in Fig S1A.
To close, we note that antibodies typically have a KD = 10−12–10−8 M, and assuming a diffusion-

limited on rate kon = 108–10−9 1
M·s , this implies that koff = 10−3–101 1

s . Therefore, an upper bound
(in the limit of little antibody) for the time scale it takes for such a system to reach steady state is
10−1–103 s, which is the time before experimental measurements should be conducted. Since antibodies
are typically preincubated for even longer periods during experiments, an equilibrium model should be
valid in all of the case studies we consider in this work.

A.2 The Fractional Activity of 3-Ab Mixtures

As described in the main text, the fractional activity of 2-Ab mixtures is given by Eq 2 if the two
antibodies bind to distinct epitopes and Eq 3 if they bind to overlapping epitopes. These equations are
straightforward to extend to mixtures with multiple antibodies by drawing all of the statistical weights
and Boltzmann weights for the mixture (analogous to Fig 1) and then computing the fractional activity
as per Section A.1.

For example, a mixture of three antibodies all binding to distinct epitopes would give rise to

Fractional Activity(1,2,3 distinct epitopes) =

1 + α1
c1
K

(1)
D

1 + c1
K

(1)
D

1 + α2
c2
K

(2)
D

1 + c2
K

(2)
D

1 + α3
c3
K

(3)
D

1 + c3
K

(3)
D

 . (S6)

If antibodies 1 and 2 bind to an overlapping epitope but antibody 3 binds to a distinct epitope, then

Fractional Activity(1,2 overlapping epitopes; 3 distinct epitope) =

1 + α1
c1
K

(1)
D

+ α2
c2
K

(2)
D

1 + c1
K

(1)
D

+ c2
K

(2)
D

1 + α3
c3
K

(3)
D

1 + c3
K

(3)
D

 .

(S7)
If all three antibodies binds to overlapping epitopes, the fractional activity becomes

Fractional Activity(1,2 overlapping epitopes; 3 distinct epitope) =
1 + α1

c1
K

(1)
D

+ α2
c2
K

(2)
D

+ α3
c3
K

(3)
D

1 + c1
K

(1)
D

+ c2
K

(2)
D

+ c3
K

(3)
D

. (S8)
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A.3 Characterizing Ten EGFR Monoclonal Antibodies from Koefoed 2011

Koefoed et al. investigated how a panel of ten monoclonal antibodies inhibit EGFR by measuring the
protein’s activity at multiple antibody concentrations in the human cell line HN5 (2). By fitting these
titration curves to Eq 1, we can infer the dissociation constant KD between each antibody and EGFR
as well as the potency α of each antibody in the HN5 cell line (Fig S2A,B). For each curve, the KD

corresponds to the midpoint of the curve (halfway between its minimum and maximum activity values)
while α represents the activity at saturating antibody concentration.

Koefoed et al. found that the majority (7/10) of these antibodies reduced EGFR activity below 20%
at saturating concentrations, and since mixtures of antibodies would likely further decrease activity
their potency would be difficult to accurately measure. To that end, Koefoed et al. switched to the
A431NS cell line that is partially resistant to EGFR antibodiess where they remeasured EGFR activity
for all ten monoclonal antibodies as well as mixtures of two or three Abs (with 1:1 and 1:1:1 ratios,
respectively). Each measurement was performed at a mixture concentration of 2 µg

mL , implying that each
antibody was half as dilute in the 2-Ab mixtures and one-third as dilute in the 3-Ab mixtures relative to
the monoclonal antibody measurement.

We assume that the antibody-EGFR binding interaction is identical in the A431NS cell line, and
hence that these same KD parameters characterizes these antibodies in that cell line. Hence, by using
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Figure S2. Inferring the model parameters for the 10 monoclonal antibodies in Koefoed
2011. (A) Activity of EGFR in the presence of ten antibodies in the HN5 cell line. (B) The inferred
dissociation constant (KD) and fractional activity in the presence of saturating antibody (α) in each cell
line. (C) Fractional EGFR activity in the presence of 2 µg

mL of each antibody in the A431NS cell line.
Data reproduced from Ref (2) Figure 2B,C.
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the additional measurement of each antibody’s potency at 2 µg
mL in the A431NS cell line (Fig S2C), we can

infer the potency α of each antibody in the A431NS cell line (Fig S2B). These parameters are sufficient
to predict how any mixture (at any concentration and ratio) will behave in the HN5 and A431NS cell
lines. Note that all data presented in the main text correspond to the A431NS cell line.

A.4 Comparing the HN5 and A431NS Cell Lines from Koefoed 2011

Koefoed et al. measured the potency of 176 mixtures in the A431NS cell line but only 55 mixtures in the
HN5 cell line. Fig S3 extends our analysis to both the A431NS and HN5 cell lines. While the majority of
mixtures have very little predicted and measured activity (. 0.2), approximately 13 outliers fall outside
this range and appear to be poorly predicted.

While the coefficient of determination R2 = 0.61 is significantly lower for this cell line, we note that:
(1) there are far fewer data points in this cell line and (2) that our R2 definition places more importance
on points with larger predicted or measured fractional activity, and hence these few outliers have a
disproportionate effect. That said, it remains unknown whether with more data our model would be as
successful in the HN5 cell line. Another open question is why some antibody mixtures had inhibitory
effects in one cell line but exacerbating effects in the other (e.g. the mixture of Ab3 + Ab10 resulted in
1.22 fractional activity of EGFR in the A431NS cell line but 0.19 fractional activity in the HN5 cell line).
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Figure S3. Predicting the potency of antibody mixtures on EGFR in different cell lines.
Our model predictions versus experimental measurements for EGFR activity in the (A) A431NS and (B)
HN5 cell lines.

A.5 Separating the 2-Ab and 3-Ab Predictions for EGFR Antibody Mix-
tures

Fig S4 separates the 2-Ab and 3-Ab mixture predictions from the three models in Fig 2. More specifically,
Panels A and B of Fig S4 show the predictions for combinations of two and three antibodies using
the epitope mappings produced by SPR (see captions on the diagonal of Fig 2A; there are four EGFR
epitopes bound by antibodies #1-3, #4, #5-6, and #7-10, respectively).

Without this SPR data, we could have alternately assumed that antibodies all bind independently
(Fig S4C,D) or that all antibodies vie for the same epitope (Fig S4E,F). Either of these models generate
slightly worse predictions, as exhibited by their lower coefficients of determination R2.
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Figure S4. Separate predictions for 2-Ab and 3-Ab mixtures. (A,B) Predictions using the
epitope mappings produced using SPR. (C,D) Predictions assuming that all antibodies bind
independently. (E,F) Predictions assuming that all antibodies bind competitively.
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A.6 Comparing the 3-Ab Mixture Predictions using the different Epitope
Mappings

In Fig 2B, we used the epitope mapping generated through SPR measurements to decide whether two
Abs bound to distinct or overlapping epitopes. In contrast, Fig 3B shows the predictions when we
instead inferred the epitope mapping from the 2-Ab activity data. We note that in this latter method,
the 2-Ab mixtures were only used to group together antibodies that bound to the same epitopes (Fig
3A). Nevertheless, the cleanest test to determine how closely the two methods match one another is to
compare their predictions for the activity of the 3-Ab mixtures which were not utilized in either case.

Fig S5 demonstrates that the two sets of predictions for the 3-Ab mixtures are nearly identical
(R2 = 0.997), demonstrating that there is essentially equal predictive power using either method to infer
which antibodies bind to the same epitopes.
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Figure S5. Comparing the two sets of predictions for 3-Ab mixtures. The predicted
fractional activity of the 3-Ab mixtures from Fig 2B using the SPR epitope mapping (x-axis) are plotted
against the predictions from Fig 3B using the 2-Ab activity data to infer the epitope map (y-axis).
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A.7 Original Antibody Nomenclature

Table S1 shows the antibodies considered in this work were named in the original works of Refs. (2) and
(3). In our work, we indexed the EGFR antibodies by their potency in the A431NS cell line and labeled
the influenza antibodies by the viral group that they most effectively neutralized.

Table S1. Matching the antibody nomenclature used in this work with the names in the
original manuscript.

Koefoed 2011 Antibody Nomenclature Laursen 2018 Antibody Nomenclature

.....This Work..... Original Work .....This Work..... Original Work
Ab1 1565 AbA1 SD38
Ab2 1320 AbA2 SD36

Ab3 1024 Ab
(1)
B SD83

Ab4 992 Ab
(2)
B SD84

Ab5 1277
Ab6 1030
Ab7 1284
Ab8 1347
Ab9 1260
Ab10 1261
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B Characterizing Distinct versus Overlapping EGFR Epitopes

In this section, we describe in more detail how we can use activity data from the 2-Ab mixtures to classify
which subsets of antibodies bind to the same epitopes. A basic classification scheme would categorize
two antibodies as binding to distinct epitopes if Eq 2 predicted their mixture’s activity better than Eq 3;
otherwise, the two antibodies would be categorized as binding to overlapping epitopes.

However, this simple classification scheme does not account for the uncertainty that arises from
experimental noise. As an extreme case, if the activities of a mixtures are measured at extremely small
concentrations, then the fractional activity will be ≈ 1 for all mixtures (as will be the predictions from
both the distinct and overlapping models), and this classification scheme would only be fitting the noise.
Hence, it is best to measure the activity of each mixture at saturating antibody concentrations where
the signal-to-noise of the system will be greatest.

We determined from Koefoed et al. (Figure S1) that the standard error of the mean (SEM) of
their activity measurements was σ = 0.04, and we proceed to incorporate this uncertainty into our
categorization scheme using a simple threshold model. More specifically, we add two components to
the classification scheme: (1) As shown in Fig S6A, activity measurements that fall within σ of the
midpoint of the two model predictions are left unclassified, since experimental noise could easily lead to
such points being incorrectly classified. (2) If the two model predictions lie sufficiently close (within 4σ)
to one another, then the uncertainty (from both the measurement and the model predictions) make it
difficult to distinguish between the two models with certainty.

As mentioned above, for potent antibodies that are measured at saturating concentrations, the
difference between the independent and overlapping binding models will be large, making it easier to
definitively classify antibody epitopes. Koefoed et al. measured their 2-Ab combinations at a total
concentration of 2 µg

mL (and hence 1 µg
mL for each antibody), and Fig S2A suggest that while this is close

to saturating concentration for the majority of antibodies, increasing the concentration by 10x may have
allowed more pairs of antibodies to be definitively categorized.

A

Fractional Activity

Independent Binding
Model Prediction

Unclassified
Region

Overlapping Binding
Model Prediction

σσ

B

Fractional Activity

>4σ Separation
Between Predictions

σ σ σ σ

Figure S6. Accounting for uncertainty in the classification scheme. (A) 2-Ab combinations
whose activity falls within σ of the midpoint between the two model predictions will be labeled as
“unclassified,” since the difference in distance from the measurement to either prediction is less than the
experimental error. (B) In addition, when the two model predictions are less than 4σ different, any
measurement is labeled as “unclassified” because measurement error could result in overlap with both
model predictions.
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C Characterizing Multidomain Antibodies

C.1 Relating Influenza Neutralization to Binding

In this section, we discuss how the microscopic dissociation constants of two tethered antibodies (shown
in Fig 4C) relate to influenza viral neutralization. We begin by considering a single antibody with an

effective dissociation constant K
(1)
D that quantifies its avidity to the virus (4). The probability that this

antibody at concentration c will be bound to a virion is given by

pbound =

c

K
(1)
D

1 + c

K
(1)
D

. (S9)

For influenza virus with N ≈ 400 hemagglutinin (HA) trimers, the number of bound trimers is given by
Nbound = Npbound.

The relationship between viral binding and neutralization remain unclear (5). It has been suggested
that ∼ 50 HA trimers are required to infect a cell (4). However, an IgG bound to one trimer may
sterically preclude neighboring HA from binding. It has been proposed that neutralization is a sigmoidal
function of neutralization (see Figure S1 of Ref (6)),

Fraction Neutralized =
Nh +Nh

50

Nh

(Npbound)
h

(Npbound)
h

+Nh
50

, (S10)

where N50 is the number of bound trimers required to reduce infectivity to 50%, h is a Hill coefficient,
and the prefactor assures that the fraction neutralized ranges from 0 (in the absence of antibody) to 1
(in the presence of saturating antibody).

In the absence of data for our influenza strain of interest, we will assume h = 1 in the following
analysis. This enables us to rewrite Eq (S10) as

Fraction Neutralized =

c

IC
(1)
50

1 + c

IC
(1)
50

, (S11)

where we have defined the inhibitory concentration of antibody at which 50% of the virus is neutralized

IC
(1)
50 =

N50

N +N50
K

(1)
D . (S12)

For example, if the virus is 50% neutralized when N50 = 100 trimers are bound, the midpoint of a viral
neutralization curve would occur at roughly 1/5 the antibody concentration required to bind 50% of the
trimers, as has been observed for some influenza antibodies (see Figure 2 of Ref (7)).

We now consider the tethered two-domain antibody shown in Fig 4C. Denote the antibody concen-

tration as c, the effective dissociation constants of its two domains as K
(1)
D and K

(2)
D , and the effective

concentration when both domains simultaneously bind as c̃eff (which we will shortly relate to the ceff in
the antibody neutralization given in Eq 4). The probability that this antibody is bound to a virion is
given by

pbound =

c

K
(1)
D

+ c

K
(2)
D

+ c

K
(1)
D

c̃eff
K

(1)
D

1 + c

K
(1)
D

. (S13)

As above, we assume that neutralization is related to the binding probability through Eq (S10) with
Hill coefficient h = 1, which upon substituting Eq (S13) yields

Fraction Neutralized =

c
IC50,A1

+ c
IC50,A2

+ c
IC50,A1

ceff
IC50,A2

1 + c
IC50,A1

+ c
IC50,A2

+ c
IC50,A1

ceff
IC50,A2

(S14)
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where we have defined the IC50s of both antibodies using Eq (S12) as well as the rescaled effective
concentration

ceff =
N50

N +N50
c̃eff. (S15)

Therefore, in the case where h = 1 the functional form of neutralization (Eq (S14)) is identical to the
probability that an HA trimer is bound (Eq (S13)), with the dissociation constants and the effective
concentration rescaled by N50

N+N50
.

To put these results into perspective, we note that many viruses are covered in spikes (analogous
to influenza HA) that enable them to bind and fuse to their target cells (5), and hence the sigmoidal
dependence between viral binding and neutralization is likely widely applicable. However, HIV is a clear
exception, since each virion has an average of 14 envelope spikes (8). In that context, neutralization is
roughly proportional to the number of bound spikes so that IC50 ≈ KD (9).

C.2 Assuming Different Antibody Constructs have Distinct Effective Con-
centrations

In the main text, we quantified the boost in avidity from tethering two antibodies using the effective
concentration ceff = 1400 nM by using least-squares regression to minimize the (log) predicted IC50 for
each tethered construct binding to all strains. This effective concentration depends on the distance
between binding sites on a virion, and hence the tethered AbA1–AbA2 construct may have a different

ceff when binding to influenza A group 1 and group 2 strains, and Ab
(1)
B –Ab

(2)
B may have yet another

effective concentration when binding to the influenza B strains.
Fig S7 shows the best-fit ceff for each of these cases. While this plot suggests that there are differences

between each tethered antibody and influenza strain, we note that there is very limited data to infer
such values (e.g., there are 7, 7, and 5 data points in the influenza A1, A2, and B groups, respectively;
note that we ignore the H3N2 outlier strains A/Panama/2007/99 and A/Wisconsin/67/05 discussed
in the main text). That said, incorporating this fine-grained level of modeling could further boost the
accuracy of modeling efforts and is worth pursuing as more data is gathered.

Finally, we mention that Laursen et al. measured the efficacy of AbA1–AbA2 with different linkers of
length 18 amino acids (∼ 63Å), 38 amino acids (∼ 133Å), and 60 amino acids (∼ 210Å) against the four
influenza strains H1N1 A/California/07/09, H1N1 A/Puerto Rico/8/34-MA, H5N1 A/Vietnam/1194/04,
and H3N2 A/Wisconsin/67/05 (see Ref (3) Table S11). They found very little difference between the IC50

of each construct, which might naively suggest that the length of the linker does not matter. However,
since these four strains were all negligibly inhibited by AbA2 (IC50 ≥ 1000 nM; see Fig 5A), this domain
cannot meaningfully contribute to bivalent binding, so that AbA1–AbA2 would be expected to be as
potent as AbA1 irrespective of linker length. On the other hand, the length of the linker should matter
when both Abs in a multidomain antibody can bind, as is the case for AbA1–AbA2 binding to the three

influenza A group 2 strains with IC50 < 1000 nM and for Ab
(1)
B –Ab

(2)
B binding to the five influenza B

strains.
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